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Abstract 

Background: Data analysis has become crucial in the post genomic era where the 

accumulation of genomic information is mounting exponentially. Analyzing protein-

protein interactions in the context of the interactome is a powerful approach to 

understanding disease phenotypes.  

Results: We describe Proteinarium, a multi-sample protein-protein interaction network 

analysis and visualization tool. Proteinarium can be used to analyze data for samples 

with dichotomous phenotypes, multiple samples from a single phenotype or a single 

sample. Then, by similarity clustering, the network-based relations of samples are 

identified and clusters of related samples are presented as a dendrogram. Each branch 

of the dendrogram is built based on network similarities of the samples. The protein-

protein interaction networks can be analyzed and visualized on any branch of the 

dendrogram. Proteinarium’s input can be derived from transcriptome analysis, whole 

exome sequencing data or any high-throughput screening approach. Its strength lies in 

use of gene lists for each sample as a distinct input which are further analyzed through 

protein interaction analyses. Proteinarium output includes the gene lists of visualized 

networks and PPI interaction files where users can analyze the network(s) on other 

platforms such as Cytoscape. In addition, since the dendrogram is written in Newick 

tree format, users can visualize it in other software platforms like Dendroscope, ITOL. 

Conclusions: Proteinarium, through the analysis and visualization of PPI networks, 

allows researchers to make important observations on high throughput data for a variety 

of research questions. Proteinarium identifies significant clusters of patients based on 

their shared network similarity for the disease of interest and the associated genes. 
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Proteinarium is a command-line tool written in Java with no external dependencies and 

it is freely available at https://github.com/Armanious/Proteinarium.  
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Background 
 Genome-wide association studies (GWAS) have become a popular approach to 

the investigation of complex diseases (1, 2) and have made possible discovery of 

insights not previously recognized (3-5). However, GWAS have often failed to 

demonstrate the “missing heritability” in many common diseases (6-10). A major factor 

contributing to the lack of success of genome-wide association studies in identifying 

‘missing heritability’ is the fundamental nature of the genetic architecture interrogated by 

GWAS. The computational approaches underlying GWAS reflect the “common disease 

common variant hypothesis,” that complex disease architecture is due to additive 

genetic effects due to variants in individual genes. The genetics of complex diseases, 

however, suggests that is unlikely. The more likely architecture is that subgroups of 

patients share variants in genes in specific networks and pathways which are sufficient 

to give rise to a shared phenotype. It is also likely that variants in genes in different 

networks and pathways express similar phenotypes and define different subgroups of 

patients. All nodes in the pathways are unlikely to be equally represented. Because of 

purifying selection, highly expressed, pathogenic variants may be clustered in 

overlapping pathways, rate limiting steps or regions of high-centrality (11). Thus, 

resources are needed to identify these shared and individual networks and pathways in 

clusters of patients within diseases or phenotypes.  

 With the generation of high throughput screening methods, extensive protein–

protein interaction (PPI) networks have been built (11, 12). PPI networks potentially 

harbor great power as they reflect the functional action of genes (13, 14). Large scale 

protein interaction maps show that genes involved in related phenotypes frequently 

interact physically at the level of proteins in model organisms, and as well as in humans 

(15-19). This is also true for the disease phenotypes. Proteins that are associated with 
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similar disease phenotypes have a strong affinity to interact with each other (17, 20). In 

addition, they have a tendency to cluster in the same network zone (21).  PPI networks 

have been used to identify candidate genes and subnetworks associated with complex 

diseases such as cancer and Alzheimer’s Disease (14, 22, 23).   

 We developed Proteinarium, a multi-sample protein-protein interaction tool to 

identify clusters of patients with shared networks to better understand the mechanism of 

complex disease and phenotypes. This tool was designed to increase the power in the 

analysis of experimental data by identifying disease associated biological networks that 

define clusters of patients, as well as the visualization of such networks with user 

specified parameters. Compared to other PPI network analysis tools, a distinguishing 

feature of Proteinarium is identification of clusters of samples (patients), their shared 

PPI networks and representation of samples within the clusters by their group 

assignment.  

 
Implementation  
Overview 

 Proteinarium is well suited for analyzing and visualizing the networks of complex 

diseases and their associated phenotypes to generate clusters of similar samples with 

their associated layered networks.  Figure 1 presents an overview of the workflow for 

Proteinarium. 

