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Abstract	
	
The	 relationship	 between	 the	 brain’s	 structural	 wiring	 and	 the	 functional	 patterns	 of	
neural	activity	is	of	fundamental	interest	in	computational	neuroscience.	We	examine	a	
hierarchical,	 linear	 graph	 spectral	 model	 of	 brain	 activity	 at	 mesoscopic	 and	
macroscopic	 scales.	 The	model	 formulation	 yields	 an	 elegant	 closed-form	 solution	 for	
the	 structure-function	 problem,	 specified	 by	 the	 graph	 spectrum	 of	 the	 structural	
connectome’s	Laplacian,	with	simple,	universal	rules	of	dynamics	specified	by	a	minimal	
set	 of	 global	parameters.	The	 resulting	parsimonious	 and	analytical	 solution	 stands	 in	
contrast	 to	 complex	 numerical	 simulations	 of	 high	 dimensional	 coupled	 non-linear	
neural	 field	models.	This	spectral	graph	model	accurately	predicts	spatial	and	spectral	
features	 of	 neural	 oscillatory	 activity	 across	 the	 brain	 and	 was	 successful	 in	
simultaneously	reproducing	empirically	observed	spatial	and	spectral	patterns	of	alpha-
band	(8-12	Hz)	and	beta-band	(15-30Hz)	activity	estimated	from	source	localized	scalp	
magneto-encephalography	(MEG).	This	spectral	graph	model	demonstrates	that	certain	
brain	 oscillations	 are	 emergent	 properties	 of	 the	 graph	 structure	 of	 the	 structural	
connectome	 and	 provides	 important	 insights	 towards	 understanding	 the	 fundamental	
relationship	between	network	topology	and	macroscopic	whole-brain	dynamics.		
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Significance	Statement	
	
The	 relationship	 between	 the	 brain’s	 structural	 wiring	 and	 the	 functional	 patterns	 of	
neural	activity	is	of	fundamental	interest	in	computational	neuroscience.	We	examine	a	
hierarchical,	 linear	 graph	 spectral	 model	 of	 brain	 activity	 at	 mesoscopic	 and	
macroscopic	 scales.	 The	model	 formulation	 yields	 an	 elegant	 closed-form	 solution	 for	
the	 structure-function	 problem,	 specified	 by	 the	 graph	 spectrum	 of	 the	 structural	
connectome’s	Laplacian,	with	simple,	universal	rules	of	dynamics	specified	by	a	minimal	
set	 of	 global	 parameters.	 This	 spectral	 graph	 model	 demonstrates	 that	 certain	 brain	
oscillations	are	emergent	properties	of	the	graph	structure	of	the	structural	connectome	
and	 provides	 important	 insights	 towards	 understanding	 the	 fundamental	 relationship	
between	network	topology	and	macroscopic	whole-brain	dynamics.		
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Introduction	
	
The	Structure-Function	Problem	in	Neuroscience	

It	 is	 considered	 paradigmatic	 in	 neuroscience	 that	 the	 brain’s	 structure	 at	 various	
spatial	 scales	 is	 critical	 for	 determining	 its	 function.	 In	 particular,	 the	 relationship	
between	the	brain’s	structural	wiring	and	the	functional	patterns	of	neural	activity	is	of	
fundamental	interest	in	computational	neuroscience.	Brain	structure	and	function	at	the	
scale	of	macroscopic	networks,	i.e.	amongst	identifiable	GM	regions	and	their	long-range	
connections	through	WM	fiber	bundles,	can	be	adequately	measured	using	current	non-
invasive	measurement	 techniques.	 	 Fiber	architecture	 can	be	measured	 from	diffusion	
tensor	 imaging	 (DTI)	 followed	by	 tractography	algorithms	 1,2.	 Similarly,	brain	 function	
manifested	 in	 neural	 oscillations	 can	 be	 measured	 non-invasively	 using	
magnetoencephalography	(MEG)	and	reconstructed	across	whole-brain	networks.	Does	
the	 brain’s	 white	 matter	 wiring	 structure	 constrain	 functional	 activity	 patterns	 that	
arise	on	the	macroscopic	network	or	graph,	whose	nodes	represent	gray	matter	regions,	
and	whose	edges	have	weights	given	by	the	structural	connectivity	(SC)	of	white	matter	
fibers	between	them?	We	address	this	critical	open	problem	here,	as	the	structural	and	
functional	networks	estimated	at	various	scales	are	not	 trivially	predictable	 from	each	
other	3.	

Although	numerical	models	of	single	neurons	and	local	microscopic	neuronal	assemblies,	
ranging	 from	 simple	 integrate-and-fire	 neurons	 to	 detailed	 multi-compartment	 and	
multi-channel	models	 4–8	have	been	proposed,	 it	 is	unclear	 if	 these	models	can	explain	
structure-function	 coupling	 at	meso-	 or	macroscopic	 scales.	 At	 one	 extreme,	 the	 Blue	
Brain	Project	 9,10	 seeks	 to	model	 in	detail	 all	10##	neurons	and	all	 their	 connections	 in	
the	brain.	Indeed	spiking	models	linked	up	via	specified	synaptic	connectivity	and	spike	
timing	 dependent	 plasticity	 rules	 were	 found	 to	 produce	 regionally	 and	 spectrally	
organized	 self-sustaining	 dynamics,	 as	 well	 as	 wave-like	 propagation	 similar	 to	 real	
fMRI	 data	 11.	 However,	 it	 is	 unclear	 whether	 such	 efforts	 will	 succeed	 in	 providing	
interpretable	models	at	whole-brain	scale	12.		
	
Therefore	the	traditional	computational	neuroscience	paradigm	at	the	microscopic	scale	
does	 not	 easily	 extend	 to	 whole-brain	 macroscopic	 phenomena,	 as	 large	 neuronal	
ensembles	 exhibit	 emergent	 properties	 that	 can	 be	 unrelated	 to	 individual	 neuronal	
behavior	13–18,	and	are	instead	largely	governed	by	long-range	connectivity	19–22.	At	this	
scale,	 graph	 theory	 involving	 network	 statistics	 can	 phenomenologically	 capture	
structure-function	 relationships	 23–25,	 but	 do	 not	 explicitly	 embody	 any	 details	 about	
neural	 physiology	 14,15.	 Strong	 correlations	 between	 functional	 and	 structural	
connections	have	also	been	observed	at	this	scale	3,26–32,	and	important	graph	properties	
are	 shared	 by	 both	 SC	 and	 FC	 networks,	 such	 as	 small	 worldness,	 power-law	 degree	
distribution,	hierarchy,	modularity,	and	highly	connected	hubs	24,33.	

A	more	detailed	accounting	of	the	structure-function	relationship	requires	that	we	move	
beyond	 statistical	 descriptions	 to	 mathematical	 ones,	 informed	 by	 computational	
models	of	neural	activity.	Numerical	 simulations	are	available	of	mean	 field	 17,34,35	 and	
neural	mass	 22,36	 approximations	 of	 the	 dynamics	 of	 neuronal	 assemblies.	 By	 coupling	
many	 such	 neural	 field	 or	 mass	 models	 (NMMs)	 using	 anatomic	 connectivity	
information,	 it	 is	 possible	 to	 generate	 via	 large-scale	 stochastic	 simulations	 a	 rough	
picture	 of	 how	 the	 network	 modulates	 local	 activity	 at	 the	 global	 scale	 to	 allow	 the	
emergence	of	coherent	functional	networks	22.	However,	simulations	are	unable	to	give	
an	 analytical	 (i.e.	 closed	 form)	 encapsulation	 of	 brain	 dynamics	 and	 present	 an	
interpretational	challenge	 in	 that	behavior	 is	only	deducible	 indirectly	 from	thousands	
of	trial	runs	of	time-consuming	simulations.	Consequently,	the	essential	minimal	rules	of	
organization	 and	 dynamics	 of	 the	 brain	 remain	 unknown.	 Furthermore,	 due	 to	 their	
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nonlinear	 and	 stochastic	 nature,	 model	 parameter	 inference	 is	 ill-posed,	
computationally	demanding	and	manifest	with	inherent	identifiability	issues	37.	

How	then	do	stereotyped	spatiotemporal	patterns	emerge	from	the	structural	substrate	
of	the	brain?	How	will	disease	processes	perturb	brain	structure,	thereby	impacting	its	
function?	 While	 stochastic	 simulations	 are	 powerful	 and	 useful	 tools,	 they	 provide	
limited	neuroscientific	 insight,	 interpretability	and	predictive	power,	especially	 for	 the	
practical	task	of	inferring	macroscopic	functional	connectivity	from	long-range	anatomic	
connectivity.	Therefore,	 there	 is	 a	need	 for	more	direct	models	 of	 structural	network-
induced	 neural	 activity	 patterns	 –	 a	 task	 for	 which	 existing	 numerical	 modeling	
approaches,	 whether	 for	 single	 neurons,	 local	 assemblies,	 coupled	 neural	 masses	 or	
graph	theory,	are	not	ideally	suited.	Here	we	use	a	spectral	graph	model	to	demonstrate	
that	the	spatial	distribution	of	certain	brain	oscillations	are	emergent	properties	of	the	
spectral	 graph	structure	of	 the	 structural	 connectome.	Therefore	we	also	explore	how	
the	chosen	connectome	alters	the	functional	activity	patterns	they	sustain.	

