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Abstract

Looming stimuli evoke behavioral responses in most sighted animals, yet the mechanisms
of looming detection in vertebrates are poorly understood. Here we hypothesize that
looming detection in the tectum may rely on spontaneous emergence of synfire chains:
groups of neurons connected to each other in the same sequence in which they are
activated during a loom. We then test some specific consequences of this hypothesis. First,
we use high-speed calcium imaging to reconstruct connectivity of small networks within the
tectum of Xenopus tadpoles. We report that reconstructed directed graphs are clustered
and hierarchical, that their modularity increases in development, and that looming-selective
cells tend to act as activation sinks within these graphs. Second, we describe spontaneous
emergence of looming selectivity in a computational developmental model of the tectum,
governed by both synaptic and intrinsic plasticity, and driven by structured visual inputs. We
show that synfire chains contribute to looming detection in the model; that structured inputs
are critical for the emergence of selectivity, and that biological tectal networks follow most,
but not all predictions of the model. Finally, we propose a conceptual scheme for
understanding the emergence and fine-tuning of collision detection in developing aquatic
animals.

Introduction

Few sensory stimuli are as ill boding for the animal as a visual loom. A retinal projection that
is small, but is quickly growing in size, may promise a painful collision, or a meeting with a
predator, so it inherently calls for an action: an avoidance maneuver, or a defensive
response. Moreover, to be meaningful, looming detection has to be fast. Not surprisingly, it
is described in virtually every animal that uses vision, from insects to primates (Pereira and
Moita, 2016). And yet, while our understanding of looming detection in insects has recently
improved (Rind et al., 2016; von Reyn et al., 2017), the mechanisms that underlie collision
avoidance in vertebrates are still unclear.

For vertebrates, it is well established that looming detection primarily happens in a midbrain
region known as superior colliculus in mammals, and optic tectum in all other clades (Frost
and Sun, 2004; Liu et al., 2011; Khakhalin et al., 2014; Dunn et al., 2016). It is not known
however how midbrain circuits perform the computations required for collision avoidance,
and it is not clear whether looming avoidance and collision avoidance in vertebrates are
innate (and so possibly hardwired), or whether they need to be learned. Finally, to navigate,
animals need to calculate not just whether a collision is about to happen, but where a
looming stimulus is coming from. While it is known that the tectum harbors a retinotopic
map of the visual field (McLaughlin et al., 2003; Ruthazer and Cline, 2004), there are
several competing theories about how looming detectors may be distributed within this map
(Frost and Sun, 2004).
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What calculations may underlie collision avoidance, in principle? Across species, looming
detection relies on a diverse set of mechanisms that include dimming detectors (Ishikane
et al., 2005; Munch et al., 2009), integration of opponent motion (Klapoetke et al., 2017),
and competitive spike-frequency adaptation (Peron and Gabbiani, 2009; Fotowat et al.,
2011). Even within a single clade of anuran amphibians (frogs), animals seem to employ at
least two competing approaches to loom detection: a non-linear response to
dimming-induced retinal oscillations (Baranauskas et al., 2012), and a rebound of recurrent
activity during edge expansion (Khakhalin et al., 2014; Jang et al., 2016). Moreover, at least
in some cases, competing mechanisms may lead to different motor responses, as
described in insects (Card and Dickinson, 2008; Chan and Gabbiani, 2013), fish (Budick
and O’Malley, 2000; Burgess and Granato, 2007; Portugues and Engert, 2009; Temizer

et al., 2015; Bhattacharyya et al., 2017), and tadpoles (Khakhalin et al., 2014).

It may seem puzzling that the brain would use several conflicting approaches to solve one
practical problem, but this arrangement may make sense developmentally. Simple, crude
ways of identifying dangerous stimuli can be used to train more sophisticated and efficient
networks, capable of nuanced sensory analysis at later stages of development
(Marblestone et al., 2016; Zador, 2019). We argue that young aquatic animals may use
"hardwired” dimming receptors (Baranauskas et al., 2012) both to avoid collisions early in
development (Dong et al., 2009), and to "bootstrap” motion-dependent networks in the
tectum. In older animals, nuanced motion-detecting networks could serve as a first line of
defense, identifying early phases of looming, and allowing for fine course corrections
(Khakhalin et al., 2014; Bhattacharyya et al., 2017), while dimming detectors remain as a
backup, mediating last-moment, less coordinated responses. Moreover, every time collision
avoidance is not performed perfectly, sensorimotor networks can be refined, based on the
mechanosensory inputs from the lateral line and from the skin (Felch et al., 2016;
Helmbrecht et al., 2018).

In this study, we use high-speed calcium imaging and functional connectivity reconstruction
to search for looming detectors within recurrent networks in the developing tectum of
Xenopus tadpoles. Tadpole tectum is uniquely suitable for studies of sensory integration, as
it is excessively plastic (Pratt and Aizenman, 2007; Busch and Khakhalin, 2019), strongly
interconnected (James et al., 2015), and develops reliable looming selectivity within about a
week (Dong et al., 2009; Khakhalin et al., 2014), as tadpoles mature from Nieuwkoop stage
46 to stage 49. We hypothesize that looming detectors may emerge in development, when
connections between tectal cells are reshaped by patterned visual stimulation. Synapses in
the tectum of young tadpoles exhibit spike-time-dependent plasticity (STDP; Zhang et al.
1998; Mu and Poo 2006; Vislay-Melizer et al. 2006; Richards et al. 2010) that is known to
promote the development of synfire chains: groups of neurons, sequentially connected to
one another (Fiete et al., 2010; Zheng and Triesch, 2014). Synfire chains are selective for
inputs that activate neurons in the same sequence in which they are connected (Clopath
et al., 2010), turning them into temporal pattern detectors. We hypothesize that it is this
ability to "resonate” with specific temporally patterned inputs that underlies looming
behavior in late pre-metamorphic tadpoles.

There are two potential ways to test this hypothesis. First, we can look for synfire chains in
the tectum; see whether they get selectively activated in response to looming stimuli, and
check whether their connectivity and selectivity patterns change with development. Luckily,
signal transmission in Xenopus tectal neurons is relatively slow, with synaptic transmission
and spiking initiation taking up to 10 ms (Ciarleglio et al., 2015; Jang et al., 2016; Busch
and Khakhalin, 2019), so if synfire chains in the tectum exist, they may be directly
observable with fast calcium imaging, operating at rates of ~100 frames/s. Second, if
synfire chains can serve as a basis for looming detection, we can expect looming selectivity
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to spontaneously emerge in a model of a developing tectum governed by
spike-time-dependent plasticity (Gao and Ganguli, 2015; Pietri et al., 2017). We can then
use this model to build verifiable predictions about looming detectors in biologicall networks,
and explore the range of developmental rules that enable looming selectivity (Linderman
and Gershman, 2017; Bassett et al., 2018), similar to how computational models recently
helped to study the emergence of visual receptive fields (Bashivan et al., 2018), grid cells
(Banino et al., 2018), and decision circuits (Haesemeyer et al., 2018).

With this in mind, here we ask five specific questions. In the first half of the paper, we test
whether it is possible to reconstruct functional connectivity in tectal networks from calcium
imaging recordings. We then investigate the topology of connectivity graphs in the tectum,
compare these graphs between younger and older tadpoles, and try to assess whether
these graphs may support collision detection. Finally, in the second half of the paper, we
check whether looming detection emerges in a computational model, and whether the
statistics of simulated looming-selective networks matches that of biological networks. We
show that our model predicts some, but not all aspects of topology, functionality, and
development of looming-sensitive networks, making it hard to draw simple conclusions.
Nevertheless, we report several new findings, including some surprising positive and
negative results.

Results

For all types of analysis, in the main text we provide their names and ways to interpret their
results, but leave definitions for the Methods section. For statistical tests, p-values are
reported without correction, and we interpret them according to Fisher, rather than
Neyman-Pearson philosophy (Greenland et al., 2016; Amrhein et al., 2019). At the
interpretation step, we pay more attention to hypotheses supported by several alternative
analyses. All code and summary data are available at:
https://github.com/khakhalin/Ca-Imaging-and-Model-2018 .

We performed calcium imaging experiments in 14 stage 45-46, and 16 stage 48-49
tadpoles, recording responses from 128+40 tectal cells (between 84 and 229 in individual
experiments). Here and below “+” after the mean denotes standard deviation. Unless
stated otherwise, sample sizes n = 14 and 16 animals for stage 46 and 49 tadpoles apply
to all analyses between younger and older animals in this study. To each tadpole, we
presented a sequence of three different stimuli, always in the same order: a dark-on-light
"Looming” stimulus, followed by a full-field dark "Flash”, followed by a spatially "Scrambled”
looming stimulus (Figure 1A). Scrambled stimuli were identical to looming, except that the
visual field was split into a 7x7 grid of square tiles, and these tiles were randomly rearranged
in space. In total we presented 60411 stimuli to every animal, which means that a stimulus
of every type was presented 20+4 times. We recorded high speed (84 frames/s) calcium
imaging signals (Xu et al., 2011; Truszkowski et al., 2017) from one layer of “deep” principal
tectal neurons in the tectum (Figure 1B,C); extracted fluorescence traces (Figure 1D,E), and
inferred instantaneous spiking rate for each neuron within every frame (Figure 1F,G).

Responses and stimulus selectivity

As previously reported for electrophysiology experiments (Khakhalin et al., 2014),
responses to flashes were fast, with a sharp peak, and little recurrent activation after the
peak, while responses to looming stimuli were slower, and were followed by a strong
recurrent activation (Figure 1G). Responses to both looming and scrambled stimuli were
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Figure 1. Experimental design overview. A. Visual stimulation: four representative frames
from each stimulus type. B. Schematic of the preparation, with stimulation fiber on the
left, and microscope objective on top. C. View of the optic tectum during calcium imaging
recording. D. Regions of interest (cells) for brain shown in C, with darker markers represent-
ing cells with stronger responses. Labels in the right top corner mark Rostro-Caudal and
Lateral-Medial axes. E. Typical fluorescence responses to Flash (F), Scrambled (S) and
Looming (L) stimuli from three cells in the tectum. F. Spiking estimations for these fluores-
cence traces. G. Average full-brain responses to stimuli of every type, for one representative
experiment, shown with a 95% confidence interval band.

highly variable from one animal to another (Figure 2A), which may indicate either an
inherent variability of network configurations, or different levels of inhibition across
preparations.

The total output of observed networks tended to be higher in response to looming stimuli
than to flashes (Figure 2B; on average, 39+29% higher for younger; 25+25% higher for
older tadpoles; p;1 = 2e-4 and 1e-3 respectively), with no change in this preference in
development (p;=0.15). There was no discernible difference in response amplitudes
between looming and scrambled stimuli (average difference of —0.03+0.15 and
—0.01+0.20; p;; = 0.45 and 0.78 for younger and older animals respectively; no difference
in development p, = 0.80). These results support our prior observation that total tectal
responses in tadpoles depend mostly on the dynamics of visual stimuli, rather than on their
geometry (Khakhalin et al., 2014; Jang et al., 2016).

Were there specialized looming detectors in the tectum? To quantify stimulus selectivity
(Figure 2C), for each tectal cell we calculated Cohen’s effect size d between cumulative
responses to different stimuli. We considered two measures of selectivity: that for "Looming
over Flash” (a type of selectivity that may rely on both stimulus dynamics and its spatial
organization), and "Looming over Scrambled” (that can only rely on spatial properties of
stimuli, as by design they had the same dynamics). Looking at cumulative responses was of
course a simplification, as in real life, animals respond to stimuli even as they are still
unrolling (Peron and Gabbiani, 2009; Khakhalin et al., 2014), and not after a timed 1
second-long presentation. We however had no way to justify any specific way of dynamic
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Figure 2. Selectivity analysis. A. Average brain responses (sum of activity of all recorded
cells over time), for each stimulus type, in each experiment, superimposed. Black lines
show grand averages across all experiments, separately for younger and older tadpoles.
B. Cumulative full brain responses (an integral under the curves shown in A) for each
experiment, across three stimulus types. C. A sample selectivity map, with hue coding
preference for Flash (more red), Scrambled (more green), and Looming (more blue) stimuli.
D. Average histograms of cell selectivity distributions, for younger (violet) and older (black)
tadpoles; uncertainty bars show 95% confidence intervals, for clarity given in only one
direction. Younger tadpoles had more highly selective cells than older tadpoles. E. A
correlation between Flash-Scramble and Flash-Looming selectivity of individual cells in
a typical experiment. F. A correlation between Scramble-Looming and Flash-Looming
selectivity of individual sells in the same sample experiment. G. Stimulus encoding in
different experiments, for two developmental stages.

thresholding, and so opted for the simplest possible approach.