Data Source 

 Proteinarium uses the STRING database, version 11, for humans as its network 

data source. It includes known and predicted PPIs (7). Each PPI has an associated 

score between 0 and 1000 indicating the confidence of the interaction.  
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Input Data 

 Proteinarium can be used to analyze data for samples with dichotomous 

phenotypes, multiple samples from a single phenotype or a single sample. For each 

sample, a list of genes is required as input (seed genes). If the samples are from a 

dichotomous phenotype, the genes for each sample must be in one of two discrete files, 

Group 1 Samples or Group 2 Samples. The seed genes may be derived from deep 

sequence data, transcriptome analysis, or from any analysis that generates candidate 

gene lists. Therefore, it is up to the investigator how to generate the seed genes as 

input for Proteinarium. 

 

Multi-sample Analysis: Constructing Networks  

Mapping onto the interactome 

 Proteinarium is initialized by mapping the seed genes onto STRING’s protein-

protein interactome (19). For each seed gene, Proteinarium maps the HUGO Gene 

Nomenclature Committee (HGNC) Symbol to the associated proteins in STRING’s 

database (10). Proteinarium then finds all PPIs within the STRING database that 

correspond to the seed genes, forming a subset of the protein interactome for each 

sample.  

 

Building a graph with Dijkstra’s Algorithm 

 For each sample, Proteinarium builds an interaction graph from the seed 

proteins. We use Dijkstra’s shortest path algorithm to find short, high-confidence paths 

between all pairs of proteins where such a path exists (24). STRING provides a 
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confidence score S for every edge connecting two proteins between 0 and 1000. The 

higher the number, the higher the confidence of the specific protein-protein interaction. 

We define the cost of an edge between two proteins to be 1000− 𝑆. Thus, the highest 

confidence interactions should be the lowest cost edges. The algorithm has been 

modified to only consider paths whose lengths (number of vertices in the path) and total 

costs (sum of edge weights) are below the user specified values. For each sample 𝑖, the 

graph 𝐺! = 𝑉! ,𝐸!  is generated, where each vertex 𝑣 ∈ 𝑉!  corresponds to a protein and 

each edge 𝑒 ∈ 𝐸! corresponds to a protein interaction. Only the seed proteins and the 

proteins that were required to minimally connect the seed proteins are included in the 

set of vertices 𝑉!.  

 

Building the similarity matrix and clustering samples with UPGMA 

 After generating the graphs for all samples, Proteinarium calculates the similarity 

between each pair of graphs using the Jaccard distance (25). The distance 𝑑!,!  between 

any two graphs 𝐺! and 𝐺! is calculated as: 

𝑑!,! = 1−
𝐺! ∩ 𝐺!
𝐺! ∪ 𝐺!

 

This similarity matrix is then used as the input to cluster the set of graphs. Clustering is 

performed hierarchically using Unweighted Pair Group Method with Arithmetic Mean 

(UPGMA) (12). Initially, all clusters consist of a single graph, corresponding to a leaf of 

a dendrogram. When there exists more than one cluster, we combine the two clusters 

that are closest to each other according the distance metric 𝑑 and then update all 

cluster distances.  
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In the standard UPGMA algorithm, the weight 𝑤! would correspond to the number of 

graphs in that cluster, so all the weights of all leaves in the tree would equal 1. Our 

modified algorithm scales either the Group 1 graph factor or the Group 2 graph factor to 

a constant 𝜌 ≥ 1 such that the product of the size of the graph set and 𝜌 is equal to the 

size of the other graph set.  

 

Visualization 

Visualizing the “Global Dendrogram” 

 Proteinarium outputs the results of the clustering algorithm as a dendrogram in 

both PDF visualization and in a text file in Newick tree format. The horizontal length of 

the line segments is proportional to the height of the cluster in the tree. The lower the 

height, the more similar the graphs within the cluster are. All heights are normalized 

between 0 and 1, with the leaves occupying height 0 and the ancestor occupying height 

1. The lines are also colored according to the (weighted) percentage of Group 1 versus 

Group 2 gene sets comprising the cluster: if a group comprises more than 60% of the 

weight, then the edge is colored by that group; otherwise, the edge is colored black.  

 

Visualizing “Local” Clusters 

Constructing a layered graph 

 For a given cluster 𝐶 comprised of 𝑛 graphs 𝐺! = 𝑉!,𝐸! ,… ,𝐺! = 𝑉!,𝐸!  