A	hierarchical,	analytic,	low-dimensional	and	linear	spectral	graph	theoretic	model	of	brain	
oscillations	
	
We	present	a	linear	graph	model	capable	of	reproducing	empirical	macroscopic	spatial	and	
spectral	properties	of	neural	activity.	We	are	interested	specifically	 in	the	transfer	function	
induced	 by	 the	 macroscopic	 structural	 connectome,	 rather	 than	 in	 the	 behavior	 of	 local	
neural	masses.	Therefore	we	seek	an	explicit	formulation	of	the	frequency	spectra	induced	
by	 the	 graph,	 using	 the	 eigen-decomposition	 of	 the	 structural	 graph	 Laplacian,	 borrowing	
heavily	 from	 spectral	 graph	 theory	 used	 in	 diverse	 contexts	 including	 clustering,	
classification,	 and	machine	 learning	 38–41.	 This	 theory	 conceptualizes	 brain	 oscillations	 as	 a	
linear	 superposition	 of	 eigenmodes.	 These	 eigen-relationships	 arise	 naturally	 from	 a	
biophysical	abstraction	of	fine-scaled	and	complex	brain	activity	 into	a	simple	 linear	model	
of	 how	 mutual	 dynamic	 influences	 or	 perturbations	 can	 spread	 within	 the	 underlying	
structural	brain	network,	a	notion	that	was	advocated	previously	30,42,43.	We	had	previously	
reported	 that	 the	 brain	 network	 Laplacian	 can	 be	 decomposed	 into	 its	 constituent	
“eigenmodes”,	 which	 play	 an	 important	 role	 in	 both	 healthy	 brain	 function	 30,31,44–46	 and	
pathophysiology	of	disease	44,47–49.		
	
We	 show	here	 that	 a	 graph-spectral	 decomposition	 is	 possible	 at	 all	 frequencies,	 ignoring	
non-linearities	 that	 are	 operating	 at	 the	 local	 (node)	 level.	 Like	 previous	NMMs,	we	 lump	
neural	 populations	 at	 each	 brain	 region	 into	 neural	 masses,	 but	 unlike	 them	 we	 use	 a	
linearized	 (but	 frequency-rich)	 local	model	 –	 see	Figure	 1A.	 The	macroscopic	 connectome	
imposes	a	linear	and	deterministic	modulation	of	these	local	signals,	which	can	be	captured	
by	 a	 network	 transfer	 function.	 The	 sequestration	 of	 local	 oscillatory	 dynamics	 from	 the	
macroscopic	 network	 in	 this	 way	 enables	 the	 characterization	 of	 whole	 brain	 dynamics	
deterministically	 in	 closed	 form	 in	 Fourier	 domain,	 via	 the	 eigen-basis	 expansion	 of	 the	
network	 Laplacian.	 As	 far	 as	 we	 know,	 this	 is	 the	 first	 closed-form	 analytical	 model	 of	
frequency-rich	brain	activity	constrained	by	the	structural	connectome.			
	
We	applied	this	model	to	and	validated	its	construct	against	measured	source-reconstructed	
MEG	 recordings	 in	 healthy	 subjects.	 The	 model	 closely	 matches	 empirical	 spatial	 and	
spectral	MEG	patterns.	 In	 particular,	 the	model	 displays	 prominent	 alpha	 and	 beta	 peaks,	
and,	 intriguingly,	 the	 eigenmodes	 corresponding	 to	 the	 alpha	 oscillations	 have	 the	 same	
posterior-dominant	 spatial	 distribution	 that	 is	 repeatedly	 seen	 in	 eyes-closed	alpha	power	
distributions.	 In	 contrast	 to	existing	 less	parsimonious	models	 in	 the	 literature	 that	 invoke	
spatially-varying	parameters	or	 local	 rhythm	generators,	 to	our	knowledge,	 this	 is	 the	 first	
account	 of	 how	 the	 spectral	 graph	 structure	 of	 the	 structural	 connectome	 can	
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parsimoniously	explain	the	spatial	power	distribution	of	alpha	and	beta	frequencies	over	the	
entire	brain	measurable	on	MEG.		
	
Results	
		
Closed	form	solution	of	steady	state	spectra		
	
The	steady	state	spectral	response	induced	by	the	connectome	at	angular	frequency	𝜔,	can	
be	 expressed	 as	 a	 summation	 over	 the	 eigenmodes	𝒖𝒊(𝜔)	and	 eigenvalues	𝜆*(𝜔)	of	 the	
graph	Laplacian	𝓛 𝜔 :	
	

𝑿 𝜔 = 	 𝒖𝒊(/)𝒖𝒊
𝑯(/)

1/2 3
45
67(/)89 /

* 𝐻;<=>; 𝜔 𝑷 𝜔 				 	 (1)	

𝜏A	is	a	time	constant,	𝐹C(𝜔)	is	a	gamma-shaped	neural	response	function,	and	𝐻;<=>; 𝜔 	is	a	
linearized-lumped	 local	 spectral	 response	 (derivation	 can	 be	 found	 in	 Methods).	 The	
spectral-domain	output	𝑿 𝜔 	and	input	𝑷 𝜔 	are	vector-valued	variables.	This	steady	state	
model	of	brain	activity	includes	only	7	global	model	parameters.		
	
Graph	Laplacian	eigenmodes	mediate	a	diversity	of	frequency	responses	
	
First,	we	demonstrate	the	spectra	produced	by	graph	eigenmodes	as	per	our	theory.	Figure	
1C	shows	the	eigen-spectrum	of	the	complex	Laplacian,	with	eigenvalue	magnitude	ranging	
from	0	to	1.	Small	eigenvalues	undergo	a	larger	shift	due	to	frequency,	while	the	large	ones	
stay	more	stable	and	 tightly	clustered	around	 the	nominal	eigenvalue	 (i.e.	at	𝜔 = 0).	Each	
eigenmode	 produces	 a	 frequency	 response	 based	 on	 its	 frequency-dependent	 eigenvalue	
(Figure	 1D,	 E).	 Figure	 1D	 shows	 the	 transit	 in	 the	 complex	 plane	 of	 a	 single	 eigenmode’s	
frequency	response,	starting	at	low	frequencies	in	the	bottom	right	quadrant,	and	moving	to	
the	upper	 left	quadrant	at	high	frequencies.	The	magnitude,	given	by	distance	from	origin,	
suggests	that	most	eigenmodes	have	two	prominent	lobes,	roughly	corresponding	to	alpha	
and	beta	rhythms,	respectively.	In	contrast,	the	lowest	few	eigenmodes	start	off	far	from	the	
origin,	 indicative	 of	 a	 low-pass	 response.	 The	 magnitude	 of	 these	 complex-valued	 curves	
shown	in	figure	1E	reinforces	these	impressions,	with	clear	alpha	and	beta	peaks,	as	well	as	
slower	rhythms	of	the	lowest	eigenmodes.		
	
The	spatial	patterns	of	the	first	5	eigenmodes	of	𝓛 𝜔 ,	evaluated	at	the	alpha	peak	of	10	Hz,	
are	 shown	 in	 Figure	 1F.	 The	 first	 4	 eigenmodes	𝐮# − 𝐮F,		 give	 strong	 alpha	 frequency	
responses,	 and	 in	 turn	 are	 strongly	 distributed	 spatially	 in	 posterior	 areas.	 But	 they	 also	
include	 other	 regions	 and	 prominently	 resemble	 many	 elements	 of	 the	 default	 mode	
network	and	the	structural	core	of	the	human	connectome,	especially	𝐮H.	𝐮F	resembles	the	
sensorimotor	 network.	While	 these	modes	 are	 highly	 consistent	 and	 reproducible,	 higher	
modes	are	increasingly	sensitive	to	axonal	velocity	and	frequency	(not	shown	here).	
	