On average, tectal cells were selective for looming stimuli (Figure 2D; d of 0.67+0.50 and
0.46+0.47 in younger and older tadpoles respectively. Here we first calculated selectivity d
for every cell, then found average d within each brain, and finally compared values of d
between experiments in younger and older tadpoles. There was no difference in cell
selectivity between stages in terms of both mean cell selectivity and variance in selectivity
(p = 0.3, 0.3). The share of cells that responded to looming stimuli stronger than to flashes
also did not change in development (84+23%, 77+21%; p; = 0.4). Compared to younger
brains, older brains had fewer highly selective cells (Figure 2D, right side of the curve). The
gap between top-selective (90th percentile) and median selective cells was larger in
younger (0.75+0.26) than in older tadpoles (0.53+0.27; p; = 0.03), as selectivity
distributions in younger tadpoles were more positively skewed (p; = 0.01). These results
were unexpected, as older tadpoles perform better in collision avoidance tests (Dong et al.,
2009), and so we expected them to develop a subset of looming-selective cells, as
described in adult frogs (Nakagawa and Hongjian, 2010; Baranauskas et al., 2012), and
other vertebrates (Wang and Frost, 1992; Wu et al., 2005; Liu et al., 2011). Yet in our
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experiments, a subpopulation of strongly selective cells not only did not expand in older
animals, but actually became less prominent.

We then considered a second, more computationally demanding definition of selectivity: a
preference for spatially organized looming over scrambled stimuli. On average, tectal cells
did not have a preference between these two stimuli (average selectivity of —0.07+0.33 in
younger tadpoles, —0.0440.49 in older ones; no change in development p, = 0.9). The
share of cells that responded to looming stronger than to scrambled was at a chance level
for both developmental stages (46+31%, 48+37%, p; = 0.9), and there was no change in
either within-brain variance of this selectivity (p; = 0.9), or the 90—50 percentile asymmetry
of values (p; = 0.8).

We found that selectivity for scrambled stimuli over flashes correlated with selectivity for
looming stimuli over flashes (Figure 2E) in both developmental groups: average within-brain
correlation coefficients » = 0.82+0.13, p;; =3e-12 for younger animals, and 0.75+0.18,
pt1 = 3e-11 older ones, with no change in development (p; = 0.3). On the contrary, the
preference for looming over flashes did not correlate with preference for looming over
scrambled (Figure 2F; » = 0.03+0.29, p;; = 0.7 for stage 46; 0.13+.30, p;; = 0.1 for stage
49). This further suggests that most cells in the tectum responded to stimulus dynamics
only, and did not specifically process its geometry.

Finally, as a holistic way to quantify tectal network selectivity, we looked at our ability to
predict stimulus identity from recorded tectal responses in all cells (Avitan et al., 2016): a
measure known as “stimulus encoding”. We ran a multivariate logistic regression on one
half of the data, linking values of total responses of each cell in each trial to the type of
stimulus used in this trial. Then we measured the quality of this linkage on the second half
of recorded data (Figure 2G). The quality of prediction was rather low: 59+12% for younger,
and 62+13% for older tadpoles, with no change in development (p; = 0.6).

To assess the variability of response shapes from one tectal cell to another within each
brain, we performed exploratory factor analysis (principal component analysis, followed by a
promax rotation) of responses to looming stimuli within each preparation. The first and
second principal components explained on average 19+7% and 4+1% of variance in
younger tadpoles, and 24+14% and 3+1% in older tadpoles, with second component
encoding response timing (Figure 3A). Cells with early responses to looming stimuli were
reliably grouped together somewhere within the recorded field (Figure 3B) in each one out
of 30 experiments (see Methods). We assumed that early-responding cells grouped
together because of the known retinotopic arrangement of receptive fields in the tectum
(Ruthazer and Cline, 2004), that made tectal activation follow and reproduce the gradual
unrolling of looming stimuli on the retina. Across cells, the latency of average response
correlated with distance from the retinotopy center (Figure 3C; » = 0.35 + 0.24; correlations
individually p,. < 0.05 in 25/30 experiments), despite our latency estimations being quite
noisy for low-amplitude cells (see Methods). Curiously, while visual projections to the
tectum are known to be actively refined in development (Sakaguchi and Murphey, 1985;
Ruthazer and Cline, 2004; Munz et al., 2014), it seems that the precision of functional
retinotopic maps did not differ between younger and older tadpoles, as the values of
correlation coefficients between cell position and early component prominence did not
discernibly change in development (r = 0.63 + 0.21 and 0.57 + 0.25 respectively, p, = 0.5),
which is similar to prior reports in Zebrafish (Avitan et al., 2016).

Knowing where the center of a looming stimulus was projected within the tectum, we could
check whether looming-selective cells tended to be found in the center of the expanding
activation area (as it would be expected if collision detectors formed a meta-retinotopic map;
Frost and Sun 2004), or at the periphery. We found that selectivity for looming over flash
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Figure 3. Spatiotemporal organization of responses. A. Two first components (Principal
Component Analysis with promax rotation) identified in tectal responses in a typical experi-
ment. B. Neurons from the same sample experiment as in A, shown as they were located
in the tectum, and colored by the contribution of early (green) and late (purple) response
components. Black cross shows the estimated position of the retinotopy center. C. Average
change of Flash-Looming selectivity with distance from the retinotopy center, for stage
46 (left) and stage 49 (right) tadpoles; uncertainty bars show 95% confidence intervals.
D. Adjusted correlation matrix for instantaneous activation of different neurons across all
stimuli in a sample experiment (same as in B). E. Ensembles identified from the correlation
matrix. F. The number of ensembles, identified in younger and older tadpoles. G. Maximal
modularity of ensemble partition. H. Ensemble spatial compactness.

tended to decrease with distance from the projection center (Figure 3C) for both stage 45
(average r = —0.37+0.27; individual correlations p, <0.05 in 12/14 experiments), and
stage 49 tadpoles (average r = —0.09+0.35; p,- <0.05 in 12/16 experiments), indicating
that looming-selective were often found in the center of the emerging spatial response.
Similarly, at both developmental stages, selectivity decreased with response latency (stage
46: p,. <0.05in 11/14 animals, average » = —0.2940.11; stage 49: p,. <0.05in 10/16
animals, average r = —0.16+0.21). Both correlations were weaker in older tadpoles (p; =
0.02 for a link between distance and selectivity, p; = 0.03 for a link between response
latency and selectivity), suggesting a more spatially even distribution of looming-selective
cells in older tectal network.

Neuronal ensembles

We then asked whether certain tectal cells tended to respond or stay silent together,
potentially indicating distributed processing in network ensembles. As a simplistic way to
assess that, we performed factor analysis of trial-to-trial population response variability,
and checked whether it changed in development, as it is known to happen for tectal
spontaneous activity (Xu et al., 2011). The total number of principle components needed to
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describe 80% of variance across cells (Avitan et al., 2017) was similar in stage 46 and 49
tadpoles, with a possibility of mild increase in response richness in older animals (p >0.05
for each stimulus type alone, but consistent across stimuli: 514+14 and 65+28, p;=0.1 for

looming; 49+12 and 62432, p,=0.2 for flashes; 51+14 and 64+26, p,=0.1 for scrambled).

To better describe and visualize network activation variability, we looked for ensembles of
tectal cells using spectral clustering (Thompson et al., 2016). Unlike for spontaneous
activity, we could not easily aggregate activity states into clusters (Avitan et al., 2017), as
activation in our networks was driven by shared sensory inputs. Instead, we subtracted
average responses of each cell from its responses in individual trials, and calculated
pairwise correlations on the remaining “anomalies” of trial-by-trial activation (Figure 3D). We
turned these correlations into pairwise distances in a multidimensional space, ran a series
of spectral clustering partitions (Ng et al., 2002), and of all possible partitions, picked the
one that maximized spectral modularity on a similarity graph (Newman, 2006; Gomez et al.,
2009) (Figure 3E; see Methods for details). We found that the number of ensembles did not
differ between younger and older tadpoles (Figure 3F; 10+5 in stage 45, 11411 in stage 49;
p:=0.9), but in older tadpoles, ensembles were more coordinated with each other, producing
lower values of network modularity (Figure 3G; 0.14+0.05 to 0.09+0.06, p;=0.03). Tectal
ensembles also tended to be spatially localized (Figure 3H), with cells within each ensemble
located closer to each other on average than to cells from different ensembles, both in
younger (29+9% closer) and older animals (25+10% closer; no difference in development
pt=0.3).

Network reconstruction

The high speed of imaging used in this study (84 frames/s) allowed us to look not just at
instantaneous correlations between activation of individual neurons, but at the propagation
of signals through the network. To reconstruct network connectivity, we calculated pairwise
transfer entropy (Gourévitch and Eggermont, 2007; Stetter et al., 2012) between activity
traces of individual cells. Intuitively, for each pair of neurons i and j we quantified the
amount of additional information that past activity of neuron i could offer to predict current
activity of neuron j. This is conceptually similar to calculating a cross-correlation between
the activity of neuron i at each frame ¢, and the activity of neuron j at each frame ¢ + 1
(Figure 4A), except that transfer entropy calculation does not make assumptions about the
type of influences neuron ¢ may have over neuron j, and offers a lower inference noise
(Stetter et al. 2012; Figure 4B).

In our experiments, all tectal neurons received shared inputs from the eye, that recruited
them in a similar manner in every trial. This complicated connectivity inference, as neurons
could spike in a sequence both because they were connected, and because they received
innervation from sequentially activated areas of the retina (Mehler and Kording, 2018). To
compensate for shared inputs, we randomly reshuffled trials for every neuron, calculated
average transfer entropy on reshuffled data, and subtracted it from the value obtained on
trial-matched data (Gourévitch and Eggermont, 2007; Wollstadt et al., 2014). In essence, it
is similar to working with deviations from the average response, and quantifying whether
these deviations tended to propagate through the network, from one neuron to another. The
reshuffling step also allowed us to calculate p-values for each pair of neurons, and quantify
how unusual the value of transfer entropy was, compared to a value arising from shared
inputs alone.

We interpreted transfer entropy values as approximations of weights in a connectivity matrix
W, with w;; describing the strength of connection from neuron i to neuron j (but see Mehler
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Figure 4. Connectivity reconstruction. A. Delayed correlations between activities of different
neurons in a sample experiment. B. Adjusted transfer entropy estimations for the same
experiment. C. Estimated weighted adjacency matrix. D. Connectivity reconstruction, with
location of each cell preserved. Node color indicates its selectivity. E. Same graph as in D,
in visually optimized layout. Positions of individual nodes no longer represent the position
of tectal cells. F. In-degree distribution for younger (violet) and older (black) tadpoles,
presented in log-scale, with uncertainty bars showing 95% confidence intervals. Observable
changes for individual degrees (p; < 0.05) are marked with asterisks. G. Same as C, but for
out-degree distributions. H. Network power ~ increased in development, as older tadpoles
had a slightly sharper slope to their degree distributions.

and Kording 2018). We calculated W and corresponding p-values independently on
looming, flash, and scrambled stimuli, and used these independent estimations to ensure
some level of internal replication within each experiment (see Methods). Of all possible
edges, only 1.6+1.4% were found to be non-zero in all three independent analyses, which
was discernibly higher than 0.6+0.09% expected if edges were assigned at random (paired
t-test p,, = 9e-9). In each experiment, we then introduced cut-offs on edge p-values, to
exclude weak noisy edges from the connectivity graph (Figure 4C). As noise levels varied
across preparations, we adjusted these cut-offs (Stetter et al., 2012), making the number of
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non-zero edges in each reconstruction equal to the number of recorded cells (Figure 4D,E).
The effective p-value cut-offs were between 0.001 and 0.007 depending on the experiment
(median of 0.004).

The simplest statistical property of a network is its degree distribution: the share of nodes
with different number of incoming (%;,,) and outgoing (k..;) connections. We compared
rounded degree distributions between networks detected in younger and older tadpoles
(Figure 4F,G), and found that older networks contained fewer unconnected cells (k;, = 0,
p: <0.03) and fewer cells with high number of connections (k;,, = 5, kout = 6, p: = 0.01 in
both cases), but more cells with intermediate number of connections (k;,, = 2, p; = 0.001,
and k,.; = 2, p; = 0.04). When we approximated degree distributions (excluding & = 0)
with a power law (Figure 4H), the power constant v was smaller in younger (1.48+0.19)
than in older tadpoles (1.82+0.25, p; = 2e-4), consistent with a steeper drop from the rate
of occurrence of weakly connected to highly connected cells. It suggests that older tectal
networks had more chains of connected neurons (out- or in-degree of k = 1) and forks (k =
2), while younger neurons had more hyperconnected hubs (k£ >5) and unconnected nodes
(k = 0), which matches expectations for STDP-driven networks (Fiete et al., 2010).