Proteinarium can construct and output a summary layered graph 𝐿𝐺 =  (𝑉!" ,𝐸!") 

consisting of each of the 𝑛 graphs with the following vertices and edges: 

𝑉!" = 𝑉! ∪ 𝑉! ∪…  ∪ 𝑉! 

𝐸!" = 𝐸! ∪ 𝐸! ∪…  ∪ 𝐸! 
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Additionally, the count annotation for each vertex 𝑣 in 𝐿𝐺: 

𝐿𝐺. count 𝑣 =  𝟏!! 𝑣
!

!!!

 

The count annotation is the number of sample networks in which the protein (v) of the 

layered graph is found. If a cluster C contains samples from both sample groups, there 

are 5 possible networks being created on the fly. These networks are as follows:  

(i) [Group 1] the network for Group1 samples only;  

(ii) [Group 2] the network for Group 2 samples only;  

(iii) [Group 1 + Group 2] the network for both Group1 and Group 2 samples;  

(iv) [Group 1 - Group 2] the network where Group 2 is subtracted from Group 1;  

(v) [Group 2 - Group1] the network where Group 1 is subtracted from Group 2.  

Details on the constructions of graphs iv and v are in Supplementary Materials (S1a). 

 

Visualizing and annotating the layered graph 

 Given a layered graph 𝐿𝐺 corresponding to a cluster 𝐶, we lay the vertices 

according to a simple implementation of a force-directed layout algorithm. Additional 

details on the constructions of graphs iv and v are in Supplementary Materials (S1a). 

We color each vertex 𝑣 according to the samples for which 𝑣’s corresponding gene 

exists:  

1. Only samples from Group 1: yellow group1VertexColor  

2. Only the samples from Group 2: blue group2VertexColor  

3. Samples from both Group 1 and Group 2: green bothGroupsVertexColor  or a 

50/50 mixture of (1) and (2) 
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4. Neither samples from Group 1 nor Group 2 (Protein was inferred from the 

pairwise path finding algorithm): red defaultVertexColor  

 

Additionally, the opacity of each vertex 𝑣 is calculated linearly between a minimum 

opacity 𝑚 and 255: 

opacity 𝑣 =  𝑚 + 255−𝑚 ∗
𝐿𝐺. count 𝑣

max
!!

𝐿𝐺. count 𝑣!   

The same calculation is used for the opacity of the edges. 

When a graph is to be visualized, the number of displayed vertices is reduced to keep 

the visualization tractable. We rank the seed genes of a given graph according to the 

number of pairwise paths that particular vertex appears in. We then retain the top k 

vertices such that the total number of unique vertices found within all pairwise paths of k 

selected vertices is less than or equal to the maximum number of vertices to be 

displayed. In doing so, all graphs will show only complete paths whose endpoints 

originate from seed genes. 

 

Fisher’s exact test p-value 

 The p-value for a cluster is given by a Fisher-Exact and indicates the probability 

of observing, among all n sample samples, a cluster of size m with proportions of Group 

1 and Group 2 samples relative to the total number of Group 1 and Group 2 samples. In 

other words, it provides a sense of how disproportionate a particular group (either 

Group 1 or Group 2) is over-represented in a cluster; the lower the p-value, the more 

confidence we have that the over-representation is not due to random chance. 

 

Clustering coefficients 
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 For each cluster, we calculate the global clustering coefficients for each of the 

four graphs: Group 1 graph, Group 2 graph, and the two graphs resulting from the 

weighted differences of each graph as described above. The clustering coefficient is a 

measure describing the tendency of vertices in a particular graph to cluster together. 

For a graph 𝐺 = 𝑉,𝐸  with 𝑉 = 𝑛 vertices, the global clustering coefficient is given by 

1
𝑛

𝑒!" ∶ 𝑣! , 𝑣! ∈ 𝑁! , 𝑒!" ∈ 𝐸
𝑁! ∗ 𝑁! − 1

!

!!!

  

where 𝑁! is the set of neighbors of vertex 𝑣!, i.e. 𝑁! = 𝑣! ∶ 𝑒!" ∈ 𝐸 . 