Since	the	model	relies	on	connectome	topology,	we	demonstrate	in	Figure	2	that	different	
connectivity	matrices	 produce	different	 frequency	 responses:	A)	 the	 individual’s	 structural	
connectivity	matrix,	 B)	 HCP	 average	 template	 connectivity	matrix,	 C)	 uniform	 connectivity	
matrix	of	ones,	D)	a	randomly	generated	matrix,	E)	and	F)	are	randomly	generated	matrices	
with	75%	and	95%	sparsity	respectively.	All	modeled	power	spectra	show	a	broad	alpha	peak	
at	 around	10	Hz	 and	a	narrower	beta	peak	at	 around	20	Hz.	 This	 is	 expected,	 since	 these	
general	 spectral	 properties	 are	 governed	 by	 the	 local	 linearized	 neural	 mass	 model.	 The	
alpha	peak	 is	predominantly	contained	 in	the	 low	eigenmodes,	up	to	eigen-index	10	or	so.	
Although	the	alpha	and	beta	peaks	are	innately	present	under	default	parameters	in	Figure	
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1,	 once	we	optimize	 parameters,	 the	 peaks	 become	 stronger.	However,	 it	 is	 important	 to	
note	 that	 different	 eigenmodes	 accommodate	 a	 diversity	 of	 frequency	 responses;	 for	
instance,	 the	 lowest	 eigenmodes	 show	 a	 low-frequency	 response	 with	 no	 alpha	 peak	
whatsoever.	 In	 the	 frequency	 responses	 from	 biologically	 realistic	 individual	 and	 HCP	
template	connectomes,	there	is	a	diversity	of	spectral	responses	amongst	eigenmodes	that	
is	 lacking	 in	 the	 response	 produced	 by	 the	 unrealistic	 uniform	 and	 randomized	matrices.	
Since	 graph	 topology	 appears	 so	 critical	 to	 the	 power	 spectrum	 it	 induces,	 we	 explored	
whether	 and	 how	 sparsity	 of	 random	 graphs	 mediates	 spectral	 power	 (Figure	 2D-F).	 At	
incrementally	 increasing	 sparsity	 levels,	 the	 diversity	 of	 spectral	 responses	 of	 different	
eigenmodes	 increases	 and	 approaches	 that	 of	 realistic	 connectomes.	 Therefore,	 graph	
eigenmodes	 induce	unique	and	diverse	 frequency	 responses	 that	depend	 strikingly	on	 the	
topology	of	the	graph.		
	
Spectral	distribution	of	MEG	power	depends	on	model	parameters	but	not	connectivity	
	
Network	 eigenmodes	 exhibit	 strong	 spatial	 patterning	 in	 their	 frequency	 responses,	 even	
with	 identical	 local	oscillations	(Figure	3).	We	evaluated	the	model	spectral	response	using	
the	subject-specific	𝐶*JK*L*KM>; 	matrices	of	4	representative	subjects	(Figure	3A).	The	model	
power	spectra	strikingly	resemble	empirical	MEG	spectra,	correctly	displaying	both	the	alpha	
and	beta	peaks	on	average,	and	similar	regional	variability	as	in	real	data.		
	
Regional	 averages	 of	 empirical	 and	modeled	 power	 spectra	 of	 the	 entire	 group	 after	 full	
parameter	optimization	over	 individual	 subjects	are	shown	 in	 figure	3B.	The	model	closely	
replicates	 the	 observed	 power	 spectrum	 (red	 circles)	 equally	 well	 with	 both	𝐶*JK*L*KM>; 	
(black	triangles)	and	𝐶NCOP;>NC 	(purple	triangles).	Thus,	 in	most	cases	we	can	safely	replace	
the	 subject-specific	 connectome	 with	 the	 template	 connectome.	 In	 contrast,	 when	 non-
optimized	 default	 parameters	 were	 used	 (dark	 green	 triangles),	 it	 resulted	 in	 a	 bad	 fit,	
especially	 at	 high	 frequencies,	 suggesting	 that	 individualized	 parameter	 optimization	 is	
essential	 to	produce	realistic	spectra.	We	also	examined	the	model	behavior	 for	a	 random	
connectome	 (bright	 green	 triangles)	 or	 a	 distance-based	 connectome	 (blue	 triangles)	 was	
chosen	 with	 identical	 sparsity	 to	 the	 actual	 connectome,	 and	 found	 that	 with	 optimized	
parameters	 the	 average	 spectra	 could	 be	 accounted	 for	 by	 these	 connectomes	 but	 as	we	
show	 below	 these	 connectomes	 do	 not	 capture	 the	 frequency	 spectra	 across	 individual	
subjects.	 We	 found	 maximum	 aposteriori	 estimates	 for	 parameters	 under	 a	 flat	 non-
informative	prior.	A	simulated	annealing	optimization	algorithm	was	used	for	estimation	and	
provided	 a	 set	 of	 optimized	 parameters	{𝜏C, 𝜏*, 𝜏=, 𝑔C*, 𝑔**, 𝛼, 𝜐}:	 (see	 supplementary	
Table	1).	Figure	4A	 shows	violin	plots	of	 the	optimized	values,	 indicating	 that	 the	 range	 is	
adequate	 for	 parameter	 exploration.	 The	 time	 constants	𝜏C, 𝜏* 	showed	 tight	 clustering	 but	
the	rest	of	the	parameters	showed	high	variability	across	subjects.	The	optimal	parameters	
are	 in	 a	 biologically	 plausible	 range,	 similar	 to	 values	 reported	 in	 numerous	 neural	 mass	
models.	 The	 annealing	 algorithm	 aimed	 to	 maximize	 a	 cost	 function	 proportional	 to	 the	
posterior	likelihood	of	the	model,	and	was	quantified	by	the	Pearson’s	correlation	between	
MEG	and	modeled	spectra	(“Spectral	correlation”).	The	convergence	plots	shown	 in	 Figure	
4B,	 one	 curve	 for	 each	 subject,	 indicates	 substantial	 improvement	 in	 cost	 function	 from	
default	choice	as	optimization	proceeds.	The	distribution	of	optimized	spectral	correlations	
is	shown	in	4C.	Therefore,	with	the	graph	spectral	model,	the	overall	regional	spectra	appear	
to	be	dependent	both	on	global	model	parameters	and	on	the	actual	structural	connectome.	
Performance	is	better	for	optimized	parameters	than	with	average	parameters.	As	indicated	
by	 Panel	 E,	 replacing	 individual	 connectomes	 by	 the	 template	 HCP	 connectome	 did	 not	
cause	a	discernible	reduction	of	performance.	
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As	 another	 benchmark	 for	 comparison,	 a	 non-linear	 neural	mass	model	 35,50	 using	 our	 in-
house	MATLAB	 implementation	 37,	was	 generally	 able	 to	 produce	 characteristic	 alpha	 and	
beta	frequency	peaks	(yellow)	but	this	model	does	not	resemble	empirical	wideband	spectra.	
Note	 that	 no	 regionally-varying	NMM	parameters	were	used	 in	order	 to	 achieve	 a	proper	
comparison	 with	 our	 model,	 but	 both	 models	 were	 optimized	 with	 the	 same	 algorithm.	
Nevertheless,	these	data	confirm	our	intuition	that	the	average	spectral	power	signal	can	be	
produced	by	almost	any	neural	model,	whereas	its	regional	variations	around	the	canonical	
spectrum	are	presently	being	modeled	via	the	connectome.	Finally,	no	model	 is	capable	of	
reproducing	higher	frequencies	in	the	higher	beta	and	gamma	range	seen	in	MEG,	since	by	
design	 and	 by	 biophysical	 intuition	 these	 frequencies	 arise	 from	 local	 neural	 assemblies	
rather	than	from	modulation	by	macroscopic	networks.	
	
Graph	spectral	model	recapitulates	the	spatial	distribution	of	MEG	power	
	
Next,	 we	 establish	 that	 the	 model	 can	 correctly	 reproduce	 region-specific	 spectra,	 even	
though	it	uses	identical	local	oscillations.	We	integrated	the	spectral	area	in	the	range	8-12	
Hz	 for	 alpha	 and	 13-25	 Hz	 for	 beta,	 of	 each	 brain	 region	 separately.	 We	 define	 “spatial	
correlation”	 (as	 compared	 to	 spectral	 correlation	 above)	 as	 Pearson’s	 R	 between	 the	
regional	distribution	of	empirical	MEG	and	model-predicted	power	within	a	given	frequency	
band.	
	
Specific	 eigenmodes	 capture	 spatial	 distributions	 of	 alpha	 and	 beta	 band	 activity.	 We	
plotted	the	spatial	correlation	achieved	by	each	eigenmode	against	empirical	MEG	regional	
alpha	and	beta	power,	averaged	over	all	 subjects	 in	Figure	5A.	 In	Supplementary	Figure	1	
we	show	these	spatial	correlation	curves	for	all	36	subjects.	Only	a	small	number	of	eigen-
modes	are	tuned	to	each	power	band;	alpha	is	generally	better	captured	by	low	eigenmodes	
while	beta	by	middle	eigenmodes.	A	scatter	plot	of	all	eigenmodes’	alpha	and	beta	power	
spatial	correlation	is	shown	in	panel	B,	suggesting	that	when	an	eigenmode	is	correlated	to	
alpha	power,	 it	 is	 roughly	anti-correlated	 to	beta	power.	 This	 correlation-of-correlations	 is	
highly	significantly	negative	 (r=-0.255,	p<0.0001).	While	on	average,	 individual	eigenmodes	
are	 not	 highly	 predictive	 of	 alpha	 or	 beta,	 in	 individual	 subjects	 they	 have	much	 higher	 R	
values	 up	 to	 0.5.	 Figure	 5C,	 D	 show	 the	 spatial	 pattern	 of	 the	 most	 spatially	 correlated	
eigenmode	for	alpha	(#3)	and	beta	(#33)	respectively.	These	selected	eigenmodes	have	the	
expected	 posterior	 distribution	 for	 alpha	 and	 are	 widespread	 for	 beta.	 Panel	 E	 shows	 a	
histogram	of	the	correlation	between	the	alpha	band	and	beta	band	spatial	correlations.	 It	
can	be	seen	that	across	all	subjects’	alpha	and	beta	band	spatial	correlation	curves	for	the	
eigenmodes	are	in	turn	anti-correlated.	Panel	F	shows	histograms	of	the	spatial	correlations	
across	 subjects	 of	 the	 eigenmode	 with	 maximal	 spatial	 correlation	 with	 empirical	 alpha	
(green)	and	the	same	eigenmode’s	spatial	correlation	with	empirical	beta	(blue).	Again,	we	
can	 see	 a	 clear	 anti-correlation.	 Together,	 these	 results	 confirm	 that	 graph	 eigenmodes	
might	be	 tuned	 to	 specific	 frequencies,	and	 their	 spatial	patterns	might	govern	 the	spatial	
presentation	of	different	brain	rhythms.	
	