An unusual feature of our protocol, compared to most calcium imaging techniques, was that
the signal-to-noise ratio varied greatly from one cell to another, depending on how far it was
from the focal plane, and how much dye it absorbed through the partially exposed
membrane during staining. As a result, the share of cells with weak signals that appeared
unconnected to the rest of the network varied across experiments, and was dependent on
extraneous circumstances, such as the physical curvature of the preparation. To ensure that
poorly resolved cells did not bias our conclusions too strongly, we restricted further network
analysis to the largest weakly connected component of each network. There was no
difference in the number of weakly connected components detected in younger and older
tadpoles (50+14 and 50+26 for stages 45 and 49 respectively, p; = 0.9), but in older
animals the largest weakly connected component included a higher share of observed cells
(50+6% and 64+12% for younger and older networks respectively; p; = 4e-4), which was
to be expected given the change in degree distributions described above.

A known prediction for networks dominated by spike-time-dependent plasticity (STDP) is
that with time, neuronal connections tend to become highly asymmetric (Pratt et al., 2008;
Richards et al., 2010). Indeed, if cells i and j are reciprocally connected, every time j
spikes after ¢, STDP would increase the weight w;; , but decrease the reciprocal weight w;;
(Abbott and Blum, 1996; Fiete et al., 2010). We found that for our data, the share of
bidirectional edges (with both w;; and w;; >0) among all detected edges was smaller
(0.3+0.3%) than expected for random edge assignment in graphs of our size (0.4+0.1%,
paired p; = 0.02), indicating asymmetric information flow in the tectum. Moreover, the share
of bidirectional edges decreased in development, from 0.4+0.3% in younger animals to
0.24+0.2% in older animals (p; = 0.03), suggesting that STDP was still shaping emerging
network topology at these developmental stages.

We then looked at whether connected cells were more likely to be located spatially closer to
each other. We found that the average distance between connected cells was indeed
shorter than for randomly selected cells: 18+10% shorter for stage 45, and 17+8% shorter
for stage 49 tadpoles (individually discernible with p; <0.05 for 13/14 and 16/16
experiments respectively). Contrary to our expectations, and in contrast to what is known
about visual inputs to the tectum (Tao and Poo, 2005), the intra-tectal connectivity did not
become more compact in development (p;=0.7). This suggests that tectal networks rely on
relatively far-reaching recurrent connections to integrate visual information across the visual
field (Baginskas and Kuras, 2009; Liu et al., 2016; Jang et al., 2016).
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Figure 5. Global network properties. Filled markers show values from experiments; empty
markers show averaged values for matching rewired networks; black squares show averages
for each group. Network diagrams to the right of each plot show cartoon representation of
graphs with low and high values of respective network measures. Asterisks show statistically
discernible differences (p < 0.05). A. Global network efficiency was lower than expected
for stage 46 tadpoles. B. Global clustering was higher than expected by chance, for both
developmental stages. C. Network modularity increased in development. D. Network
hierarchy was higher than expected by chance, for both developmental stages.

Network properties

The best (and perhaps the only possible) way to compare two sets of connectivity graphs to
each other is to quantify their properties using a diverse set of network measures, and
compare these values across groups. We did this, and also looked whether our inferred
connectivity graphs were statistically unusual, by comparing their properties to that of
matching randomized graphs (Ansmann and Lehnertz, 2012). To do so, we randomly
rewired edges between nodes, while keeping the distribution of edge weights w;;, and the
number of non-zero edges adjacent to each node (node degree) fixed, as a case of
degree-preserving rewiring (Maslov and Sneppen, 2002) generalized for weighted directed
graphs.

The measure of average "connectedness” in the graph, known as network efficiency, is
defined as the average shortest path connecting two random nodes in the network (Latora
and Marchiori, 2001; Rubinov and Sporns, 2010). This value is high when short paths made
of high-weight edges tend to connect any two randomly chosen nodes in the graph, making
it easy for signals to propagate within the network; the value is low when some pairs of
nodes are far from each other on a graph (Figure 5A). We found that network efficiency
(0.0044-0.002 for stage 46, 0.002+0.002 for stage 49 tadpoles) was lower than expected for
a randomized network with a matching degree distribution (d = —0.3, paired p, = 0.04 and
d = —0.3, paired p, = 0.06 for younger and older tadpoles respectively). It was not clear
whether efficiency changed with age (d = —0.8, p; = 0.06).

The global clustering coefficient describes the small-scale heterogeneity in the network
(Fagiolo, 2007), and is defined as the relative frequency of two neighboring nodes being a
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part a triangle with a third node connected to both of them (Figure 5B). The value of
clustering coefficient in our networks was very small (2.4+2.5 e-3 for stage 46, 1.5+1.6 e-3
for stage 49 animals), but slightly larger than expected in a randomly rewired network with
same degree distribution (d = 0.5 and 0.6, paired p, = 0.01 and 0.02 for younger and older
animals). This means that neurons with more than two connections were likely to form
clusters. There was no change in clustering in development (d=—0.4, p;=0.3, Fig.).

Network modularity is the most commonly used measure of mesoscale network
heterogeneity (Newman, 2006; Leicht and Newman, 2008). A network with high modularity
can be split into a set of sub-networks, with higher density of connections within each
sub-network, and weaker connections between them (Figure 5C). In our experiments,
reconstructed tectal networks had similar, or slightly higher modularity than matching
randomly rewired networks (d = 0.2 and 0.3, paired p; = 0.2 and 0.06, for stages 46 and 49
respectively), and network modularity clearly increased in development (d = 1.0, p; = 0.01).

Flow hierarchy is a measure of structural hierarchy in the network (Mones et al., 2012),
assessed through flows of activation that propagate through it. We based our measure of
hierarchy on the distribution of Katz centrality values (Katz 1953; Fletcher and Wennekers
2018; see next section for definitions). Intuitively, hierarchy is high when a network has
groups of “input” and “output” nodes, with connections between them largely pointing in the
same direction, as it happens in layered feed-forward networks; hierarchy is weak in random
networks, or networks that consist of cycles with no clear inputs and outputs (Czégel and
Palla, 2015). We hypothesized that a network of dedicated looming detectors may exhibit
flow hierarchy, with more edges leading from “feeder neurons” to "detector neurons”.
Indeed, tectal networks were more hierarchical than randomized networks with matching
degrees distributions (Figure 5D; d = 1.5 and 1.1, paired p, = 1e-04 and 1e-03 for younger
and older tadpoles respectively). There was no difference in flow hierarchy in development
(d =-0.3, p, = 0.4).

Selectivity Mechanisms

Even though the exact architecture of collision-detecting tectal networks is unknown, it is
safe to assume that looming-selective neurons have to integrate streams of information
coming from different parts of the visual field. We therefore hypothesized that the position of
selective neurons within connectivity graphs would not be random (Timme et al., 2016). To
verify that, for each reconstructed network we tested correlations between looming
selectivity of each neuron and values that quantify its place within the network, known as
measures of node centrality.

To identify information sinks, for each cell we calculated its Katz centrality within the graph
(Katz, 19583; Fletcher and Wennekers, 2018). By definition, nodes with high Katz centrality
have many paths leading to them, so a spike originating at random within a graph is more
likely to eventually cause activation of these nodes, compared to nodes with low Katz
centrality. We found that when all cells from all experiments were considered (Figure 6A),
there was a very weak but discernible correlation between the looming selectivity of cells
and their Katz centrality (r = 0.02, p,, = 1e-6, n =2487). More convincingly, correlation
coefficients between Katz centrality and looming selectivity were positive in 19/30
experiments (Figure 6B; average » = 0.09+0.20 p,; = 0.03). There was no obvious change
of this effect in development (p; = 0.5).

A node may have high Katz centrality for two reasons: it may receive a higher number of
incoming connections (higher in-degree), or have chains of directed edges leading to it. To
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Figure 6. Local network properties (centrality) for cells selective for looming stimuli. A. Cells
with higher Katz centrality had a weak tendency to respond stronger to looming stimuli. A
diagram inset illustrates the concept of Katz centrality: for this graph, cells with low centrality
(sources) are pale, while cells with higher centrality (sinks) are darker. B. Correlation
coefficients for Katz centrality of each cell and its selectivity for looming stimuli, calculated for
each experiment, and shown by developmental stage. C. Correlation coefficients for node
in-degree and its selectivity for looming stimuli, in each experiment, shown by developmental
stage. D. Correlation coefficients for average activation of each cell, and its selectivity for
looming stimuli, in each experiment, shown by stage.

see which of these patterns may be at work here, we checked whether looming-selective
cells tended to receive more incoming connections, compared to non-selective cells
(Litwin-Kumar and Doiron, 2014). When all points were considered, there was no
correlation between in-degree and cell selectivity (p, =0.3, n = 2487), but for individual
experiments correlation coefficients between in-degree and selectivity were positive in
20/30 of cases (Figure 6C, p;; = 0.03). There was no obvious change of this correlation in
development (p; = 0.5).

As cells with higher Katz centrality tend to be activated more often (Fletcher and
Wennekers, 2018), we checked whether selectivity for looming stimuli correlated with cell
average spiking activity in our recordings. We found that both in younger and older
animals, actively spiking cells tended to have stronger looming selectivity (for stage 46
average rg = 0.34+£0.20, r > 0 with p;; = 2e-5; for stage 49 rs = 0.14£0.26, p;; = 0.04,
indicating a discernible decrease with development p;, = 4e-4; across all cells rg = 0.07,
pr = 4e-4). This matches predictions from our studies of intrinsic excitability in the tectum
(Busch and Khakhalin, 2019). For this analysis we used Spearman rather than Pearson
correlation, as 4 experiments had single neurons (one per experiment) with extremely high
activity levels that acted as influential points. Excluding these 4 neurons and using Pearson
correlation yielded very similar results.

If looming-selective cells gather information from the network, it was also plausible to expect
that they would be connected to other selective cells more often than to non-selective ones.
To test this, we looked into assortativity of selectivity: a weighted correlation between
selectivity scores of cells connected by edges, with strength of these edges taken as
weights (see Methods). We found that in both younger and older tadpoles, selectivity values
for connected cells correlated (for stage 46: » = 0.07+0.13, p;; = 0.04, individual » > 0 in
9/14 experiments; for stage 49: » = 0.07+0.10, p;; = 0.02; individual » > 0 in 10/16
experiments). This suggests that similarly selective cells indeed tended to be connected to
each other. There was no change in this effect over development (p; = 0.9).

Finally, we checked whether higher average activity of looming-selective cells linked them


https://doi.org/10.1101/589887
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/589887; this version posted March 26, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

Khakhalin ASCE¥ph'8RH1548%1 i85 ing-selective networks. Page 14

into tight clusters, or "rich clubs”. We calculated local clustering coefficient for each cell,
and checked whether it correlated with cell selectivity. We found that local clustering
coefficient did not correlate with cell selectivity both when all cells were pooled together
(p = 0.6, N=2487), or across individual reconstructions (correlation coefficients across
experiments were not different from zero; p;1 = 0.25, n=30). This shows that while selective
cells tended to be connected to each other, they did not form tight clusters. Together these
results suggest that the distribution of selective cells in tectal networks was not random.

Developmental Model

As our recordings were noisy, and sample sizes were relatively small, it was hard to expect
that we would uncover clear links between selectivity and connectivity of tectal cells in
experimental results alone. To compensate for this limitation, and provide a counterpoint to
experimental results, we built a mathematical model of the developing tectum, and ran
simulated responses from this model through exactly same set of analyses that we used for
our experiments. The model consisted of 81 artificial neurons, arranged in a 9x9 grid
(Figure 7A), that were all originally connected to each other (every neuron to every neuron)
with random positive (excitatory) synaptic weights (Figure 7B). The model operated in
discrete time, in 10 ms increments, and we interpreted the output of each neuron at each
time step as its instantaneous firing rate. At each time step we looked at the network activity
at the previous step, calculated total synaptic inputs to each neuron, and used a sliding
logistic function to translate these synaptic inputs to postsynaptic spiking (see Methods for a
full detailed description).

We introduced three simple developmental rules: spike-time-dependent plasticity (STDP),
homeostatic plasticity, and synaptic competition. Our implementation of STDP
approximated biological STDP observed in the tectum (Zhang et al., 1998; Mu and Poo,
2006): if two cells were active one after another in two consecutive time frames, and they
were connected with a synapse, the weight of this synapse was increased. Conversely, if
two cells were active within the same time frame, the weight of a synapse connecting them
was decreased, as it means that one cell would try to activate another cell immediately after
it had spiked (see Figure 7F for a typical evolution of synaptic inputs to one sample cell).
The homeostatic plasticity rule adjusted excitability thresholds, trying to keep spiking output
of each neuron constant on average (Pratt and Aizenman 2007; Turrigiano 2011; Figure
7G). Synaptic competition attempted to keep close to a constant both the sum of synaptic
inputs to each neuron, and the sum of outputs from each neuron. In practice, it means that
every time a synapse connecting neurons i and j increased in strength, all output synapses
of neuron ¢ and all input synapses of neuron j were scaled down a bit (Cohen-Cory, 2002;
Munz et al., 2014; Hamodi et al., 2016).