 

Program Availability 

 Proteinarium is a command-line tool written entirely in Java with no external 

dependencies. Java version 8 or above (Java 9, or Java 10) must be installed in order 

to run Proteinarium. It is freely available at https://github.com/Armanious/Proteinarium. 
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Results 

Running Proteinarium on Simulated Data 

 We evaluated Proteinarium’s performance on simulated datasets and on the 

datasets for a use case. The STRING database was used to obtain “networks 1 and 2.” 

Both networks have total of 71 proteins and their clustering coefficients were 

respectively, 0.590 and 0.691. Members of the networks do not overlap.  We simulated 

two groups each with 50 samples (Figure 2). For each sample in Group 1, 10 genes 

were randomly selected from PPI network 1 and for each sample in Group 2,10 genes 

were randomly selected from PPI network 2. We ran Proteinarium using these Group1 

and Group2 seed gene files. To add noise to the simulated data, for each sample in 

Group 1 a percentage of their genes were randomly replaced with genes from PPI 

network 2 (20%, 30%, 40% and 50%). Similarly, for samples in Group 2, a percentage 

of genes were replaced at random with genes from PPI network 1. Representative 

dendrograms reflecting the output of Proteinarium for the simulations with 0%, 20%, 

30%, 40% and 50% are shown in Figure 2 and the performance in the table below. 

Samples in Group 1 are colored yellow, and samples in Group 2 are colored blue. The 

five dendrograms show the clustering of the samples based on their network similarities. 

With no noise, as expected, samples from Group 1 perfectly cluster together and 

samples from Group 2 perfectly clustered together (power: 100%, p<.05)  As more 

noise was added to the data sets, the power decreased from 100% for 20% noise, down 

to 15% for 40% noise. At 50% noise (i.e. the null hypothesis) the power to discriminated 

groups was less than 5%.   
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Test Replicate Number of 

Simulations with 

P-value < 0.05 

Total 

Simulations 

Fraction of 

Simulations with 

P-value < 0.05 

Number of 

Simulations with 

P-value ≥  0.05 

Fraction of 

Simulations with 

P-value ≥ 0.05 

1 0.2 500 500 1 0 0 

1 0.3 477 500 0.954 23 0.046 

1 0.4 78 500 0.156 422 0.844 

1 0.5 23 500 0.046 477 0.954 

 

 

Running Proteinarium on a Use Case 

 We implemented Proteinarium on a previously published genome wide 

expression study of preterm birth (26). The aim of the original study was to investigate 

maternal whole blood gene expression profiles associated with spontaneous preterm 

birth (SPTB, <37 weeks) in asymptomatic pregnant women. The study population was a 

matched subgroup of women who delivered at term (51 SPTBs, 114 term delivery 

controls). We used the gene expression microarray data generated from maternal blood 

collected between 27–33 weeks of gestation. The authors had performed univariate 

analyses to determine the differential gene expression associated with SPTB. We 

calculated z-scores for each gene in the preterm birth samples, using the mean of the 

control samples for reference (and vice-versa). For each sample, the genes were 

ranked according to their z-score and the top 50 genes were used as the sample’s gene 

list for input to Proteinarium. The dendrogram in Figure 3a demonstrates the clustering 

of the samples based on their network similarities.   

 Cluster 102 contained significantly more preterm birth samples (n=8) than control 

samples (n=1). Figure 3c shows the layered PPI network for these preterm birth 

samples, consisting of 43 nodes. We found that 11 out of these 43 genes had 
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previously been found to be nominally differentially expressed (26). Using over 

representation analysis, it was determined that this cluster is significantly enriched for 

preterm birth associated genes, both overall and amongst the inferred genes only (Chi-

sq. 2 tailed p value=0.01). Additionally, the overall network density is 0.8, whereas the 

density for the subnetwork of the 11 PTB genes (Density = 0.16) is significantly 

greater(p=0.039). Using permutation testing, the probability of seeing a subnetwork of 

11 nodes with a density of .16 or greater is less than 5%.  Thus, the output from 

Proteinarium confirms and extends the results of this study. The results further support 

the validity of the assumptions underlying the design of Proteinarium.  
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Discussion 

Proteinarium is a multi-sample, protein-protein interaction tool built to identify 

clusters of samples with shared networks underlying complex disease. Using defined 

per sample seed genes, the Proteinarium pipeline takes input genes and converts them 

to protein symbols, which are then mapped onto the STRING PPI interactome. For each 

sample, its specific PPI network is built using Dijkstra algorithm by searching for the 

shortest path between each pair of protein inputs. The similarities between all subjects’ 

PPI Networks is calculated and used as the distance metric for clustering samples. In 

complex genetic diseases, Proteinarium can identify subsets of samples for which their 

shared networks differ between cases and controls.  