Figure	6	depicts	the	spatial	distribution	of	alpha	band	power	(8-12	Hz)	over	the	entire	brain,	
and	 Figure	 7	 shows	 spatial	 distribution	 of	 beta	 power	 (13	 –	 25	 Hz),	 for	 a	 representative	
subject.	Regions	are	color	coded	by	regional	power	scaled	by	mean	power	over	all	regions.	A	
different	“glass	brain”	rendering	is	shown	in	Supplementary	Figures	2,3.		
	
Alpha	power	distribution.	The	alpha	power	was	best	modeled	by	a	combination	of	 the	10	
best-matching	eigenmodes	(R	=	0.53).	The	posterior	and	occipital	dominance	of	alpha	power	
is	clearly	observed	predicted	alpha	distribution,	with	strong	effect	size	in	temporal,	occipital	
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and	medial	posterior	areas.	However,	 the	model	predicts	some	 lateral	 frontal	 involvement	
that	 is	 not	 observed	 in	 real	 data.	 The	 two	 strongest	 eigenmodes	 that	 contribute	 to	 the	
summed	model	(bottom	two	rows)	also	show	very	similar	spatial	organization.	Beta	power	
distribution.	Empirical	beta	power	(Figure	7	top)	is	spread	throughout	the	cortex,	especially	
frontal	and	premotor	cortex.		A	combination	of	five	best	matching	eigenmodes	produced	the	
best	 model	 match	 to	 the	 source	 localized	 pattern	 (R	 =	 0.57).	 The	 two	 best-matching	
eigenmodes	have	Pearson’s	correlation	coefficients	of	0.42	and	0.41.		
	
Alternate	 non-linear	 model.	 The	 Wilson-Cowan	 neural	 mass	 model	 did	 not	 succeed	 in	
correctly	predicting	the	spatial	patterns	of	alpha	or	beta	power	–	see	Supplementary	Figure	
4.	This	could	be	because	in	our	implementation	we	enforced	uniform	local	parameters	with	
no	 regional	 variability.	 However,	 this	 is	 the	 appropriate	 comparison,	 since	 our	 proposed	
model	also	does	not	require	regionally-varying	parameters.		
	
Peak	model	performance	over	sorted,	selected	eigenmodes.	Since	only	a	few	eigenmodes	
appear	 to	 contribute	 substantially,	 we	 hypothesized	 that	 spatial	 correlations	 could	 be	
improved	by	selecting	a	subset	of	eigenmodes.	Therefore,	we	developed	a	sorting	strategy	
whereby	we	first	rank	the	eigenmodes	in	descending	order	of	spatial	correlation	for	a	given	
subject	and	given	frequency	band.	Then	we	perform	summation	over	only	these	eigenmodes	
according	 to	 Eq	 (10),	 each	 time	 incrementally	 adding	 a	 new	 eigenmode	 to	 the	 sum.	 The	
spatial	 correlation	of	 these	 “sorted-summed”	eigenmodes	 against	 empirical	MEG	data	 are	
plotted	 in	Figure	8A,	B	as	a	 function	of	 increasing	number	of	eigenmodes.	Figure	8A	gives	
the	 spatial	 correlation	 curves	 for	 alpha	 band	 and	 8B	 for	 beta	 band;	 one	 curve	 for	 each	
subject.	The	thick	solid	curves	represent	the	average	over	all	subjects.	The	spatial	correlation	
initially	 increases	 as	we	 add	more	well-fitting	 eigenmodes,	 but	 peaks	 around	10	 for	 alpha	
and	 5	 eigenmodes	 for	 beta	 power,	 and	 begins	 declining	 thereafter.	 Addition	 of	 the	
remaining	 eigenmodes	 only	 serves	 to	 reduce	 the	 spatial	 correlation.	 This	 behavior	 is	
observed	in	almost	all	subjects	we	studied.		
	
The	 distribution	 of	 peak	 spatial	 correlations,	 using	 optimized	 parameters	 and	 individual	
connectomes	 of	 all	 subjects	 is	 plotted	 in	 panel	 C,	 as	 well	 as	 three	 alternatives	 all	 with	
optimized	parameters:	a)	NMM,	b)	spectral	graph	model	with	900	 instances	of	80%	sparse	
randomly	 generated	 connectomes,	 and	 c)	 spectral	 graph	model	 with	 a	 geodesic	 distance	
based	connectome.	The	proposed	model	gives	very	strong	spatial	correlation	in	alpha	band	
(r	 distribution	 centered	 at	 0.6),	 and	 NMM	 gives	 very	 poor	 correlation	 (r	 centered	 at	 0).	
Interestingly,	 the	 random	 connectomes	 and	 geodesic	 distance	 based	 connectome	 also	
appear	 to	 have	 some	 ability	 to	 capture	 these	 spatial	 patterns	 (r	 centered	 at	 0.4	 and	 0.2	
respectively),	perhaps	due	to	the	implicit	search	for	best	performing	eigenmodes,	which	on	
average	will	 give	 at	 least	 a	 few	 eigenmodes	 that	 look	 like	MEG	 power	 purely	 by	 chance.	
Panel	D	shows	analogous	results	for	beta	band	spatial	power	correlations.	Again	our	model	
does	 the	 best	 (r	 distribution	 centered	 at	 0.5),	 but	 its	 comparative	 performance	 against	
alternate	approaches	is	not	as	striking	as	in	alpha.	
	
Collectively,	we	 conclude	 that	 the	 graph	model	 is	 able	 to	 fit	 both	 the	 spectral	 and	 spatial	
features	 of	 empirical	 source	 localized	MEG	 data,	 and	 that	 the	 optimal	 fits	 performed	 on	
individual	subjects	occurs	at	widely	varying	subject-specific	parameter	choices.		
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Discussion	

The	 proposed	 hierarchical	 graph	 spectral	 model	 of	 neural	 oscillatory	 activity	 is	 a	 step	
towards	 understanding	 the	 fundamental	 relationship	 between	 network	 topology	 and	 the	
macroscopic	 whole-brain	 dynamics.	 The	 objective	 is	 not	 just	 to	 model	 brain	 activity	
phenomenologically,	but	 to	analytically	derive	 the	mesoscopic	 laws	that	drive	macroscopic	
dynamics.	 This	 model	 of	 the	 structure-function	 relationship	 has	 the	 following	 key	
distinguishing	 features:	 1)	 Hierarchical:	 the	 model’s	 complexity	 depends	 on	 the	 level	 of	
hierarchy	being	modeled:	complex,	non-linear	and	chaotic	dynamics	can	be	accommodated	
at	 the	 local	 level,	 but	 linear	 graph	model	 is	 sufficient	 at	 the	macro-scale.	2)	Graph-based:	
Macroscopic	dynamics	is	mainly	governed	by	the	connectome,	hence	linear	approximations	
allow	 the	 steady-state	 frequency	 response	 to	 be	 specified	 by	 the	 graph	 Laplacian	 eigen-
decomposition,	borrowing	heavily	from	spectral	graph	theory	38–41.	3)	Analytic:	The	model	is	
available	 in	 closed	 form,	 without	 the	 need	 for	 numerical	 simulations.	 4)	 Low-dimensional	
and	 parsimonious:	 Simple,	 global	 and	 universal	 rules	 specified	with	 a	 few	 parameters,	 all	
global	 and	 apply	 at	 every	 node,	 are	 able	 to	 achieve	 sufficiently	 complex	 dynamics.	 The	
model	 is	 incredibly	easy	 to	evaluate,	 taking	no	more	 than	a	 few	 seconds	per	brain	and	 to	
infer	model	parameters	directly	 from	a	subject’s	MEG	data.	The	optimized	model	matches	
observed	MEG	data	quite	well.	No	time-consuming	simulations	of	coupled	neural	masses	or	
chaotic	oscillators	were	needed;	 indeed,	the	 latter	greatly	underperformed	our	model.	We	
report	several	novel	findings	with	potentially	important	implications,	discussed	below.		

Recapitulating	regional	power	spectra	at	all	frequencies	
	
Our	main	 result	 is	 the	 robust	 demonstration	of	 the	model	 on	 36	 subjects’	MEG	data.	 The	
representative	examples	shown	in	Figures	3,6-8	indicate	that	the	graph	model	recapitulates	
the	 observed	 source	 localized	 MEG	 power	 spectra	 for	 the	 68	 parcellated	 brain	 regions,	
correctly	 reproducing	 the	 prominent	 alpha	 and	 beta	 peaks.	 For	 each	 region,	 the	model	 is	
also	 correctly	 able	 to	 predict	 the	 full	 bandwidth	 power	 spectra,	 including	 the	1/𝜔	fall-off	
over	the	entire	frequency	range	of	interest.		
	