With these three rules at play, we exposed the model to patterned sensory stimulation that
imitated retinotopic inputs from the eye (Figure 7A). We hypothesized that during collision
avoidance in real tadpoles, STDP-driven changes in the tectum may be controlled and
amplified by a global learning signal that arrives if collision avoidance was unsuccessful
(Savin and Triesch, 2014; Aswolinskiy and Pipa, 2015), and originates either in dimming
receptors in the retina (Baranauskas et al., 2012), or in mechanosensory systems of the
hindbrain (Pratt and Aizenman, 2009; Felch et al., 2016; Truszkowski et al., 2017). This
approach is known as the eligibility trace model, in which changes in synaptic weights do
not happen immediately, but are first remembered” by each cell as potential changes, and
are only implemented in response to a timely reinforcement signal (Seung, 2003). To reflect
this assumption, in the main set of simulations we only exposed our model to looming
stimuli, as if STDP-driven changes were only implemented during looming responses (but
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Figure 7. Developmental model. A. Model diagram (see the text). B. Typical adjacency
matrix before simulation (random seed). C. Typical adjacency matrix by the end of simulation.
D. Visualization of neuronal connections in space, with cell positions properly represented.
Green and yellow nodes are selective for looming stimuli. E. Same graph as in C, but
rearranged to reveal its structure. F. Evolution of all input weights to one sample cell, over
the course of simulation. G. Evolution of spiking threshold for 9 sample cells, over the course
of simulation. H. Cumulative responses of every cell to Flash, Scrambled, and Looming
stimuli in a sample simulation.

see sensitivity analyses below). The network was allowed to develop for 12500 time steps
(at least 500 looming stimuli), and we saved its topology at five equally spaced time points
during this process (Figure 7D,E), from a naive network (Figure 7B), to its final form (Figure
7C). We ran the simulation 50 times, and for each connectivity snapshot analyzed its
weighted graph, as well as network responses to model visual stimuli: a looming stimulus, a
scrambled stimulus, and a full-field flash (same as in biological experiments; Figure 7H).

The summary of modeling results is shown in Figure 8 (black line in each plot). In
development, the network became selective for looming stimuli, both in terms of total
response (by the end of development network responded to looming 994+-9% stronger than
to flash; Figure 8A; "no selectivity” corresponds to the value of 0) and average selectivity
(mean Cohen d of responses across all cells = 1.09+0.10; Figure 8B). The share of cells
selective for looming stimuli also increased (Figure 8C), and plateaued at ~98% level, as
did the selectivity of the top 10% of most selective cells (Figure 8D).

We then analyzed the quality of stimulus encoding, or whether in our model the identity of
visual stimuli could be reconstructed from network activation. For a dataset consisting of
equal shares of looming and non-looming stimuli, stimulus encoding increased in
development, and reached prediction accuracy of ~95% (Figure 8E). The fact that with
multivariate logistic regression we could identify looming stimuli in 95% of cases suggests
that a retinotopic STDP-driven network can achieve reliable looming detection, as long as it
is equipped with a properly tuned output layer. We assume that in biological tadpoles, this
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Figure 8. Model results. Each plot shows how one network measure changed as the model
developed. Lines of different colors represent different model types: red is for the default
model; other colors show sensitivity analyses. See the text for details. Plots B and C have a
gap in Y axis, to accommodate an outlier.

output layer is represented by the projections from the tectum to the reticulospinal neurons
in the hindbrain (Helmbrecht et al., 2018), with weights of these projections tuned in
development via reinforcement learning.

Unlike for biological experiments, the model was selective for looming over scrambled
stimuli at the full network level (Figure 8F): by the end of the training, responses to looming
stimulus were 43+7% stronger than to scrambled. Mean selectivity of individual cells was
0.48+0.07 (Figure 8G); and 84% of cells were selective for looming stimuli (Figure 8H),
which was also different from what we observed in real animals. The selectivity for looming
over flash correlated with selectivity for scrambled over flash on a cell by cell basis (r=
0.1740.10). A subset of highly selective cells did not emerge in the model, and the
difference between 90th and 50th percentiles of selectivity were rather low (~ 0.9 ; Figure
8l).

The position of selective cells within the network was different in the model, compared to
biological experiments. While in tadpoles selective cells tended to sit in the middle of the
retinotopic field, in the model they tended to be on the periphery, and selectivity for looming
stimuli positively (rather than negatively as in calcium imaging experiments) correlated with
the distance from the network center (Figure 8J). Similar to tadpoles, however, this
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correlation decreased in development (from r ~ 0.75 in a naive network, to » ~0.25in a
trained network). Similarly to biological networks, selective cells tended to be closer to each
other (down to 714+3% of distance expected for random connections; Figure 8K), yet unlike
for biological networks, this locality of connections was refined in development.

We then looked at topological and functional correlates of looming selectivity in model
networks (centrality measures). Selective cells tended to be more spiky (r=0.344-0.12;
Figure 8L), and usually were not a part of a cluster (Figure 8M; final correlation with local
clustering coefficient r=—0.2640.12). Unlike in biological networks, in the base model (red
line) selective sells did not have higher Katz centrality (r=0.024+-0.13; Figure 8N), and they
did not tend to receive an unusual number of incoming connections (r =0.004+0.12; Figure
80). As in biological experiments, selective cells tended to be connected to each other
(weighted assortativity of 0.244-0.07; Figure 8P).

The variability of responses to looming stimuli over time, quantified as the number of
principal components required to describe 80% of response variability, mildly increased with
network development, from 28+1 to 37+1 (Figure 8Q). The number of detected network
ensembles did not change in development, staying around 15 (Figure 8R), but the share of
variance in network responses explained by the involvement of different ensembles
increased from ~35% in naive networks, to ~50% by the end of learning. As in biological
networks, cells that formed an ensemble were slightly (by ca. 20%) more likely to be
connected to each other, and were about 40% closer to each other than any two random
cells in the network.

The distribution of degrees in the model was similar to that in biological experiments: the
share of weakly connected cells (weighted in-degree < 0.5) plummeted from ~50% in naive
networks to 94+2% by the end of training. On the contrary, the share of cells with degrees of
1 and 2 increased from ~40% to 83+2%. With these changes, the power constant for the
degree distribution changed from v ~ —1.5 before training to —1.96+0.03 after training for
both in- and out-degrees (Figure 8S), which qualitatively matched the changes observed in
biological experiments. The share of reciprocally connected cells also decreased in
development (Figure 8T).

To assess whether the model developed synfire chains synchronized with looming stimuli,
we calculated a correlation between the synaptic weights connecting different cells in the
model network (coefficients of the adjacency matrix), and the frequency at which these
pairs of cells were activated in a sequence (one immediately after another) during looming
stimulation. We found that looming-encoding edges were overrepresented in our
connectivity graphs, and their share increased in development (Figure 8U). To estimate how
strongly synfire chains contributed to looming detection we looked whether edges that led
from less looming-selective to more selective cells tended to be the ones activated during
looms (see Methods). We found (Figure 8V) that the contribution of looming-aligned edges
to selectivity increase along the graph was non-zero, and tended to grow, but very mildly,
indicating that synfire resonances were not the sole mechanism behind looming detection.

Finally, we observed that most global network measures changed as the network
matured: efficiency (Figure 8W) and modularity (Figure 8X) increased, while clustering
(Figure 8Y) decreased. In all three cases, the changes were mainly due to changes in
weight and degree distribution, as they persisted if calculated on networks randomized with
degree-preserving rewiring. The flow hierarchy (Figure 8Z) increased mildly in development,
which was entirely due to structured changes in network topology, as the effect disappeared
in rewired graphs.

To conclude whether predictions of our model matched biological experiments overall, we
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formulated a list of “atomic”, easily verifiable elementary statements about different
measures we analyzed (Table 1, first two columns). The model and the experiments
showed similar selectivity for looming over flash, but different selectivity to looming over
scrambled stimuli. The interplay between cell position and connectivity was similar, except
for the spatial distribution of looming-selective cells within the retinotopic map, which was
peripheral in the model, but central in tadpoles. Changes in degree distributions were well
matched, yet, with a possible exception of modularity, none of other network measures
matched. When correlations between different types of node centrality and cell selectivity
were considered, some of them matched, but some did not.

Sensitivity analysis

While a comparison with one faithfully constructed model is important, a better approach is
to consider a family of models, and see which assumptions are critical for the replication of
biological results, and which ones are not essential (Linderman and Gershman, 2017; Pauli
et al., 2018). For example, we wondered whether it was important to assume that plasticity
was stronger during actual collisions, or whether looming selectivity would develop if instead
of looming stimuli we used more general visual stimuli. We also wondered whether
structured sensory flow is necessary for the emergence of selectivity (Triplett et al., 2018).
To answer these questions, we rerun our model, excluding different parts of it one by one
(but not in a cumulative fashion). First we removed explicit synaptic competition, by
replacing it with synapsic weight decay (Figure 8, red lines). In a different set of simulations
we greatly decreased the amount of intrinsic plasticity present in the system (Figure 8, green
lines), and in yet another set we replaced STDP with simple symmetrical Hebbian plasticity
(Figure 8, blue lines). Finally, in last two series of simulations, we let the model develop
either while exposed to random visual noise (Figure 8, pink dashed line), or a randomized
mix of translating, receding, and oblique looming stimuli (Figure 8, gray dashed line).

Disruption of individual developmental rules led to very different changes in network
properties, and their trajectories. When STDP was replaced by a simple Hebbian plasticity
(Table 1, column "No STDP”; blue lines in Figure 8), looming selectivity was similar or better
than with STDP (top lines in Figure8A,B,F,G), and the network generally developed similarly,
except for modularity that was higher (Figure 8X), and neuronal ensembles that were very
strongly interconnected (connections within ensembles were up to 4 times more likely than
between ensembles, compared to ~1.2 times in base experiments). With Hebbian plasticity,
and the model trained on looming stimuli, looming-resonant synfire chains constituted more
than 40% of all network edges (Figure 8U), and contributed to looming selectivity more
strongly than in the base, STDP-driven model (Figure 8V).

When synaptic competition was replaced with synaptic strength decay (Table 1, column "No
Syn. Comp.”), the degree distribution was very different (got flatter rather than sharper;
Figure 8U, red lines); selectivity for looming stimuli was weakened (Figure 8C); the pattern
of interactions between selectivity and node centrality became unlike what was observed in
the base series of experiments (Figure 8M-O), and the network became strongly
hierarchical (Figure 8Z). The main reason for these differences appears to be that without
synaptic competition, chains of connected neurons were allowed to lead to "dead-ends”
within the graph, while with competition the total output of each neuron remained constant,
leading to the development of cycles.

When intrinsic plasticity was weakened (Table 1, column "No Intrinsic”; Figure 8, green
lines), looming detection did not emerge (green in Figure 8A-C,F-H), and networks had
simpler response structure, both in terms of PCA results (Figure 8Q), and ensemble
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Observation Model
g
E o
o o 2
g 5 < F
> o %) %) £ o 3
E |8 2 2 2 = 2
Full brain FL selectivity v v v v X v v
Brain selectivity, change = AV AV A = A =
Av. FL selectivity 0.6 0.8 10 06 -70 08 05
Av. FL selectivity, change = A AV A VA A =
% FL select. cells 80% 98% 95% 75% 0% 95% 95%
% FL select. cells, change = A A AV = A A
Full brain SL selectivity X v v v X v X
Av. SL selectivity -01 05 07 05 -05 02 O
Av. SL selectivity, change = A AV A V A =
% SL select. cells 50% 80% 90% 70% 20% 70% 50%
% SL select. cells, change = A A A AV A Y
cor(FS, FL) v v v v v X v
cor(SL, FL) X v v v v v v
Stimulus encoding, change = A A A \% A AV
PCA, N components = A A AV A A A
Ensembles:
N Ensembles, change = = = AV A = =
Spatial locality v v v v v v v
Preferential connections v v v v v X X
Connected cells:
Are spatially close v v v v v v X
% two-way edges, change Vv Vv vV Vv \Y% \% \%
Network properties:
Degree power (v), change A A A v A A A
Efficiency, change = A A = A A A
Clustering, change = v v v v % Y
Modularity, change A A A A A A A
Hierarchy, change = A A A A A =
Properites of selective cells:
Center / Periphery location C P P P X P P
Spatial grouping, change Vv \% \Y V A \% \%
High in-degree k;,, v X X v X X X
High Katz rank v X X v X X X
High activity v v v v v v X
Assortatively connected v v v v v v v

Table 1. A summary of network phenomena observed in biological experiments, in com-
parison with simulation results for the base model, and several reduced models (see main
text). In the table, we v is used for "yes”, x for "no”, A for “increase”, Vv for "decrease”, AV
for “increase followed by decrease”, and = for "no change”. FL stands for "Flash-Looming”
selectivity; SL - for Scrambled-Looming selectivity; "cor” abbreviates “correlation”.


https://doi.org/10.1101/589887
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/589887; this version posted March 26, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

Khakhalin ASCE¥abh'8RHI48%1 08 hing-selective networks. Page 20

analysis (Figure 8R). This shows that agile intrinsic plasticity is critical for learning; without it
the interaction between neuronal activity and network connectivity is disrupted, as the
network cannot process sensory stimuli, yet is prone to spontaneous activity.