 In order to test Proteinarium, we simulated several data sets, each with a varying 

percentage of noise added to the data. With no noise, we confirmed full power to 

distinguish cluster 1 samples from cluster 2 samples (with 50 samples and input gene 

lists of size 10).  As more noise was added to the data sets, the ability to discriminate 

between groups became more difficult, with the power decreasing from 100% down to 

15% for 40% noise. We also validated that for the null hypothesis (i.e. there is no 

difference between Group 1 and Group 2) there was no power to discriminate with high 

confidence. This simulation was useful, first as a proof of concept that the algorithm 

performs as it should for both the most extreme as well as the null case. It also serves 

as a reference for users who might have prior information regarding the complexity or 

heterogeneity of their phenotypes.  

 We also implemented Proteinarium on a previously published genome wide 

expression study of a complex disease. As already mentioned, the aim of that study 

was to investigate maternal whole blood gene expression profiles associated with 
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spontaneous preterm birth (SPTB, <37 weeks) in asymptomatic pregnant women. We 

ran Proteinarium on this data set, using the genes that had the highest Z-scores 

comparing SPTB cases with term controls as input. We found one Cluster for which the 

“CASE” cohort was highly represented. This cluster included 8 out of the 47 SPTB 

cases. We analyzed the layered PPI networks of these 8 subjects and found that there 

was significant over-representation of genes that had been previously found by the 

authors to be nominally significantly differentially expressed (26). Additionally, the 

network of these genes was denser than that of the whole network and had a high 

density that was unlikely to occur by chance alone. These findings support the validity of 

the assumptions underlying the design of Proteinarium and lend validity to the concept 

that the genetic architecture of complex disease is characterized by subgroups of 

patients that share variants in genes in specific networks and pathways which are 

sufficient to give rise to a phenotype.   

 One of strengths of Proteinarium is the ability of the user to configure all 

parameters throughout the pipeline. For example, one of the configuration options is the 

maximum path length (MPL). MPL is the maximum number of vertices (or imputed 

genes) within any given path. Thus, a user defined MPL of 2 would allow single genes 

to be imputed between any two of the seed genes. This parameter allows for flexibility in 

building a network with varying degrees of distant neighbors. With a MPL of 2 or 

greater, proteins that connect a pair of the input nodes will be added as imputed nodes 

to the network. This allows for inference(s) on genes which may have not originally 

been considered as relevant based on the results used to generate the input data. Once 

the individual networks are generated and pairwise similarities are calculated, 

hierarchical clustering is used to cluster the samples. The output of this analysis is 
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displayed as a dendrogram. In addition to the image of the dendrogram (.png), 

Proteinarium provides the dendrogram structure in Newick tree format. This allows 

users to visualize the dendrogram on other platforms like Dendroscope or ITOL (23, 24) 

and for subsequent analysis with other software. An additional output is the Cluster 

Analysis File, which provides detailed information about clustering results in a tabular 

format (.csv). This file contains the clustering coefficient of the layered graph for that 

cluster, the number of samples in the cluster, the p-values for statistical abundance of 

group type, and the average distance (height) for the branches of the dendrogram for 

each cluster. This cluster is also available on the fly on the command line screen when 

a cluster is selected.  

 In addition to its use as an analytic tool, Proteinarium provides useful 

visualizations. The dendrogram, allows the user a global view of the distribution of 

samples into clusters and the group coloring allows for identification of patterns related 

to phenotypic class. Additionally, as mentioned above, users can select any branch of 

the dendrogram and display the layered PPI network of the samples within that cluster. 

This functionality enables users to visualize the layered networks of multiple samples. If 

a cluster contains samples from both phenotypic groups, then there are 5 possible 

networks created on the fly. These network images allow users to visually identify 

interesting aspects of the network, like the most connected genes, the most frequently 

appearing genes amongst the samples in the cluster, the distribution of genes 

originated from each phenotypic group as well as those that are imputed. Proteinarium 

also provides an output file for these networks. The file includes information about the 

genes in the network, if they are imputed or not and the number of samples that contain 

each gene. Additionally, Proteinarium provides a PPI interaction file for each network. 
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This allows users to analyze the network(s) of interest on other platforms such as 

Cytoscape or Gephi (27, 28).  