Revealing	sources	of	heterogeneity	in	brain	activity	patterns	
	
The	 match	 between	 model	 and	 data	 is	 strongest	 when	 the	 model	 uses	 empirical	
macroscopic	 connectomes	 obtained	 from	 healthy	 subjects’	 diffusion	 weighted	MRI	 scans,	
followed	by	tractography.	The	use	of	“null”	connectomes	-	uniform	connectivity	of	ones	and	
randomized	connectivity	matrix,	respectively,	did	far	worse	than	actual	human	connectomes	
(Figure	8),	supporting	the	fact	that	the	 latter	 is	the	key	mediator	of	real	brain	activity.	The	
match	was	 not	 significantly	 different	 when	 using	 a	 template	 HCP	 connectome	 versus	 the	
individual	subject’s	own	connectomes	(Figures	3E,	4C,	D),	suggesting	that,	for	the	purpose	of	
capturing	 the	 gross	 topography	 of	 brain	 activity,	 it	 is	 sufficient	 to	 use	 a	 template	
connectome,	and	disregard	individual	variability.		
	
However,	this	does	not	mean	that	the	model	is	incapable	of	capturing	individual	variability:	
indeed,	 we	 designed	 a	 comprehensive	 parameter	 optimization	 algorithm	 on	 individual	
subjects’	MEG	data	of	a	suitably	defined	cost	function	based	on	Pearson	R	statistic	as	a	way	
to	capture	all	relevant	spectral	features.	Using	this	fitting	procedure,	we	were	able	to	obtain	
the	range	of	optimally-fitted	parameters	across	the	entire	study	cohort.	As	shown	in	Figure	
4A,	the	range	is	broad	in	most	cases,	implying	that	there	is	significant	inter-subject	variability	
of	 model	 parameters,	 even	 if	 a	 template	 connectome	 is	 used	 for	 all.	 We	 tested	 the	
possibility	that	a	group-averaged	parameter	set	might	also	succeed	in	matching	real	data	on	
individuals.	But	as	shown	in	Figure	3E,	this	was	found	to	be	a	poor	choice,	supporting	the	key	
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role	of	individual	variability	of	model	parameters	(but	not	variability	in	the	connectome).		
	
Macroscopic	brain	rhythms	are	governed	by	the	connectome	
	
A	 predominant	 view	 assumes	 that	 different	 brain	 rhythms	 are	 produced	 by	 groups	 of	
neurons	 with	 similar	 characteristic	 frequencies,	 which	 might	 synchronize	 and	 act	 as	
“pacemakers.”	 How	 could	 this	 view	 explain	 why	 alpha	 and	 beta	 power	 are	 spatially	
stereotyped	 across	 subjects,	 and	why	 the	 alpha	 signal	 is	 especially	 prominent	 in	 posterior	
areas?	 Although	 practically	 any	 computer	 model	 of	 cortical	 activity	 can	 be	 tuned,	 with	
suitable	parameter	choice,	to	oscillate	at	alpha	frequency,	e.g.	5,16,20,22,51–53,	none	of	them	are	
able	 to	 parsimoniously	 recapitulate	 the	 posterior	 origin	 of	 alpha.	 Thus	 the	 prominence	 of	
posterior	 alpha	might	 be	 explained	 by	 the	 hypothesized	 existence	 of	 alpha	 generators	 in	
posterior	areas.	 Indeed,	most	oscillator	models	of	 local	dynamics	are	capable	of	producing	
these	 rhythms	 at	 any	 desired	 frequency	 5,53–56,	 and	 therefore	 it	 is	 common	 to	 tweak	 their	
parameters	 to	 reproduce	 alpha	 rhythm.	 Local	 networks	 of	 simulated	multicompartmental	
neurons	 can	 produce	 oscillations	 in	 the	 range	 8–20	 Hz	 5,	 and,	 in	 a	 non-linear	 continuum	
theory,	peaks	at	various	frequencies	 in	the	range	2–16Hz	were	obtained	depending	on	the	
parameters	55.	Specifically,	the	role	of	thalamus	as	pacemaker	has	motivated	thalamocortical	
models	 11,16	 that	 are	 capable	 of	 resonances	 in	 various	 ranges.	 Neural	 field	models	 of	 the	
thalamocortical	 loop	 16	 can	 also	 predict	 slow-wave	 and	 spindle	 oscillations	 in	 sleep,	 and	
alpha,	beta,	and	higher-frequency	oscillations	 in	the	waking	state.	 In	these	thalamocortical	
models,	 the	posterior	 alpha	 can	arise	by	postulating	 a	differential	 effect	 in	weights	of	 the	
posterior	versus	anterior	thalamic	projections,	e.g.	52.	Ultimately,	hypotheses	requiring	local	
rhythm	generators	suffer	from	lack	of	parsimony	and	specificity:	a	separate	pacemaker	must	
be	postulated	for	each	spectral	peak	at	just	the	right	location	57.		
	
An	alternative	view	emerges	from	our	results	that	macroscopic	brain	rhythms	are	governed	
by	 the	 structural	 connectome.	 Even	with	 global	model	 parameters,	 using	 the	 exact	 same	
local	 cortical	 dynamics	 captured	 by	 the	 local	 transfer	 function	𝐻;<=>;(𝜔) ,	 driven	 by	
identically	 distributed	 random	 noise	𝑷(𝜔),	 our	 model	 is	 capable	 of	 predicting	 prominent	
spectral	(Figure	3)	and	spatial	(Figures	6,7)	patterning	that	is	quite	realistic.	This	is	especially	
true	 in	 the	 lower	 frequency	 range:	 indeed	 the	 model	 correctly	 predicts	 not	 just	 the	
frequency	 spectra	 in	 alpha	 and	beta	 ranges,	 but	 also	 their	 spatial	 patterns	 –	 i.e.	 posterior	
alpha	and	distributed	but	roughly	frontal	beta.	Although	this	is	not	definitive	proof,	it	raises	
the	 intriguing	 possibility	 that	 the	 macroscopic	 spatial	 distribution	 of	 the	 spectra	 of	 brain	
signals	does	not	require	spatial	heterogeneity	of	local	signal	sources,	nor	regionally	variable	
parameters.	 Rather,	 it	 implies	 that	 the	 most	 prominent	 patterning	 of	 brain	 activity	
(especially	alpha)	may	be	governed	by	the	topology	of	the	macroscopic	network	rather	than	
by	 local,	 regionally-varying	 drivers.	 Nevertheless,	 a	 deeper	 exploration	 is	 required	 of	 the	
topography	 of	 the	 dominant	 eigenmodes	 of	 our	 linear	model,	 in	 order	 to	 understand	 the	
spatial	gradients	postulated	previously	16,52.	
	
Emergence	of	linearity	from	chaotic	brain	dynamics	
	
The	 non-linear	 and	 chaotic	 dynamics	 of	 brain	 signals	 may	 at	 first	 appear	 to	 preclude	
deterministic	 or	 analytic	modeling	of	 any	 kind.	 Yet,	 vast	 swathes	of	neuroscientific	 terrain	
are	 surprisingly	 deterministic,	 reproducible	 and	 conserved	 across	 individuals	 and	 even	
species.	Brain	rhythms	generally	fall	within	identical	frequency	bands	and	spatial	maps	4,16,33.	
Based	 on	 the	 hypothesis	 that	 the	 emergent	 behavior	 of	 long-range	 interactions	 can	 be	
independent	 of	 detailed	 local	 dynamics	 of	 individual	 neurons	 13–18,	 and	 may	 be	 largely	
governed	by	long-range	connectivity	19–22,	we	have	reported	here	a	minimal	linear	model	of	
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how	the	brain	connectome	serves	as	a	spatial-spectral	 filter	that	modulates	the	underlying	
non-linear	signals	emanating	from	local	circuits.	Nevertheless,	we	recognize	the	 limitations	
of	a	 linear	model	and	its	 inability	to	capture	inherent	non-linearities	across	all	 levels	 in	the	
system.		
	
Relationship	to	other	work	

One	can	view	the	proposed	generative	model	as	a	biophysical	realization	of	a	dynamic	causal	
model	(DCM)	58–62	for	whole	brain	electrophysiological	activity		but	with	very	different	goals,	
model	dimensionality	and	inference	procedures.		