Finally, training exclusively on looming stimuli was not critical for most measurements, in
terms of replicating predictions of a full model, but training on structured stimuli was. When
looming stimuli (black line in Figure 8) were replaced by non-colliding visual stimuli (dashed
gray line in Figure 8), most network parameters developed similarly to how they did in the
base model (Table 1, column "Visual”). Stimulus encoding was similar or better; measures
of looming selectivity showed similar trajectories (Figure 8A-1), except that the values of
selectivity were 20-50%, and changes in many network properties were indistinguishable
(Figure 8W-2). In contrast, when patterned stimuli were replaced with uncorrelated noise
(dashed pink line in Figure 8; Table 1, column "Noise”), most measures of selectivity did not
improve with time (dashed pink lines are flat in Figure 8A-B and D-l), even though network
topology still changed in development (Figure 8W-2). It suggests that looming detection
should not emerge in enucleated or dark-rared aquatic animals, unless the development of
their tecta is guided by retinal waves with temporal statistics similar to that of behaviorally
relevant visual stimuli (Huberman et al., 2008). This prediction matches experimental
reports from tadpoles (Xu et al., 2011), but curiously seems to contradict observations in
Zebrafish (Pietri et al., 2017).

Discussion

In the first half of this study, we reconstruct functional connectivity in the tectum of Xenopus
tadpoles from high-speed calcium imaging recordings, and describe novel aspects of tectal
network topology. We show that tectal networks become more openwork with development,
approaching scale-free statistics, and non-random network structure. We also show that
looming-selective cells tend to be located in the middle of the receptive field for a looming
stimulus they respond to, and that they tend to serve as "information sinks”, collecting more
inputs from the rest of the network, compared to non-selective cells.

For the second part of this paper, we hypothesized that a simulated developing network
governed by the spike-time-dependent plasticity, synaptic competition, and stimulated by
patterned visual inputs, would 1) spontaneously acquire selectivity for looming stimuli, and
2) develop a non-random network structure, which 3) would be similar to that observed in
biological experiments. The support for this hypothesis is mixed. The model did develop
selectivity for looming stimuli (both in terms of average preference, and stimulus encoding),
and this increase in selectivity was resilient to changes in model assumptions. Yet model
result were not truly replicated in biological experiments, as in tadpoles there was no
improvement in looming detection, and neither average selectivity, stimulus encoding, nor
cell specialization increased with development. This was particularly surprising in view of a
known improvement in collision avoidance in tadpoles with age (Dong et al., 2009).
Moreover, while spatiotemporally tuned synfire chains clearly emerged in thee model
(Figure 8U), we could not clearly tease out their quantitative contribution to looming
selectivity.

As predicted, our model networks developed non-random structure, with a scale-free degree
distribution, low clustering, and high modularity. Several results related to network structure
were replicated in biological experiments (Table 1, compare columns "Imaging” and "Model /
Base”): most notably, changes in network degree distribution, a decrease in bidirectional
connections, and statements related to neuronal ensembles. This match between the
model and the experiment suggests that at the very least, our model captured the nature of
network development under the influence of synaptic competition and spike-time-dependent
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plasticity (STDP). Synaptic competition promoted connectivity in weakly connected neurons,
while “punishing” overconnected cells, which created light-frame, openwork graph
structures (Fiete et al., 2010), and STDP coordinated activity within sub-networks,
increasing modularity (Stam et al., 2010; Litwin-Kumar and Doiron, 2014), similar to how it
was previously described for other types of plasticity (Damicelli et al., 2018; Triplett et al.,
2018). We did not observe changes in the number of neuronal ensembles (Avitan et al.,
2017; Pietri et al., 2017), but we believe this is because our experiments were not suited for
ensemble detection, as we worked with strong shared inputs that reliably activated almost
every neuron in the network. This made our experiments very much unlike the case of
spontaneous activity, when different sub-networks get activated randomly, with activity
propagating within modules more readily than between them (Avitan et al., 2017).

At the same time, most model predictions about how network properties were supposed to
change in development did not replicate in biological experiments. There are four possible
explanations for this discrepancy. First, while neurons from stage 46 and 49 tadpoles have
different synaptic and intrinsic properties (Ciarleglio et al., 2015), and while retinal inputs to
the tectum are known to be refined at these developmental stages (Tao and Poo, 2005;
Munz et al., 2014), the patterns of internal tectal connectivity may be relatively settled by
stage 46. In our model, most network measures plateaued, or even reversed late in
development (Figure 8), which means that even for a qualitative comparison between the
model and the experiment we have to make a critical assumption about whether
developmental stage 46 corresponds to a mid-point of network maturation, or falls on the
developmental plateau. The absence of improvement in stimulus encoding in older tadpoles
(Figure 2G), as well as a known difference in STDP between very young (stage 42) and
older (stage 48) tadpoles (Richards et al., 2010; Tsui et al., 2010), suggest that both stages
included in this study may indeed fall on the “plateau”. If true, this would mean that the
known improvement in collision avoidance between stage 46 and stage 49 tadpoles (Dong
et al., 2009) is largely due to maturation of sensorimotor projections from the tectum to the
hindbrain that we did not assess in this study.

Second, a poor fit between model predictions and biological experiments may be a
consequence of low statistical power of this study. With, respectively, 14 and 16 networks
reconstructed for each developmental stage, we could only hope to detect large changes in
network parameters (Cohen d = 1.0, assuming p; < 0.05 threshold and 80% power).
Moreover, based on available imaging studies, we can estimate that at stage 49, one half of
a tadpole tectum contains about 10,000 neurons, as it measures about 40 cells across
(Hiramoto and Cline, 2009), and is packed 6-10 cells deep in its thickest part
(Hewapathirane et al., 2008), while tapering towards the edges (Bollmann and Engert,
2009). On the other hand, here we reconstructed connectivity within the top layer of
128440 cells, in a field of about 12 by 12 neurons, which means that our reconstructions
covered only about 1% of a full tectal network, and 0.01% of all connections. With a
coverage so sparse, our parameter estimations were expected to be noisy, further lowering
our test power.

Third, one can question the validity of our connectivity reconstructions, as we did not have
an opportunity to compare these reconstructions to a "ground truth” connectivity (but see Xu
et al. 2011). The best way to address this concern would be to run a set of control
experiment, analyzing transfer entropy between pairs of cells proven to be either connected
or disconnected, to estimate the power of graph reconstruction from calcium imaging
recordings. Unfortunately, these experiments are currently beyond our technical ability, so
we have to rely on indirect criteria of a successful network reconstruction. Two most
important observations that support the validity of our results are the fact that the share of
reciprocal connections decreased in development; and that we observed a consistent
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non-randomness of almost all network measurements of reconstructed networks, compared
to rewired networks (Figure 5). Also, we were comforted by a good replication of tectal
response shapes (Figure 2A,B, compared to Khakhalin et al. 2014), a good internal
replication of edge detection between stimuli types, and an observation of retinotopy during
responses to looming stimuli (Figure 3A,B).

Finally, the fourth way to explain a relatively poor fit between our model and imaging
experiments is to assume that the mechanisms of looming selectivity in the tectum are after
all different from that in the model. In our simulations, looming selectivity was mediated by
the emergent synfire chains (Cohen-Cory, 2002; Zheng and Triesch, 2014) that were
shaped by the structured sensory activation (Vislay-Melizer et al., 2006; Clopath et al.,
2010), and thus encoded activation patterns typical for looming stimuli (Pratt et al., 2008;
Richards et al., 2010). When looming stimuli were presented to the model, they "resonated”
with matching synfire chains, causing them to respond strongly. It may be that in the
biological tectum, enhanced responses to looming stimuli are due to either delayed
recurrent integration (Khakhalin et al., 2014; Jang et al., 2016), dynamic inactivation of
neurons (Fotowat et al., 2011), or some other non-linear effects (Baginskas and Kuras,
2009). Two biggest discrepancies between the model and the experiments were the position
of selective cells within the network (central in tadpoles, peripheral in the model; Figure 3C
vs. Figure 8J), and the difference in centrality measurements related to local signal
integration (slightly higher in-degree and Katz rank in biological experiments, but no similar
effect in the base model; Figure 6A-C vs. Figure 8N,0). We don’t find these discrepancies
too problematic however: the difference in spatial placement of looming-selective cells may
be due to the explicit, developmentally controlled arrangement of output neurons in
biological tecta that was not included in our model, while the difference in Katz centrality
may be explained by exaggerated synaptic competition in the model. Indeed, in simulations,
we effectively forced most neurons to have outputs within the tectal network, which led to
the development of cycles, while in a real tectum selective cells may lack local intratectal
outputs, projecting only to other brain regions. This hypothesis is supported by very high
Katz centrality of looming-selective cells in simulations without synaptic competition (Figure
8N,O, red lines). We therefore believe that, with all limitations of both the model and the
experimental data taken into account, they were largely in agreement with each other.

At the same time, to actually find a subset of tectal outputs that can be used as a functional
looming detector, as we did while estimating stimulus encoding (Figure 8E), a developing
brain would need access to a learning signal. As a working hypothesis, we propose that in
aquatic vertebrates this learning signal may come from both dimming receptors in the retina
(Ishikane et al., 2005; Baranauskas et al., 2012), and lateral line receptors in the body (Pratt
and Aizenman, 2009; Felch et al., 2016; Truszkowski et al., 2017). These inputs can then
facilitate plasticity in tectal projections to the reticulospinal neurons in the hindbrain,
strengthening inputs from a subset of tectal cells that were most active immediately before a
collision. Moreover, during random spatial encounters, different parts of the retina would be
dimmed, and different segments of the lateral line would be activated in each individual
collision, theoretically allowing animals to build several overlapping subnetworks, selective
for collisions of different geometry, and projecting to different subsets of motor neurons
(Frost and Sun, 2004; Helmbrecht et al., 2018). This type of learning could lead to the
development of spatially nuanced escape responses that are described in both tadpoles
(Khakhalin et al., 2014) and fish (Bhattacharyya et al., 2017). Based on this hypothesis, we
predict that if tadpoles are raised individually in empty arenas (devoid of objects to collide
with), they should have normal vision and dark-startles, but they would not be able to
perform proper collision avoidance.

To sum up, we show that a combination of simple developmental rules with patterned
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sensory stimulation can quickly shape a random network into a structured system, able to
support collision detection. We show that several predictions from our model are replicated
in biological experiments, although we found no improvement in looming detection between
stage 46 and 49 tadpoles. We demonstrate that functional connectivity of tectal networks
can be reconstructed from fast calcium imaging experiments, and that the structure of these
networks can support collision detection in small aquatic animals.

Methods

Statistics and reporting

Unless stated otherwise, all values are reported as mean + standard deviation. For most
common tests, test type is indicated by the subscript for its reported p-value: p; for a
two-sample t-test with two tails and unequal variances; p,; for a one-sample two-tail t-test,
and p, for a Pearson correlation test.

When working with weight matrices, we write them as it is usually done in computational
neuroscience, where w;; is a weight of an edge coming from node i to node j, which is
different from how adjacency matrices are presented in graph theory, where A;; would
typically mean an edge from node j to node i (so our W = AT).

Experiments

Overall, we followed calcium imaging protocols previously described in (Xu et al., 2011;
Truszkowski et al., 2017), but combined it with visual stimulation modeled after (Khakhalin
et al., 2014). Experiments were performed at Brown University, in accordance with
university IACUC protocols. Unless noted otherwise, chemicals were purchased from
Sigma. Tadpoles were kept in Steinberg’s solution, on a 12/12 light cycle, at 18° C for 10-20
days, until they reached Nieuwkoop-Faber developmental stages of either 45-46 or 48-49.
In each experiment, we anesthetized a tadpole with 0.02% tricainemethane sulfonate
(MS-222) solution for 5 minutes, then paralyzed it by immersion in 20 mM solution of
tubacurarine for 5 minutes, and pinned it down to a carved Sylgard block within the
recording chamber filled with artificial cerebro-spinal fluid solution (ACSF: 115 mM NaCl, 4
mM KCI, 5 mM HEPES, 10 uM glycine, 10 mM glucose). The optic tectum was exposed,
and ventricular membrane was removed on one side of the tectum. Tadpoles were pinned
down tilted, at an angle of 10-20°, to keep exposed tectal surface flat for imaging. We then
surrounded the tadpole with a small circular enclosure 15 mm in diameter, made of a thicker
part of a standard plastic transfer pipette, to achieve higher concentration of Ca-sensitive
dye in the solution. We dissolved 50 ug of AM ester cell permeable Oregon Green 488 nm
Bapta-1 (OGB1 #06807, Molecular Probes, Waltham, MA) in 30 ul of medium consisting of
4% F-127 detergent in 96% DMSO by weight; agitated this solution in a sonicator for 15
minutes, then added 30 ul of ACSF to the vial, and sonicated for another 10 minutes. The
solution was then mixed with 4 ml of ACSF to the final concentration of 10 uM, transferred
to the chamber, and the chamber was placed in the dark for 1 hour. After staining, the
circular enclosure was removed; the preparation was gently washed with 10 ml of ACSF 3
times; the chamber was filled with 10 ml of fresh ACSF, and transferred under the scope.