 

Future applications 

 The current release of Proteinarium uses protein-protein interaction data from a 

single repository, the STRING database. We plan to extend the resource options in the 

next release by allowing the PPI information data to be derived from any IMEX 

consortium that the users choose (29). In addition, we plan to allow PPI from other 

organisms in Proteinarium, e.g. mouse. In parallel, these extensions will grow by 

implementing a user interface. Users will be able to visualize the networks by clicking 

the on the dendrogram rather than using the command line options.  

 

Conclusion 

 In conclusion, we have created a multi-sample protein-protein interaction network 

tool to support analysis and visualization of single or paired samples. The tool allows 

investigators to address important questions from their high throughput data for a 

variety of disease phenotypes based on their associated PPI networks. In addition, 

Proteinarium provides several different, user-defined outputs with more than 30 

configurable options.  
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Availability and requirements 

     Project name: Proteinarium 

     Project home page: https://github.com/Armanious/Proteinarium 

     Operating system(s): Linux, Mac OS X, Windows 

     Programming language: Java 

     Other requirements: none 

     License: GNU Affero GPL (Version 3) 
 
     Any restrictions to use by non-academics: None 

 

List of abbreviations 

C: Cluster 

HGNC: HUGO gene nomenclature committee 

PPI: Protein-protein interactions 

ITOL: Interactive tree of life 

UPGMA: Unweighted pair group method with arithmetic mean 

LG: Layered graph 
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Availability of data and material 

The sample datasets used during the development of current software and the 

latest version can be freely downloaded at 

https://github.com/Armanious/Proteinarium 
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Figure 1. Proteinarium workflow. (a) Proteinarium accepts gene lists for each sample 

(b) All gene symbols are converted to their protein product names. (c1) Interactome 

Information is provided from STRING Database. (c2) Proteins for each sample are 

mapped onto interactome, red colored circles. (c3) Finding the interactions for each 

sample based on Dijkstra’s algorithm. (c4) Layered graph built for each sample based 

on their gene list. (d) Next the network similarity matrix between samples is built using 

Jaccard index. (e) Samples are clustered by UPGMA method based on their network 

similarities and any chosen branch of the dendrogram displays the layered graph of PPI 

networks which can be visualized on the fly and saved as an interaction file. (f) 
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Proteinarium provides several output files for users to export the results to be used on 

other programs like ITOL, Gephi or Cytoscape. 

 

 

 

 

 

Figure 2. Simulations with Proteinarium on noisy data. (a1 and 1a2) STRING 

database was used to obtain PPI Networks 1 and 2, respectively. Both networks contain 

71 proteins and their clustering coefficients were 0.590 and 0.691. There are no shared 

proteins between these two networks. (b) Simulated data was generated for Group1 

and Group2, each with 50 samples. For each sample in Group 1, 10 genes were 

randomly selected from PPI.  To add noise to the simulated data, for each sample in 

Group 1 a percentage of their genes were randomly replaced with genes from PPI 

Network 2 (20%, 30%, 40% and 50%). Similarly, for samples in Group 2, a percentage 
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of genes were replaced at random with genes from PPI Network 1.  This is represented 

by a series of pie chart schematics, showing the different amount of “noise” added to 

each sample in the various simulations (S1-S5). (c1-c5) Representative dendrograms 

reflecting the output of Proteinarium for the simulations with 0%, 20%, 30%, 40% and 

50% noise respectively. Group 1 samples are represented in yellow, and Group 2 

samples were represented in blue. The five dendrograms show the clustering of the 

samples based on their network similarities. 

 

 

Figure 3. Proteinarium on a Use Case. Proteinarium was implemented on a 

previously published genome wide expression study of preterm birth. (a) Represents the 

dendrogram for cases and controls (51 SPTBs, 114 term delivery controls). (b) Cluster 

102 (C102) represented in a zoom view. It contains significantly more preterm birth 

samples (n=8) than control samples (n=1). (c) Shows the layered PPI network of C102 

for these preterm birth samples, consisting of 43 nodes. We found that 11 (in black 
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circles) out of these 43 genes had previously been found to be nominally differentially 

expressed. 
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