First,	the	goal	of	many	prior	efforts	using	DCMs	is	to	examine	effective	connectivity	in	EEG,	
LFP	 and	 fMRI	 functional	 connectivity	 data,	 typically	 for	 smaller	 networks62,63,	 or	 dynamic	
effective	 connectivity64–66.	 Hence	 they	 address	 the	 second	 order	 covariance	 structures	 of	
brain	activity.	In	particular,	recent	spectral	DCM	and	regression	DCM	models	67–69	with	local	
neural	 masses	 are	 formulated	 in	 the	 steady-state	 frequency-domain,	 and	 the	 resulting	
whole-brain	 cross-spectra	 are	 evaluated.	 The	 goals	 of	 these	 models	 are	 to	 derive	 model	
cross-spectra	 that	 define	 the	 effective	 connectivity	 in	 the	 frequency	 domain	 and	 are	
compared	 with	 empirical	 cross-spectra.	 Based	 on	 second-order	 sufficient	 statistics,	 these	
models	 attempt	 to	 derive	 effective	 connectivity	 from	 functional	 connectivity	 data.	 These	
DCMs	have	so	far	only	been	applied	to	small	networks	or	to	BOLD	fMRI	regime.	In	contrast,	
our	goal	 is	 to	examine	 the	 role	of	 the	eigenmodes	of	 the	structural	 connectome	and	 their	
influence	 on	 power	 spectral	 distributions	 in	 the	 full	 MEG	 frequency	 range,	 and	 over	 the	
entire	 whole	 brain.	 In	 subsequent	 work,	 we	 intend	 to	 extend	 our	 efforts	 to	 examining	
effective	connectivity	but	such	an	effort	currently	remains	outside	the	scope	of	the	work	in	
this	 paper.	 Here,	 we	 focus	 on	 models	 that	 directly	 estimate	 the	 first	 order	 effects	 of	
observed	power	spectra	and	its	spatial	distributions	and	compare	them	with	empirical	MEG	
source	reconstructions.	Our	primary	motivation	is	to	examine	whether	spatial	distribution	of	
observed	power	spectra	can	arise	from	graph	structure	of	the	connectome,	hence	our	focus	
on	 the	effects	of	model	 behavior	 as	 a	 function	of	 the	underlying	 structural	 connectome	–	
whether	 it	 is	 individualized,	 template-based,	 uniform,	 random	 or	 distance	 based.	 DCM	
methods	have	not	reported	first	order	regional	power	spectra	as	we	do	here,	nor	have	they	
explored	how	the	structural	connectome	influences	model	spectral	distributions.		

Second,	 our	 model	 is	 more	 parsimonious	 compared	 to	 most	 of	 these	 above-mentioned	
models	which	have	many	more	degrees	of	freedom	because	they	often	allow	for	regions	and	
their	 interactions	 to	 have	 different	 parameters.	 Our	model	 parameterization,	 with	 only	 a	
few	 global	 parameters,	 lends	 itself	 to	 efficient	 computations	 over	 fine-scale	 whole-brain	
parcellations,	 whereas	 most	 DCMs	 (with	 the	 exception	 of	 recent	 spectral	 and	 regression	
DCMS	 67–69)	 are	 suited	 for	 examining	 smaller	 networks	 but	 involve	 large	 effective	
connectivity	 matrices	 and	 region-specific	 parameters.	 Furthermore,	 parameters	 of	 our	
model	 remain	 grounded	 and	 interpretable	 in	 terms	 of	 the	 underlying	 biophysics,	 i.e.	 time	
constants	 and	 conductivities.	 	 In	 contrast,	 spectral	 and	 regression	 DCM	models	 of	 cross-
spectra	 have	 parameters	 that	 are	 abstract	 and	 do	 not	 have	 immediate	 biophysical	
interpretation.	

The	 third	major	 difference	 is	 in	 the	 emphasis	 placed	 on	 Variational	 Bayesian	 inference	 in	
DCM.	 Since	 our	 focus	 was	 on	 exploring	 model	 behavior	 over	 a	 small	 number	 of	 global	
parameters	and	a	set	of	structural	connectomes	(whether	anatomic	or	random)	of	identical	
sparsity	and	complexity,	 it	was	 sufficient	 to	use	a	maximum	a	posteriori	estimation	 (MAP)	
procedure	for	Bayesian	inference	of	our	global	model	parameters	with	flat	non-informative	
priors	with	pre-determined	 ranges	based	on	biophysics.	 Like	most	DCM	efforts	our	model	
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can	 be	 easily	 be	 extended	 to	 Variational	 Empirical	 Bayesian	 inference	 for	 parameter	
estimation,	for	instance	to	compute	a	full	posterior	of	the	structural	connectivity	matrix.	In	
such	a	 formulation,	we	can	assume	 that	 the	observed	 structural	 connectome	will	 serve	as	
the	prior	mean	of	 the	connectivity	matrix.	We	reserve	such	extensions	 to	our	 future	work	
with	this	spectral	graph	model.		

Other	limitations	and	extensions	

The	 model	 currently	 examines	 resting-state	 activity,	 but	 future	 extensions	 will	 include	
prediction	 of	 functional	 connectivity,	 task-induced	 modulations	 of	 neural	 oscillations	 and	
causal	modeling	of	external	stimuli,	e.g.	transcranial	magnetic	and	direct	current	stimulation.	
The	current	implementation	does	not	incorporate	complex	local	dynamics,	but	future	work	
will	explore	using	non-white	 internal	noise	and	chaotic	dynamics	 for	 local	assemblies.	This	
may	 allow	 us	 to	 examine	 higher	 gamma	 frequencies.	 Although	 our	 model	 incorporates	
latency	 information	 derived	 from	 path	 distances,	 we	 plan	 to	 explore	 path-specific	
propagation	 velocities	 derived	 from	 white	 matter	 microstructural	 metrics	 such	 as	 axon	
diameter	 distributions	 and	 myelin	 thickness.	 Future	 work	 will	 also	 examine	 the	 specific	
topographic	features	of	the	structural	connectome	that	may	best	describe	canonical	neural	
activity	spectra.	Finally,	we	plan	to	examine	the	ability	of	the	model	to	predict	time-varying	
structure-function	relationships.	

Potential	applications	

Mathematical	 encapsulation	 of	 the	 structure-function	 relationship	 can	 potentiate	 novel	
approaches	 for	 mapping	 and	 monitoring	 brain	 diseases	 such	 as	 autism,	 schizophrenia,	
epilepsy	 and	 dementia,	 since	 early	 functional	 changes	 are	 more	 readily	 and	 sensitively	
measured	 using	 fMRI	 and	 MEG,	 compared	 to	 structural	 changes.	 Because	 of	 the	
complementary	sensitivity,	temporal	and	spatial	resolutions	of	diffusion	MRI,	MEG,	EEG	and	
fMRI,	 combining	 these	modalities	may	be	 able	 to	 reveal	 fine	 spatiotemporal	 structures	 of	
neuronal	 activity	 that	 would	 otherwise	 remain	 undetected	 if	 using	 only	 one	 modality.	
Current	 efforts	 at	 fusing	multimodalities	 are	 interpretive,	 phenomenological	 or	 statistical,	
with	limited	cognizance	of	underlying	neuronal	processes.	Thus,	the	ability	of	the	presented	
model	to	quantitatively	and	parsimoniously	capture	the	structure-function	relationship	may	
be	key	to	achieving	true	multi-modality	integration.		

Methods	
	
Details	of	 the	Spectral	Graph	Development	model	 is	described	 in	supplementary	methods.	
Equation	(1)	encapsulates	the	entire	model,	and	it	is	deterministic	and	admits	a	closed	form	
solution,	 once	 the	 graph	 Laplacian	 eigen	 spectrum	 is	 known.	 There	 are	 very	 few	 model	
parameters,	 seven	 in	 total:	a,	𝜏C, 𝜏*, 𝜏A, 𝑣, 𝑔**, 𝑔C*,	 which	 are	 all	 global	 and	 apply	 at	 every	
node.	Note	 that	 the	entire	model	 is	based	on	a	single	equation	of	graph	dynamics,	Eq	 (1),	
which	 is	 repeatedly	 applied	 to	 each	 level	 of	 the	 hierarchy.	 Here	 we	 used	 two	 levels:	 a	
mesoscopic	level	where	connectivity	is	all-to-all,	and	a	macroscopic	level,	where	connectivity	
is	 measured	 from	 fiber	 architecture.	 In	 theory,	 this	 template	 could	 be	 refined	 into	 finer	
levels,	where	 neural	 responses	 become	 increasingly	 non-linear,	 and	 connectivity	 becomes	
sparser	and	structured.	
	
Alternative	 benchmark	 model	 for	 comparison.	 In	 order	 to	 put	 the	 proposed	 model	 in	
context,	we	also	 implemented	for	comparison	a	Wilson-Cowan	neural	mass	model	 17,35,37,50	
with	similar	dimensionality.	Although	NMMs	like	this	can	and	have	been	implemented	with	
regionally	varying	local	parameters,	here	we	enforced	uniform,	regionally	non-varying	local	
parameters,	 meaning	 all	 parcellated	 brain	 regions	 shared	 the	 same	 local	 and	 global	
parameters.	This	is	a	fair	comparison	since	the	proposed	model	is	also	regionally	non-varying.	
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The	purpose	of	 this	exercise	 is	 to	ascertain	whether	a	non-regional	NMM	can	also	predict	
spatial	power	variations	purely	as	a	consequence	of	network	transmission,	like	the	proposed	
model,	using	the	same	model	optimization	procedure	(see	below).	This	NMM	incorporates	a	
transmission	 velocity	 parameter	 that	 introduces	 a	 delay	 based	 on	 fiber	 tract	 lengths	
extracted	 from	diffusion	MRI,	but,	unlike	our	model,	does	not	seek	 to	explicitly	evaluate	a	
frequency	response	based	on	these	delays.	
	