This staining protocol with a BAPTA-conjugated dye proved to be challenging, and had a
high failure rate. As staining procedure involved a detergent, and called for high
concentrations of dye, most successful preparations were those that received the highest
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possible exposure to dye that did not yet kill the cells. A large share of preparations
however either fell short of optimal staining, and had a weak fluorescence signal, and so a
low signal-to-noise ratio, or got overexposed, leading to strong fluorescence, but weak
responses to stimulation, as neurons grew increasingly unhealthy. This variability in
signal-to-noise ratio led to differences in edge detection certainty from one experiment to
another, which complicated our network analysis (see below).

Visual stimulation was provided with a previously described setup (Khakhalin et al., 2014),
consisting of an LCD screen (Kopin Corporation, Taunton, MA, USA) illuminated by a blue
LED (LXHL-LB3C, 490 nm; Lumileds Lighting, USA), with image projected to an optic
multifiber (600 um, Fujikura Ltd, Tokyo, Japan). The other end of the fiber was brought to
the left eye of the tadpole, and placed 400 um away from the lens, on the axis of the eye, to
have the image projected to the center of the retina. The stimulation sequence consisted of
three stimuli: Looming stimulus (in which a circle appeared in the center of the field, its
radius growing linearly from 0 to full-field within 1 second), full-field Flash, and spatially
"Scrambled” stimulus. For Scrambled stimuli, we divided the field of view into a grid of 17 by
17 squares, and randomly reassigned these squares within the image. The result was a
stimulus that was identical to looming in terms of its total brightness at every time step, and
presented fragments of a moving edge locally (within every square in a reshuffling grid), but
lacked high-level spatial organization. The permutation of squares was randomized for each
experiment, but was consistent within all trials within every experiment. Stimuli were
delivered every 20 s, in the same sequence of "Looming, Flash, Scrambled”, typically for the
total of 60 or 72 stimuli. The stimuli were generated in Matlab (Mathworks), using
Psychtoolbox (Kleiner et al., 2007). Excitation light for imaging was turned on one second
before the onset of visual stimulation, and kept on for 5 seconds, which was shown not to
interfere with responses (Xu et al., 2011).

Fluorescent responses in the tectum were imaged using a Nikon Eclipse FN1 microscope
with a 60x water-immersion objective and ANDOR 860 EM-CCD camera (Andor
Technologies). NIS-elements software (Nikon) was used to record the activity. We used
binning with 8x8 pixels per bin, resulting in a 130x130 image covering the field of view of
1130 um. The data was acquired with 10 ms auto-exposure, leading to actual frame rate of
84 frames per second (11.9 ms per frame). For each preparation, we found a focal plane
that produced images of as many cells as possible, which usually meant a plane focused
"in-between” topmost and bottom-most cells within the field of view. To keep the
signal-to-noise ratio consistent throughout the experiment despite the ongoing bleaching of
the Ca sensor, we started with relatively weak illumination (with neutral density filter ND4
engaged) and no signal amplification by the camera (EM gain of 0). We then increased the
EM gain level gradually after every 12 stimuli, to keep the signal level approximately
constant. Once EM gain setting reached the value of 7, we increased illumination strength
by disengaging one of the density filters, reduced EM gain back to 0, and repeated the
process.

Videos were processed offline; circular regions of interest of equal size (21 binned pixels
per region) were manually positioned over neurons with well defined Ca responses (based
on the visualization of fluorescence variability in time, as provided by NIS-elements
software). Average fluorescence within each region of interest was quantified, and exported
to Matlab. We then processed fluorescence traces using non-negative deconvolution
algorithm (Vogelstein et al., 2010), and used its output without thresholding, interpreting it
as a probabilistic estimation of instantaneous spike rate for each cell. We chose not to
threshold the signal, as depending on the overlap each cell body had with the focal plane,
as well as the amount of dye sequestered by the cell during staining, different neurons had
very different signal-to-noise ratios even within each preparation, which complicated the
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matter of finding a single threshold. This decision also shaped all further steps of our
analysis, as in our dataset poorly resolved cells with low spiking activity were represented
not by spike traces that were mostly silent, but by traces that were noisy, and approached
uniform distribution of estimator values.

We did not attempt to match inferred spike trains to "ground-truth” electrophysiology
recordings, as the validity of this calcium imaging protocol was justified previously (Xu et al.,
2011; Truszkowski et al., 2017). We also did not perform background subtraction
(Truszkowski et al., 2017), as most effects of background fluorescence were expected to be
cancelled out during analysis. The main risk of not subtracting the background is that
unsubtracted traces may contain a superposition of axonal spiking and synaptic activation
in the neuropil. Judging from the spatial distribution of fluorescence signals, in our
experiments neuropil fibers were not stained, as sensitive dye had no access to structures
below the top, exposed level of primary tectal cells. Moreover, our signal acquisition was
focused on fluorescence sources within the focal plane, meaning that any neuropil signals
were both attenuated, and spatially averaged across regions of interest. Finally, neuropil
activation was expected to be similar in each trial, as same stimuli were presented to the
tadpole in each trial. As deconvolution operation is close to linear, and we did not perform
spike thresholding, any shared neuropil signal would be deconvolved, “hidden” in inferred
spike-trains, and later cancelled out during trial-reshuffling (see below). Similarly, we did not
address motion artifacts, as in our preparation they were synchronous in all cells
(manifested as parallel displacement of signal sources from fixed ROIs), and therefore only
introduced a fixed bias to all connectivity estimations.

Analysis

Basic analysis To quantify response amplitudes, we used reconstructed responses
between 250 and 2000 ms into the recording, as this window included full visual responses,
but excluded artifacts caused by the excitation light. As a measure of cell selectivity for
stimuli of a specific type, and in some cases as a measure of total network response
selectivity, we used Cohen’s d effect size for the difference between responses to looming
and flash, or looming and scrambled stimuli:

d= (m, —mp)/\/ (e — s + (np — 1)s3)/(n, +np —2) =
= (mp —mp)/\/(s3 +s%)/2

In case of equal sample sizes n;, = nyp = n. Here m;, and myr are mean responses to
looming and flash stimuli respectively, and s, , sr are standard deviations for both groups.

To find the retinotopy center, we concatenated all responses of every cell to looming
stimuli into one vector, ran a principal component analysis on these vectors, then rotated
two first components using promax rotation, and made sure that the 1st component ¢! is the
one with shorter latency, and that it is positive (by swapping and flipping the components if
necessary). We then ran a non-linear optimization, looking for a pair of coordinates (z, y)
within the field of view, that would maximize the absolute value of correlation between
distances of each cell to this center and the relative prominence of the short-latency
component for this cell:

r=cor(y/(zi — )2+ (yi — )2, ct/(c} +c2),)
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We interpreted these (z, y) coordinates as our best guess for the possible position of the
“retinotopy center” for each recording. The fits were robust, with p < 0.05 observed in every
experiment (30/30), and average achieved correlations of » = 0.59+0.23. To assess
possible overfitting, we performed identical optimization fitting after reshuffling cell identities
5 times for each experiment, which yielded average r values of only 0.13+0.06, and p, <
0.05 in 21% of experiments. From this we concluded that cells with early responses to
looming stimuli were indeed clustered together, and that this clustering was not an artifact of
our analysis, even though the r-values were probably exaggerated due to overfitting.

For response latency calculations, we looked at each response y(t), and found the
position of its maximum (za, yar). We then used the least squares fit with non-linear solved
to approximate the segment between the beginning of the response and x,; with a
piecewise linear function:

_ 0 for 0<z<uap
f(x)—{ alr —xp) for zp<z<ay

optimizing for x;, and a, where x, is the response latency, and a is an amplitude-like
parameter we did not use for subsequent analysis. This approach worked well for isolated
responses with low noise, but got increasingly noisy with weak signals. To quantify the
retinotopy, we therefore used the results of factor analysis, as described above, and only
used response latencies for results verification.

Ensemble analysis. To find ensembles of cells that tended to be co-active together, we
used a modified spectral clustering procedure (Ng et al., 2002) and the definitinon of
spectral modularity (Newman, 2006), generalized to weighted oriented graphs. First, for
each stimulus type, for each cell i, and separately for each experimental trial k£, we
unbiased and normalized each activity response a(t), by subtracting its mean, and dividing
the result over standard deviation:

af(t) = (af(t) — b}) /o
where bF = Y1, af(t) and of = 75 Y1, (af(t) — b)) .

Then, for each cell, we calculated the average response across all trials of the same type:

_ 1~
@i(t) = — Y al()

k=1
and subtracted these average responses from each trial, which resulted in a vector of a
trial-by-trial deviations from the average response:

ai ()" = af(t) —a(t)
We then concatenated these vectors of deviations from the mean a¥(t)” across all trials,
and used them to calculate a cross-correlation matrix, to see which cells tended to be active
and inactive together:

cij = cor(aj (t), aj(t))
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We calculated adjusted correlations c¢;; separately for each of three types of stimuli (flash,
scramble, and looming), and averaged these three estimations c;;, to arrive at a less noisy
estimation of adjusted cross-correlation. We then removed negatlve correlations, replacing
them with zeroes.

=max(0 ch

We then roughly followed the spectral clustering procedure by (Ng et al., 2002), with
adjustments that seemed appropriate for ensemble detection. We first transformed our
correlation matrix c;; into a matrix of pairwise Euclidean distances:

pij = 2(1 —cij)

and then to affinity matrix A:

aij = exp(—wi; /o)

where ¢ is a free parameter that we set at 10000. We then calculated a diagonal degree
matrix D such that d;; = 0 fori # j , and d;; = ), a;k otherwise. We used D to build a
Laplacian matrix L, such that:

Lij = aij//dii - dj;

and found eigenvectors z; .. x,, of this matrix L. Then we started to look for a good number
of ensembles &, by going through all values from 1 (no ensembles) and up to the number of
cells (each cell as a separate ensemble). For each k, we found first & largest eigenvectors of
L, stacked them in columns, and renormalized each row of this matrix to give it unit length:

Lim

Ulm = —F—7——7—

Z]z:l xlzz
where z;,, is an m-th element of i-th eigenvector of L. We then used k-means clustering on
rows of U as points in R¥, looking for k clusters. Once rows of U (and so cells in the original
data) were assigned to & clusters, we calculated spectral modularity of this partition on the

original matrix w;;, using a weighted directed modification of classic formula from (Newman,
2006):

doutdm

@ = 4m 26” (w”  2m

Here d¢“* and di” are weighted out- and in-degrees for nodes ¢ and j respectively:
dg"t =3 wik and dZ* = 37, wy; ; m s the total number of edges involved:

m =3, wi;/2,and 5” is a signal matrix with 6;; = 1 for nodes i and j that belong to the
same cluster, and ¢;; = 0 otherwise.
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Finally, we selected the number of clusters K that, after spectral clustering, produced
highest modularity Qi across all @, and we used K as an estimation of the number of
ensembles in the network, and corresponding cluster allocation - as the allocation of cells to
these ensembles.

Network reconstruction. For network reconstruction, we used a modified Transfer Entropy
(TE) calculation, adapted from (Gourévitch and Eggermont, 2007; Stetter et al., 2012). Fast
Ca imaging recordings, as used in this study, provide a middle ground between commonly
used slower Ca imaging data and multielectrode recordings. In most Ca imaging recordings,
the frame acquisition time (100 ms) is an order of magnitude longer than the transmission
time between neurons (2 ms), which biases analyses towards co-activation analysis. In our
data, the high rate of acquisition (12 ms per frame) was close to typical cell-to-cell activation
transmission time in the tectum, so we restricted our analysis to interactions between the
activity of each cell at a frame i and their activity at the next frame i+1, ignoring both longer
(multiframe), and same-frame interactions.

For each cell, we binned its activity trace at 3 levels, classifying every frame as either a high,
medium, or low activity frame. For each cell, we used 1/3 and 2/3 quantiles of its inferred
activity values as thresholds, so that all three types of frames were equally frequent, to
maximize information. Then for each pair of neurons ¢ and j we calculated the probability
P(gj, 49, 9?), which showed the conditional probability of neuron j being in state g; (either 1,
2, or 3) at moment ¢, if this neuron was in a state g? at the previous frame ¢ — 1, and input
neuron i was in state ¢? at the same frame ¢ — 1. From this set of probabilities, we calculated
conditional probabilities of P(g; | g?), and finally calculated the total transfer entropy as

3 1 0 0
P(g;=11gj=m, g =n)
Tij= ) P(Q}Zlvgﬁ'):m,ggzn)'log< B =114

l,m,n=1

For this project, a common sensory drive (visual inputs from the retina) presented a unique
problem. If the hypothesis of this paper is true, and the detection of looming stimuli in the
tectum is actually mediated by sensory activation of matching synfire chains, we can expect
the pattern of this sensory activation to be synchronized with causal transfer of excitation
from one neuron to another. Because of that, common sensory inputs cannot be eliminated
by methods that rely on the comparison of delays (Wollstadt et al., 2014). Instead, we
eliminated the effects of common drive by randomly reshuffling our data within each
stimulus type, and pairing activation history of each cell with activation history of other cells
from non-matching trials. For each experiment, we calculated 1000 randomly reshuffled
transfer entropy estimations, and then subtracted the average of these reshuffled TE
estimations from raw TE estimation, arriving at adjusted TE (Gourévitch and Eggermont,
2007):

/o shuffled
Ti; =Tij — 15

This approach is similar to the idea of analyzing subtle variations in activation from one
response to another, as opposed to the analysis of activation traces themselves. As
presented stimuli were same in every trial, the effect of common sensory drive over time
was expected to be shared across all trials. This means that if a connection between cells i
and j was suggested equally strongly by the analysis of real, and reshuffled data, these
cells were probably sequentially driven by a common input, rather than by a true causal
connection between them.
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For each TE estimation, we also calculated a corresponding p-value that quantified whether
actually observed TE was unusual enough (discernibly different), compared to TE
estimations obtained on reshuffled data, that corresponded to a null hypothesis of no causal
connections. With the computational power available to us, we could only generate 1000
surrogate reshuffled networks for every TE calculation, which made it impossible to use the
false discovery rate correction, as it is sometimes recommended for large-scale studies of
brain connectivity (Lindner et al., 2011; Vicente et al., 2011). With ~102 neurons and 10*
connections the smallest possible non-zero p-value of 0.001, corresponding to finding a
more extreme TE value in one out of 1000 surrogate experiments, was already larger than
the Benjamini-Hochberg threshold of %a = 5e-6. With a more permissive threshold of oo =
0.01, for each of three stimuli types, our analyses suggested the existence of 5% to 69% of
all possible directed edges in the connectivity graph, depending on the experiment (mean of
16%). The share of edges that were independently discovered in responses to all three
types of stimuli (mean: 0.1% of all possible edges) was on average 2.4 times larger than
one would have expected for spurious discoveries (signrank p = 7e-7), suggesting that
three subsets of data, originating from responses to three different stimuli could be
considered replications for the purposes of edge discovery.

Note that our TE adjustment procedure could not differentiate between activity driven by
shared inputs, and activity due to reliable synaptic connections that reproduced the same
activation pattern in every trial. It also means that it was by design impossible for us to
detect strongest looming-selective synfire chains in responses to looming stimuli, as the
appearance of these strong connections would be indistinguishable from the effect of
shared sensory input. This suggests that the principle of edge replication across different
stimuli could not be taken literally, to avoid this masking effect.

Due to variations in staining quality, preparation shape, and focal plane alignment, we had
to work with very different proportions of low-noise and high-noise neurons in different
experiments, which made our edge discovery rates very uneven for any fixed threshold
approach. To fix this problem, we made our edge detection procedures adaptive on the
experiment-by-experiment basis. First, we relaxed criteria on edge discovery, while still
giving preference to edges observed in more than one subset of responses. We included in
our reconstruction only edges with geometric mean of p-values below threshold: [] px < o®
, Where p,. are p-values for each of three subsets of data (responses to flash, crash, and
scrambled stimuli). Then we looked for a value of « that would bring the average node
degree (the ratio of network edges to network nodes, for directed graphs = E/N) to an
arbitrary reasonable target value, which is a known approach to the analysis of noisy
networks (Stetter et al., 2012). We picked a target E/N value of 1.0 (number of edges
equal to the number of nodes), which lead to 128+41 edges in each experiment on average
(0.9% of all possible edges); 50+21 weakly connected components, with 74430 nodes in
the largest weakly connected component. The comparison of network properties (Figures 5
and 6) did not change qualitatively in a broad range of assumed average degrees (from ~
0.5 to 1.5), but observed effects became weaker and regressed to random effects outside of
this range.

The TE approach cannot distinguish between positive and negative influence of one neuron
on another, so our reconstructed edges could include a mix of excitatory and inhibitory
connections. To estimate the share of putative inhibitory connections, we calculated
pairwise correlations between activities of individual neurons, taken with a one frame delay,
and compensated for the effect of shared inputs similar to how it was done for TE. We then
looked at the sign of these correlations for pairs of neurons with statistically discernible TE.
We found that 3+7% of detected connections seemed inactivating or inhibitory, with no
difference in rate between developmental stages (d = 0.55, p, = 0.1). According to current
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understanding on tectal architecture in Xenopus, principal tectal neurons are not expected
to be inhibitory (Bell et al., 2011), and moreover, the share of negative correlations tended
to be lower in experiments with better signal-to-noise ratio. We therefore assumed that
most, if not all observed inactivating connections may be false discoveries, and excluded all
edges with negative correlation values from the analysis. For those edges that remained in
the adjacency matrix, we averaged TE estimations obtained from responses to flash,
scrambled, and looming stimuli, and used these averaged values as estimations of synaptic
connectivity weights w;;.

To analyze degree distributions, we found the sum of weights of incoming and outgoing
edges for each cell; rounded these values towards nearest whole number, and calculated
frequencies F;, (k) and F,,;(k) for each degree value & (Figure 4F,G). For each experiment,
we then fit a regression line y = —vk + b to a sequence of points [k, log(F'(k))], for in- and
out-degrees separately; estimated two power constants ;,, and ~,.:, and averaged them to
arrive at one balanced estimation (v; Figure 4H).

To quantify the share of reciprocal connections, we multiplied the weight matrix
element-wise on itself transposed, summed these values up, and normalized the result by
the sum of squared weights: S = >~ ., wjiw;;/ 3, w?,; . For positive weight matrices, this
value is equal to 1 for symmetric weight matrices, 0 for matrices without reciprocal
connections, and smoothly changes between these two values for “intermediate” cases.

Network analysis. We reviewed several lists of statistical tools applicable to weighted
directed graphs (Rubinov and Sporns, 2010; Costa et al., 2007; Hernandez and

Van Mieghem, 2011), and selected a diverse set of measures to describe different aspects
of our networks, such as connectivity, unevenness of density, and global structure. We only
included measures that do not erode with the inclusion or exclusion of individual weakly
connected nodes, to make sure that metrics estimations would not change catastrophically
from one experiment to another because of small variations in noise level, or a slightly more
generous selection of regions of interests during video quantification. Examples of
measures that do not satisfy this criterion are cycle order and the "small world” property,
that both are sensitive to the inclusion of weak long-ranged connections (Papo et al., 2016).
We used the following list of network metrics:

Global network efficiency was calculated using a function from the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010) on reciprocals for graph weights R;; = 1/w;;, and was
defined as:

1o~ dyj

E == Y
nZn—l
i#£]

where d;; is the length of the shortest path F;; connecting nodes i and j: dij = 3, p,, Rk

Clustering coefficient (Fagiolo, 2007) was calculated using the Brain Connectivity
Toolbox, with a function that supported weighted directed graphs:

1 t;
C=- . —!
n 2 T R+~ 1)~ 25, wguy,

i

where k¢ and k! are out- and in-degrees of node i respectively, and ¢; is the weighted
number of directed triangles that include node i:
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B 1/3 1/3 1/3
b= > ) wiw

JFi kFi,j

To estimate network modularity, we also used a function from the Brain Connectivity
Toolbox, which calculated spectral modularity on a weighted directed graph (Reichardt and
Bornholdt, 2006; Leicht and Newman, 2008).

Our definition of flow hierarchy was inspired by (Mones et al., 2012; Czégel and Palla,
2015), but based on modified (weighted) Katz centrality (Katz, 1953; Fletcher and
Wennekers, 2018). To calculate Katz centrality, we assumed that each node j collected
flows of incoming signals through all edges w;; leading to this node. Activation arriving
through edge j + i was proportional to the total activation z; of source node i, the weight of
this edge w;;, a global normalization coefficient equal to 1/max(wy,;) across all edges k «+ {
in the network, and a damping factor of d = 0.9. Each node also received a small amount of
constant activation (1 — d) = 0.1. The total activation of each node was therefore defined as:

d
zi=(1—-d + — a;Wi;
J ( ) maxk,l(wkl) ; J

Each node then distributed this activation to other nodes. This definition is also close to that
of pagerank centrality (Page et al., 1999), except that the weights are not normalized to the
value of total outgoing weights for each node i: that is, we work with raw weights of w;
rather than w;;/ >, wg;. It means that a node with many outputs has a strong influence
over network activation, while nodes with weak outgoing edges act as dead-ends. Similar to
a standard pagerank algorithm, we solved this problem iteratively, by initializing the network
with equal values of centrality, and running the equation above until convergence (typycally,
~100 times). Once Katz centrality values z; were found, we used the difference between
maximal Katz centrality observed in the network and mean centrality across all nodes as a
measure of flow hierarchy: h = max(z;) — mean(z;) (Mones et al., 2012; Czegel and Palla,
2015).

To check whether network values described above were different from values expected on a
random graph, we performed graph randomization, using a variant of degree-preserving
reshuffling (Maslov and Sneppen, 2002) that we generalized for directed weighted graphs.
For a network with N edges we picked 3 - N random pairs of nodes (nodes ¢, j, k, and ()
that had strong connections from i to j, and from & to [, but weak connections or no
connections from i to [, and from j to k (we required w;; > wy; and wy, > w;x). We also
required all four nodes to be different (i # j # k # ). Then we cross-wired these pairs of
nodes, gradually randomizing network topology:

Wj; <= Wi
Wi < Wy
Wik < Wik
Wik < Wik

This approach to degree-preserving randomization is slightly different from the original
formulation by (Maslov and Sneppen, 2002) in two ways. First, we explicitly don’t allow
loops (self-edges) by requiring all four nodes be different. Second, we allow nodes i and k,
as well as [ and j to be connected before the rewiring, and just swap corresponding edge
weights, which seems to be a necessary adjustment for directed weighted graphs. It also
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means that, strictly speaking, for a weighted graph, our randomization only preserves
out-degrees, but not in-degrees. Because of the requirement that w;; > w;; and wy, > wjg,
for a binary directed graph our algorithm preserves in-degrees strictly, as it becomes
identical to version by Maslov, while for nearly-binary graphs (bimodal or sparse), it tends to
preserve in-degrees on average.

We also tested whether connectivity and positioning of selective cells within the graph was
in any way peculiar, by calculating correlations between cell selectivity and several different
graph centrality measurements. We used three centrality measures: weighted in-degree
(the sum of weights of all connections to the node); Katz centrality; and clustering
coefficient.

To measure whether selective cells tended to form sub-networks within the graph, we
calculated weighted assortativity. The formula for an assortativity value (mixing
coefficient) in a weighted directed network is given in (Farine, 2014), based on logic from
(Newman, 2003) and (Leung and Chau, 2007). The original formula from (Newman, 2003)
for an unweighted undirected graph defines a mixing coefficient as a Pearson correlation
coefficient between properties of nodes connected by edges, taken over all edges in the
graph:

r= _cor (z;x;)

ij:a;;=1

leading to the following expression:

- Bzt — 52 5@ +ay))?
72 (@ +af) =[5 X 5w +ay)?

where sums are taken over all connected edges ij : a;; = 1, and E is the total number of
edges.

For a weighted graph an equivalent measure can be introduced by replacing summation
over edges to summation over all possible pairs of nodes ij, with weights w;; introduced in
each sum. The resulting expression can be rewritten in several different forms (Newman,
2003; Leung and Chau, 2007; Farine, 2014; Teller et al., 2014), but instead of explicitly
coding these bulky and rather confusing calculations, we used the fact that ultimately a
mixing coefficient can be described as a weighted correlation across all connected directed
edges ij with edge values w;; used as correlation weights:

r= Cor(mi, Zj, w,»j)
In turn, weighted correlation cor(a, b, w) can be introduced through weighted covariances:

cov(a, b, w)
v/cov(a, a,w) - cov(b, b, w)

cor(a,b,w) =

and weighted covariances are defined simply and intuitively as:

> Wi (a; —a)(b; —b)
2o Wi

cov(a,b,w) =
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with @ and b representing weighted mean values:

a = E wlaz/g ws;
% 4

Note however that this definition may differ slightly from the one used in the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010).