Model	Optimization		
	
We	computed	maximum	aposteriori	estimates	for	parameters	under	a	flat	non-informative	
prior.	A	simulated	annealing	optimization	algorithm	was	used	for	estimation	and	provided	a	
set	 of	 optimized	 parameters	{𝜏C, 𝜏*, 𝜏=, 𝑔C*, 𝑔**, 𝛼, 𝜐}.	 We	 defined	 a	 data	 likelihood	 or	
goodness	 of	 fit	 (GOF)	 as	 the	 Pearson	 correlation	 between	 empirical	 source	 localized	MEG	
power	 spectra	 and	 simulated	 model	 power	 spectra,	 averaged	 over	 all	 68	 regions	 of	 a	
subject’s	 brain.	 The	 proposed	 model	 has	 only	 seven	 global	 parameters	 as	 compared	 to	
neural	 mass	 models	 with	 hundreds	 of	 parameters,	 and	 is	 available	 in	 closed-form.	 To	
improve	 the	 odds	 that	 we	 capture	 the	 global	 minimum,	 we	 chose	 to	 implement	 a	
probabilistic	approach	of	simulated	annealing	79.	The	algorithm	samples	a	set	of	parameters	
within	 a	 set	 of	 boundaries	 by	 generating	 an	 initial	 trial	 solution	 and	 choosing	 the	 next	
solution	from	the	current	point	by	a	probability	distribution	with	a	scale	depending	on	the	
current	“temperature”	parameter.	While	the	algorithm	always	accepts	new	trial	points	that	
map	 to	 cost-function	 values	 lower	 than	 the	 previous	 cost-function	 evaluations,	 it	will	 also	
accept	solutions	that	have	cost-function	evaluations	greater	than	the	previous	one	to	move	
out	of	 local	minima.	The	acceptance	probability	 function	 is	1/(1 + ∆

CZ[\ ] ),	where	T	 is	 the	
current	temperature	and	∆	is	the	difference	of	the	new	minus	old	cost-function	evaluations.		
The	 initial	 parameter	 values	 and	 boundary	 constraints	 for	 each	 parameter	 are	 given	 in	
Supplementary	 Table	 1.	 All	 simulated	 annealing	 runs	 were	 allowed	 to	 iterate	 over	 the	
parameter	 space	 for	 a	 maximum	 of	𝑁P×3000 	iterations,	 where	𝑁P 	is	 the	 number	 of	
parameters	in	the	model.	As	a	comparison,	we	performed	the	same	optimization	procedure	
to	 a	 regionally	 non-varying	 Wilson-Cowan	 neural	 mass	 model	 35,50.	 We	 have	 recently	
reported	a	similar	simulated	annealing	optimization	procedure	on	this	model	37.	
	

Acknowledgements	

This	 work	 was	 supported	 by	 NIH	 grants	 R01EB022717,	 R01DC013979,	 R01NS100440,	
R01DC017696,	 and	 UCOP-MRP-17-454755.	 The	 template	 HCP	 connectome	 used	 in	 the	
preparation	 of	 this	 work	 were	 obtained	 from	 the	 MGH-USC	 Human	 Connectome	 Project	
(HCP)	 database	 (https://ida.loni.usc.edu/login.jsp	 ).	 The	 HCP	 project	 is	 supported	 by	 the	
National	 Institute	 of	 Dental	 and	 Craniofacial	 Research	 (NIDCR),	 the	 National	 Institute	 of	
Mental	 Health	 (NIMH)	 and	 the	 National	 Institute	 of	 Neurological	 Disorders	 and	 Stroke	
(NINDS).	Collectively,	the	HCP	is	the	result	of	efforts	of	co-investigators	from	the	University	
of	 Southern	 California,	 Martinos	 Center	 at	 Massachusetts	 General	 Hospital	 (MGH),	
Washington	University,	and	the	University	of	Minnesota.			

	
	 	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 11, 2019. ; https://doi.org/10.1101/589176doi: bioRxiv preprint 

https://doi.org/10.1101/589176


	15	

Figure	Legends	

	
Figure	1:	Approximating	a	non-linear	 simulation	model	of	 local	neural	assemblies	with	a	
linear	 model.	 A:	 Conventional	 neural	 models	 typically	 instantiate	 a	 large	 assembly	 of	
excitatory	and	inhibitory	neurons,	which	are	modeled	as	fully	connected	internally.	External	
inputs	 and	outputs	 are	 gated	 through	 the	excitatory	neurons	only,	 and	 inhibitory	neurons	
are	 considered	 strictly	 local.	 The	 proposed	 linear	model	 condenses	 these	 local	 assemblies	
into	lumped	linear	systems	𝑓C 𝑡 	and	𝑓*(𝑡),	Gamma-shaped	functions	having	time	constants	
𝜏C 	and	𝜏* 	–	 see	 panel	B.	 The	 recurrent	 architecture	 of	 the	 two	pools	within	 a	 local	 area	 is	
captured	 by	 the	 gain	 terms	𝑔CC, 𝑔**, 𝑔C*,	 indicating	 the	 loops	 created	 by	 recurrents	 within	
excitatory,	 inhibitory	 and	 cross-populations.	 C:	 The	 frequency-dependent	 behavior	 of	 the	
eigenvalue-spectrum	of	the	complex	Laplacian	𝓛(𝜔).	Each	dot	represents	the	absolute	value	
of	 each	 eigenvalue	𝜆(𝜔),	 plotted	 against	 the	 eigenvector	 index;	 its	 color	 represents	 the	
frequency	𝜔	-	 low	 (blue)	 to	 high	 (yellow).	 Small	 eigenvalues	 show	 a	 larger	 shift	 due	 to	
frequency	 compared	 to	 large	 ones.	D:	 Frequency	 response	 of	 each	 eigenmode	plotted	 on	
the	complex	plane	with	default	model	parameters.	Each	curve	represents	the	transit	in	the	
complex	 plane	 of	 a	 single	 eigenmode’s	 frequency	 response,	 starting	 at	 low	 frequencies	 in	
the	bottom	right	quadrant,	and	moving	characteristically	to	the	upper	left	quadrant	at	high	
frequencies.	The	magnitude	of	the	response,	given	by	the	distance	from	the	origin,	suggests	
that	most	eigenmodes	have	two	prominent	lobes,	roughly	corresponding	to	alpha	and	beta	
rhythms,	respectively.	 In	contrast,	the	 lowest	few	eigenmodes	start	off	far	from	the	origin,	
indicative	 of	 a	 low-pass	 response.	 	 E:	 Magnitude	 of	 the	 frequency	 response	 of	 each	
eigenmode	 reinforces	 these	 impressions	more	 clearly.	F:	 The	 spatial	 patterns	of	 the	 top	5	
eigenmodes	of	𝓛 𝜔 ,	evaluated	at	the	alpha	frequency,	10	Hz.	The	first	4	eigenmodes	𝐮# −
𝐮F,	 give	 strong	alpha	 frequency	 responses,	and	 in	 turn	are	 strongly	distributed	spatially	 in	
posterior	 areas.	 Also	 see	 Figure	 5.	 But	 they	 also	 include	 other	 regions	 and	 prominently	
resemble	 many	 elements	 of	 the	 default	 mode	 network	 and	 the	 structural	 core	 of	 the	
human	 connectome,	 especially	𝐮H.	𝐮𝟒	resembles	 the	 sensorimotor	 network.	 These	 low	
eigenmodes	are	highly	consistent	and	reproducible,	but	higher	ones	increasingly	depend	on	
the	axonal	velocity	and	frequency,	and	are	not	shown	here.		

	
Figure	2:	Spectral	graph	model	predictions	of	MEG	spectra	for	one	representative	subject.	
Top	–	Observed	MEG	power	spectrum	for	each	of	the	68	parcellated	brain	regions.	Average	
spectra	for	each	brain	region	are	shown	in	yellow,	and	the	average	spectrum	across	all	brain	
regions	 is	 shown	 in	 red.	The	subsequent	 rows	show	each	eigenmode's	 spectral	magnitude	
response	 with	 model	 parameters	 optimized	 to	 match	 the	 observed	 spectrum	 (𝜏C =
0.0073 , 	𝜏* = 0.0085 ,	 𝜏A = 0.0061 ,	 𝑔C* = 2.9469 	 𝑔** = 4.4865 ,	 𝜈 = 18.3071 	and	 𝛼 =
0.4639).	A:	Model	using	subject's	individual	structural	connectivity	matrix.	B:	Model	using	a	
template	 structural	 connectivity	matrix	obtained	by	 averaging	 structural	 connectivity	 from	
80	 HCP	 subjects.	 C:	 Model	 using	 uniform	 connectivity	 matrix	 of	 ones.	 D:	 Model	 using	
randomized	 connectivity	matrix	 with	 no	 sparsity.	 E:	Model	 using	 randomized	 connectivity	
matrix	 with	 75%	 sparsity.	 F:	 Model	 using	 randomized	 connectivity	 matrix	 with	 95%	
sparsity.	In	all	 cases	 the	connectome	modulates	 the	 spectral	 response	 in	delta-beta	 range,	
leaving	 the	higher	 gamma	 frequencies	unchanged.	 In	 general,	mainly	 the	 low	eigenmodes	
(𝐮𝟏 − 𝐮𝟐𝟎)	appear	to	modulate	the	frequency	response	in	any	significant	manner,	and	may	
be	considered	responsible	for	the	diversity	of	spectra	observed	in	the	model.	

	
Figure	 3:	 Spectral	 graph	 model	 correctly	 captures	 MEG	 spectra	 across	 subjects.	 A:	 The	
observed	 spectra	 and	 spectral	 graph	 model’s	 simulated	 spectra	 for	 four	 representative	
subjects.	Red	and	yellow	curves	 illustrate	source	 localized	average	spectra	and	region-wise	
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spectra	 respectively,	 while	 black	 and	 cyan	 curves	 illustrate	 modeled	 average	 spectra	 and	
region-wise	 spectra	 respectively.	 B:	 The	 average	 observed	 spectrum	 for	 all	 36	 subjects	 is	
shown	in	red.	For	group	level	comparisons,	the	average	simulated	model	spectra	produced	
by	 optimized	 parameters	 with	 each	 individual	 subject’s	 connectome	 is	 shown	 in	 black,	
optimized	 parameters	 with	 template	 connectome	 from	 HCP	 dataset	 is	 shown	 in	 purple,	
average	 parameters	 with	 individual	 subject’s	 connectome	 is	 shown	 in	 golden	 green,	
optimized	 parameters	 with	 a	 connectome	 constructed	 by	 selecting	 20%	 of	 the	 highest	
geodesic	 distance	 between	 ROI	 pairs	 is	 shown	 in	 blue,	 and	 optimized	 parameters	 with	
symmetric	 random	 connectomes	 with	 80%	 sparsity	 is	 shown	 in	 green.	 Additionally,	 the	
neural	mass	model’s	average	simulated	power	spectra	with	each	subject’s	optimized	global	
parameters	and	HCP	template	connectome	is	shown	in	pink.	
	
Figure	4:	Model	optimization	via	simulated	annealing.	A:	Distribution	of	optimized	model	
parameter	values	 for	all	36	subjects.	The	simulated	annealing	algorithm	performed	model	
optimization	 for	 the	 set	 of	 parameters	 𝜏C, 𝜏*, 𝜏=, 𝑔C*, 𝑔**, 𝛼, 𝜐 	on	 all	 subjects.	 The	
optimized	values	 for	 each	parameter	 are	 shown	 in	 violin	plots	with	each	dot	 representing	
one	 subject.	 Performance	 of	 optimization	 procedure.	 B:	 Spectral	 Pearson	 correlation	
between	model	and	source	localized	MEG	spectra	at	each	iteration	of	simulated	annealing.	
Each	 curve	 shows	 the	 spectral	 correlation	 achieved	 by	 the	 model	 optimized	 for	 a	 single	
subject,	averaged	over	all	 regions.	Each	accepted	 iteration	 increased	 the	mean	correlation	
values	until	 the	 algorithm	converged	 to	 a	 set	of	optimized	parameters.	C:	 Consistent	with	
the	 color	 schemes	 of	 the	 simulated	 average	 spectra	 in	 Figure	 3;	 the	 histogram	 of	 mean	
spectral	 correlation	 values	 for	 all	 36	 subjects	 with	 individual	 connectomes	 and	 optimized	
parameters	 is	 shown	 in	 black,	 geodesic	 distance	 based	 connectome	 with	 optimized	
parameters	is	shown	in	blue,	symmetric	random	connectomes	with	optimized	parameters	is	
shown	 in	 green,	 and	 individual	 connectomes	with	 average	parameters	 is	 shown	 in	 golden	
green.		

	
Figure	5:	Specific	eigenmodes	capture	spatial	distributions	of	alpha	and	beta	band	activity.	
Here	“spatial	correlation”	 is	defined	as	Pearson’s	R	statistic	of	the	correlation	between	the	
regional	distribution	of	empirical	MEG	and	model-predicted	power	within	a	given	frequency	
band.	A:	Spatial	correlation	was	computed	for	each	eigenmode	for	all	subjects	in	the	alpha	
and	beta	bands,	and	the	average	spatial	correlation	for	the	eigenmodes	are	shown.	B:	When	
a	given	eigenmode	is	correlated	to	alpha	power,	it	is	roughly	anti-correlated	to	beta	power.	
To	demonstrate	this	further,	a	scatter	plot	of	all	eigenmodes’	alpha	and	beta	power	spatial	
correlation	is	shown.	The	r-statistic	(r	=	-0.255,	p<0.0001)	of	this	correlation-of-correlations	
is	highly	 significantly	negative.	C	 and	D	 show	 the	 cortical	 surface	 renderings	of	 the	 spatial	
pattern	of	the	most	spatially	correlated	eigenmode	for	alpha	(#3)	and	beta	(#33)	respectively	
(indicated	 by	 *	 in	 panel	A).	 E:	 Per	 subject,	 the	 histogram	 of	 the	 correlation	 between	 the	
alpha	band	and	beta	band	spatial	correlation	curves.	 It	can	be	seen	that	for	most	subjects’	
alpha	 and	 beta	 band	 spatial	 correlation	 curves	 for	 the	 eigenmodes	 are	 in	 turn	 anti-
correlated.	F:	Green	histogram	shows	the	distribution	of	spatial	correlation	achieved	by	the	
maximally	correlated	eigenmode	with	each	subject’s	observed	data	 in	the	alpha	band.	The	
blue	histogram	shows	the	spatial	correlation	achieved	by	the	same	eigenmodes	with	data	in	
the	 beta	 band.	 This	 suggests	 that	 the	 eigenmode	 that	 is	maximally	 correlated	with	 alpha	
spatial	pattern	is	in	turn	uncorrelated	with	the	beta	spatial	pattern.		
	
Figure	 6:	 Spatial	 distribution	 of	 the	 alpha	 band	 power	 across	 regions.	 The	 spatial	
distribution	of	alpha	band	power	is	shown	in	cortical	surface	renderings,	from	top	to	bottom:	
the	 observed	 MEG	 pattern;	 the	 model	 pattern	 with	 10	 eigenmodes;	 the	 best	 matching	
eigenmode	 generated	 by	 eigenmode	 14	 only;	 the	 second	 best	 matching	 eigenmode	
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generated	by	eigenmode	19	only.	
	
Figure	7:	Spatial	distribution	of	beta	band	power	across	regions.	The	spatial	distribution	of	
beta	band	power	are	shown	in	cortical	surface	renderings,	from	top	to	bottom:	the	observed	
MEG	 pattern;	 the	 model	 pattern	 with	 5	 eigenmodes;	 the	 best	 matching	 eigenmode	
generated	 by	 eigenmode	 13	 only;	 the	 second	 best	 matching	 eigenmode	 generated	 by	
eigenmode	22	only.	
	
Figure	 8:	 Spatial	 correlation	 between	 model	 and	 observed	 data	 for	 all	 subjects.	 The	
eigenmodes	 decomposed	 from	 individual	 connectomes	 are	 sorted	 by	 descending	 eigen	
values,	 and	 the	 spectral	 graph	 model’s	 alpha	 and	 beta	 spatial	 correlation	 as	 these	
eigenmodes	 are	 cumulatively	 added	 together	 are	 shown	 in	A	 and	B	 respectively,	 the	 thin	
cyan	and	blue	lines	are	subject	specific	spatial	correlations,	while	the	thick	black	and	red	line	
are	 average	 of	 all	 subjects.	 The	 distribution	 of	 simulated	 alpha	 and	 beta	 band	maximum	
spatial	correlation	for	all	subjects	are	shown	in	C	and	D,	the	black	curve	is	produced	by	the	
spectral	 graph	 model	 with	 individual	 connectomes	 and	 optimized	 parameters,	 the	 blue	
curve	is	produced	by	the	spectral	graph	model	with	a	connectome	constructed	by	selecting	
20%	 of	 the	 highest	 geodesic	 distance	 between	 ROI	 pairs	 and	 optimized	 parameters,	 the	
green	 curve	 is	 produced	 by	 the	 spectral	 graph	 model	 with	 900	 instances	 of	 80%	 sparse	
randomly	 generated	 connectomes	 and	 optimized	 parameters,	 and	 the	 pink	 curve	 is	
produced	 by	 the	 neural	 mass	 model	 with	 individual	 connectomes	 and	 optimized	 global	
parameters.	 The	NMM	gives	 very	poor	prediction	of	 the	 spatial	 pattern	of	 alpha	power	 (r	
distribution	 centered	at	 0).	 The	 random	connectomes	also	 appear	 to	have	 some	ability	 to	
capture	these	spatial	patterns	(r	distribution	centered	at	0.4).	This	may	be	understood	as	a	
consequence	 of	 the	 implicit	 search	 within	 the	 random	 eigenmodes	 of	 the	 best-matching	
ones,	which	on	average	will	give	at	least	a	few	eigenmodes	that	look	like	MEG	power	purely	
by	 chance.	 The	model	 evolved	 on	 the	 human	 connectome	 does	 the	 best	 in	 all	 cases,	 but	
markedly	better	in	alpha	compared	to	beta	band.	
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