Unreported analyses. For the sake of transparency, here we report all measures that
were calculated, but not included in the final manuscript for being superflous or confusing:
four measures of weighted directed degree assortativity (in-in, in-out, out-in, and out-out);
pagerank centrality; Katz centrality on reversed graphs W T; flow hierarchy for reversed
graphs; node reach on direct and reversed graphs (unweighted analog of Katz centrality
without attenuation); two alternative measures of cell selectivity: McFadden’s pseudo-R for
a logistic fit of stimulus identity to the total response of each cell, and selectivity measures
calculated on peak amplitudes instead of cumulative amplitudes (the results of both
calculations were qualitatively similar to those reported in the paper). We also made several
attempts to estimate the prevalence of directed cycles in our networks, but decided that
these measures require too much validation to be included in this manuscript. For network
analysis, we also attempted to compare rewired graphs to matching random Erdos graphs,
but failed to build a good generalization for a case of weighted directed graphs with an
adaptive edge detection threshold.

Developmental Model

The model consisted of n=81 cells, arranged in a 9x9 grid. The model operated in discrete
time ¢, and was run for 500 epochs, 25 time steps each, or for 7' = 12500 time steps total.
At each moment of time, each cell was described by three values: its instantaneous firing
rate s;(t), represented as continuous value 0 < s;(t) < 1; spiking threshold h;(t) > 0 that
slowly changed over time as described below, and a constant s; that described the target
spiking rate for each cell. Target spiking rates s; were randomly assigned at the beginning
of each simulation, and were distributed normally around 5/n with a standard deviation of
1/n, which means that if these target spiking rates were matched, on average, at any time
step, 5 out of 81 cells would be spiking.

Cells were connected to each other with "synapses” of different strengths, represented by a
weight matrix W, with weight 0 < w;; < 1. These weights were originally assigned random
values, uniformly distributed between 0 and 1, except for self-connections (loops, w;;) that
were kept at 0.

At each time step we first calculated the raw activation A of all neurons: A = WS + B,
where W is the connectivity matrix, S is the vector of instantaneous spiking rates s; , and B
is the sensory input (see below). For one cell, we have:

a;(t+1) =Y wigs;(t) +bi(t)

These raw activation values were then adjusted down, by a formula representing global
feedback inhibition, which helped to avoid run-away excitation early in development:
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a;(t+1) it 325 si(t) <¢
al(t+1) =
ai(t + 1)/(1 + (X, 85(8) —€) - exp(—t/Te)) otherwise.

Here a;(t) is the final, adjusted value of activation for every cell; 3, s;(¢) is the total activity
in the network at the previous time step; ¢ is a constant that set the level of total activity at
which inhibition "turns on”, and that in our case was set to ¢ = 9 (the size of the grid). The
exponent exp(—t/7.) served as an "easing” function that gradually “eased” the network from
inhibition-dominated mode of operation to "free” operation, with a time constant ., =~ 2000.
This “easing” formula was a practical compromise that greatly sped up our computational
experiments, as it dampened network activity early on, when it was still close to randomly
connected, and so prone to seizure-like activity, but allowed the simulation run on its own
later in development.

The activity of each neuron s;(t) was then calculated from its total activation a/(¢):

si(t) = fi(aj(t))

using a logistic activation function:

fila) = 1/(1 + exp (c~ (hi(t) — a)))

where c is a steepness parameter, set at ¢ = 20, and h;(t) is the current spiking threshold of
cell 7. At the beginning of each simulation, spiking thresholds #;(0) were set to random
values, uniformly distributed in a narrow band between 1/(ns;) and 1/(ns;;) + 0.1 . During
the simulation, the thresholds h;(t) were updated at each time step, to model the effect of
intrinsic homeostatic plasticity. For this purpose, for each cell, we kept track of its
running average spiking rate $;(t), and updated both average spiking rates and spiking
thresholds h;(t) by the following formulas:

S(t+1)=(1—k)5(t) + rsi(t)

hi(t + 1) = hi(t) — rn(s; — 8;(t))

where constant x = 0.05 controlled the rate of averaging, and constant r;, = 0.1 set the
strength of homeostatic plasticity, as it set the rate at which spiking thresholds h; were
allowed to adjust, to bring the discrepancy between the target spiking rate s; and running
average spiking rate s;(¢) to zero.

Once spiking activity of each neuron at the new time step s;(t) was calculated, we moved to
the spike-time dependent plasticity (STDP) step, adjusting synaptic weights w;, that
linked neurons in the network. In continuous time, STDP leads to an increase in weight w;;
(from i to j) if target neuron j spikes after a spike in source neuron i, with a delay that is
expected for spike propagation from i to j. If the target neuron j spikes earlier than that
(before, or together with neuron ), the weight w;; is decreased. The amount of weight
change smoothly drops off as the delay between these two spikes increases in either
direction.
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In discrete time, assuming that spike propagation always takes one time step, and
neglecting the effect of smooth drop-off, STDP may be approximated by the following
system of cases, with options 1 and 2 not being mutually exclusive:

wji(t) +€, ifsi(t)>0ands;(t+1) >0
wii(t+1) =< wy(t) —e€ ifsi(t)>0ands;(t) >0
Wys (t) if S; (t) =0

where € is some change in synaptic weight.

As in our model neuronal activity s;(t) was continuous, and we wanted the synaptic change
e to be proportional to the overlap in neuronal activity, the non-exclusive system above may
be rewritten as:

w]'i(f + 1) = IUji(t) + Tw (si(t)wji(t)sj (t + 1) — sb(f)wﬂ(t)sj (t))

or

wyilt+1) = wia(t) - (147 (3506 + 1) = 5,(0) (1))

where r,, is a constant that controls the strength of synaptic plasticity (in this model, r,, =
0.25).

Finally, we modeled synaptic competition by introducing a negative feedback, to limit the
total sum of all inputs to each neuron, and all output from each neuron. At every time step,
we used the weight matrix W to calculate a modified matrix W', with sums of inputs to
each neuron normalized to a certain fixed value (¢ = 1.5), and a modified weight matrix
WO, in which the total sum of outputs from each neuron was normalized to the same value:

I
wji_g'wji/§ Wik
k

(0}
Wi =9 - wji/zwki
k

We then iteratively "moved” our actual weight matrix at each time step in the direction of the
average between these two normalized matrices:

wji(t +1) = 0.4 wj; +0.3 - wh; +0.3 - wf

This "sliding” approach to modeling synaptic competition was less aggressive than explicit
weight normalization, and allowed for more robust model convergence.

Developing networks were activated with simulated visual stimuli that resembled sensory
activation a real animal could have experienced when navigating in a bright-lit environment
with sparsely placed black spheres. For "general” visual stimulation (used in sensitivity
experiments), we repeatedly created unique collision events, with randomized original
positions of a black sphere relative to the eye, final distance to the eye, and direction of
movement through the visual field. We would then move the projection of this virtual sphere
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across the virtual retina over a course of 7 = 10 time frames. When training on looming
stimuli (main series of computational experiments), we still initiated objects at random
points within the visual field, with distances from the center of the visual field randomly
distributed with a standard deviation of 1, but made sure that they approached the eye on a
“collision trajectory”, and eventually covered the entirety of the visual field. For looming and
"general visual” stimuli, a projection of a sphere on the virtual retina was a solid circle, with
its center moving linearly (z,vy) = (zo,y0) + (v, vy) - t/7, and circle radius changing as
R(t) = Ro/(do — v, - t/7). The virtual retina consisted of 81 pixels, arranged in a 9x9 grid
(same dimensions as for the model network), with each pixel generating both "ON” and
"OFF” responses without delay or bursting, based on the difference between two
consecutive projections in(t) = XOR(img(t),img(t — 1)). This signal was then inputted to
matching nodes in the model network. When training on noise, we generated random noise
with 9 pixels flicking active at any given time.

For testing, we compared responses to flashes, crashes, and scrambled stimuli. "Crashes”
were different from looming stimuli in that the change of projection radius with time was
linear R(t) = 9/2 - /2 - t/7, rather than realistic; this was because we used linearly
expending looming stimuli in biological experiments, both in this study, and in earlier studies
(Khakhalin et al., 2014). The starting position of looming stimuli was slightly randomized
(both 2 and y starting coordinates were normally distributed around the center of the
receptive field with the standard deviation of 1), to make model responses variable, as it
was necessary for our analysis. "Scrambled” stimuli were identical to "Crashes”, but with all
81 pixels randomly reassigned. "Flashes” were modeled as very fast looming stimuli that
took exactly 2 frames to fill the entire field of view, and with pixels reshuffled. We used this
approximation instead of a simple instantaneous flash as our model was deterministic, and
we needed to introduce some variability into responses to flashes, while still keeping them
as close to instantaneous as possible.

While testing networks trained on different sensory stimuli, we ran into a surprising
complication: during training, different stimuli provided different levels of average activation,
and so not only synaptic connections between cells were differently shaped, but also
intrinsic plasticity resulted in very different activation thresholds for different neurons. This
variability of excitability was however an artifact of our training method, and did not
approximate real biological phenomena, as in real animals visual stimuli would happen
relatively rarely, while we fed all our stimuli to the network as one intense train with no gaps.
We therefore decided to let all spiking thresholds settle down before testing, to a state that
was dependent only on synaptic connectivity, and not on recent stimulation history. We let
the model develop for 2000 additional time steps, with only homeostatic plasticity rule on,
but without STDP or synaptic scaling, while feeding neurons with Poisson random noise that
activated on average 9 neurons at each time step.

The effect of this additional adjustment step was so prominent in the model, that we
hypothesize that it may be indirectly relevant for the biological tectum as well. To maintain
the network of synaptic connections, each ensemble of synfire chains has to be regularly
activated, yet the more active it is, the less excitable the neurons become, making them less
likely to "win” during competition with other ensembles during stimulus detection. The
dynamics of plasticity in the brain would therefore pose a meta-balancing problem (Zenke
et al., 2017): if intrinsic plasticity is too flexible, networks that detects unusual stimuli, in the
absence of these stimuli, would become overly excitable, producing high false-positive rate.
Conversely, they will quickly habituate to actual stimuli, but at the same time, they will have
no trouble maintaining synaptic connections required for stimulus detection (Litwin-Kumar
and Doiron, 2014). If however intrinsic plasticity is too slow, detection networks will find it
easier maintaining "optimal” levels of sensitivity, but may have trouble keeping synaptic
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connections between stimulus presentations intact (Triplett et al., 2018), as in the absence
of spontaneous replay these synaptic connections may erode. A potential solution to this
problem is to cycle the network through distinct phases, with different contributions of
synaptic and intrinsic plasticity, similar to how we did it in the model.

To measure the prominence of looming-resonant synfire chains in model networks we first
generate a set of 100 slightly variable looming stimuli, as described above, and for each pair
of cells 7 and j calculated the frequency at which they were activated at two consecutive
time frames L;;. If the adjacency matrix were fully shaped by imitating looming stimuli with
synfire chains, we would expect w;; to look like a proxy of L;;, while if they are not related,
edges of W and L would not be correlated. We therefore calculated the correlation between
elements of two matrices, across all edges cor(w;;, L;;), and looked whether this correlation
was higher than zero (Figure 8U). To estimate the contribution of synfire chain resonance to
looming selectivity, we asked whether non-zero edges that seemed to contribute to
selectivity calculations tended to be the ones activated consecutively during looms. To do
s0, we looked at a subset of edges i — j in W for which looming selectivity of node j was
higher than that of node i, zeroed edges for which it was not the case, and calculated a
correlation between elements of this modified matrix and that of the looming stimulus
representation L. If selectivity-increasing edges within W were co-aligned with edges in L,
we would expect this value of this correlation to be non-zero and positive (Figure 8V).

For sensitivity analysis, we either removed or greatly attenuated parts of the model, one
part at a time (not cumulatively). We tried the following combinations:

Non-looming stimuli. In this mode, instead of training the model exclusively on looming
stimuli, we used a mix of randomized transitions of a black circle across the retina, as
describe above. This type of stimulation was therefore still spatially patterned, but consisted
mostly of translational stimuli, with some contribution of oblique looming and oblique
receding stimuli.

Random stimulation. The network was stimulated with random noise. Each “pixels” of the
image would fire with the same probability.

No STDP plasticity. Instead of the spike-time-dependnet plasticity equation describe
above:

wyilt+1) = wia(t) - (1470 - (55t +1) = 55(0) - 5:(0))

we used an equation with symmetrical Hebb plasticity, and no negative depression term:

it +1) = wis() - (14 -5t +1) - 5i(0))

No synaptic competition. Instead of sliding renormalization of all inputs and outputs of
each neuron, we allowed synaptic weights to decay to zero: wj;(t + 1) = wj;(¢) - (1 — 5),
where 5 = 0.001.

Weak homeostatic plasticity. In the formula for homeostatic plasticity, instead of change
coefficient r,=0.1 we used r;,=0.01.
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