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Abstract
Selective auditory attention enables filtering relevant from irrelevant acoustic
information. Specific auditory responses, measurable by electro- and mag-
netoencephalography (EEG/MEG), are known to be modulated by atten-
tion to the evoking stimuli. However, these attention effects are typically
demonstrated in averaged responses and their robustness in single trials is
not studied extensively.

We applied decoding algorithms to MEG to investigate how well the tar-
get of auditory attention could be determined from single responses and
which spatial and temporal aspects of the responses carry most of the in-
formation regarding the target of attention. To this end, we recorded brain
responses of 15 healthy subjects with MEG when they selectively attended
to one of the simultaneously presented auditory streams of words “Yes” and
“No”. A support vector machine was trained on the MEG data both at the
sensor and source level to predict at every trial which stream was attended.

Sensor-level decoding of the attended stream using the entire 2-s epoch
resulted in a mean accuracy of 93% ± 1% (range 83–99% across subjects).
Time-resolved decoding revealed that the highest accuracies were obtained
200–350 ms after the stimulus onset. Spatially-resolved source-level decoding
indicated that the cortical sources most informative of the attended stream
were located primarily in the auditory cortex, especially in the right hemi-
sphere.
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Our result corroborates attentional modulation of auditory evoked re-
sponses also to naturalistic stimuli. The achieved high decoding accuracy
could enable the use of our experimental paradigm and classification method
in a brain–computer interface.
Keywords: selective attention, single-trial analysis,
magnetoencephalography, MEG, auditory system, dichotic listening
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1. Introduction1

Selective auditory attention is a cognitive function which enables filtering2

of relevant information from irrelevant. The need of such a selection mecha-3

nism has been illustrated by the cocktail party problem in which the listener4

has to concentrate his/her auditory attention to one speaker while suppress-5

ing the voices of the irrelevant speakers to follow that one speaker (Cherry,6

1953). Electroencephalographic measurements during dichotic listening have7

shown that selective auditory attention modulates brain responses generated8

in auditory cortex (Hillyard et al., 1973; Woldorff et al., 1993).9

In the last decade, machine-learning methods have been applied to test10

whether the target of selective attention can be detected from electro- and11

magnetoencephalographic (EEG/MEG) data (Nijboer et al., 2008; Furdea12

et al., 2009; Halder et al., 2010, 2016; Schreuder et al., 2010; Höhne et al.,13

2011; Hill et al., 2012; Nambu et al., 2013; Hübner et al., 2018). EEG and14

MEG are well suited for monitoring attention effects as they provide a high15

temporal resolution in the order of milliseconds, enabling the detection and16

classification of evoked responses (e.g. auditory or visual P300; McCane17

et al., 2015; Yeom et al., 2014; Curtin et al., 2012), steady-state responses18

(e.g. SSRs or mixed SSR/P300; Kaongoen and Jo, 2017; Kim et al., 2011)19

and oscillatory brain activity (e.g. sensory-motor rhythm (SMR); Geronimo20

et al.).21

The ability to detect the target of auditory attention from brain signals22

has been exploited to improve the performance of hearing aids (Kidd, 2017) as23

well as in brain–computer interfaces (BCI) e.g. to re-enable communication24

in paralyzed patients (Sellers and Donchin, 2006; Astrand et al., 2014; Mc-25

Cane et al., 2015). However, attentional effects are not equally easy to detect26

from all response types. Hill and colleagues (2012) argue that attention-based27

classification on ERPs is more reliable than that on steady-state evoked po-28

tentials (SSEPs) in a dichotic listening task due to the limited attentional29

modulation of auditory SSEPs.30

Many BCI approaches employ a secondary mental task artificially con-31

nected to the primary task because of the poor signal-to-noise ratio of the32

responses related to it; for example, a primary task of communicating a “yes”33

or “no” answer could be linked to a secondary task of imagining moving the34

right or left hand, respectively. Here, we will test the use of spoken-word35

stimuli in BCI that only comprises the primary task and thus requires mini-36

mal training of the subjects.37

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2019. ; https://doi.org/10.1101/588491doi: bioRxiv preprint 

https://doi.org/10.1101/588491
http://creativecommons.org/licenses/by-nc-nd/4.0/


2. Materials and methods38

2.1. Participants39

Fifteen healthy adult volunteers (4 females, 11 males; mean age 28.8±3.840

years, range 23–38 years) participated in our study. Two subjects were left-41

handed and the rest right-handed. Participants did not report hearing prob-42

lems or history of psychiatric disorders. The study was approved by the Aalto43

University Ethics Committee. All participants gave their informed consent44

prior to the recordings.45

∆pitch= 15%
“No”

Male voice 
on the right

1.1 s
SOA

“Yes”

Female voice 
on the left

∆pitch= 13%

Standard Deviant

0.5 s
ISI

First Block
“Attended Left”

Second Block
“Attended Right”

Time

Break. Please, tell us how many
deviants were presented? + RIGHT-NOLEFT-YES + ...

~135 s ~135 s

Figure 1: Experimental design. Top: Block structure and the instructions to the subject.
Bottom: Stimulus sequence within each block.
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2.2. Stimuli and experimental protocol46

The auditory stimulus comprised of two simultaneous word streams; the47

word “Yes” was repeatedly presented on the left side and the word “No” on48

the right; see Figure 1. In each word stream, high- and low-pitch versions49

of the same word stimuli alternated. To control for subjects’ attention, the50

sequence contained occasional deviants (violations of the regular alternation),51

which comprised three consecutive high-pitch versions of the same word.52

Deviant probability was 10% in both streams for the first seven subjects and53

5% for the rest subjects in order to reduce the mental load of memorizing54

the deviant count.55

To create a realistic acoustic scene, the stimuli were recorded with a56

dummy head at the center of a room with dimensions comparable to those of57

the magnetically shielded room where the MEG recordings were performed.58

The speakers were standing at about 40 degrees to the left/right of the59

dummy head at a distance of 1.13 m.60

The experiment comprised 8 blocks, each lasting about 5 min. Two sec-61

onds before a block started, the subject was instructed to direct his/her62

attention to one of the streams by the cues “LEFT-YES” or “RIGHT-NO”63

on the screen. The task of the subject was to focus on the indicated word64

stream, covertly count the deviants and maintain gaze at the fixation cross65

displayed on the screen. The experiment always started with the condition66

“Attended Left” and was followed by the condition “Attended Right”. The67

order of the remaining six blocks was randomized across subjects. The total68

length of the experiment was 50–60 minutes including the breaks between69

the blocks.70

PsychoPy version 1.79.01 (Peirce, 2007, 2008) Python package was used71

for controlling and presenting the auditory stimuli and visual instructions.72

The stimulation was controlled by a computer running Windows 2003 for73

the first nine subjects and Linux Ubuntu 14.04 for the rest. Auditory stim-74

uli were delivered by a professional audio card (E-MU 1616m PCIe, E-MU75

Systems, Scotts Valley, CA, USA), an audio power amplifier (LTO MACRO76

830, Sekaku Electron Industry Co., Ltd, Taichung, Taiwan), and custom-77

built loudspeaker units outside of the shielded room and plastic tubes con-78

veying the stimuli separately to the ears. Sound pressure was adjusted to a79

comfortable level for each subject individually.80

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2019. ; https://doi.org/10.1101/588491doi: bioRxiv preprint 

https://doi.org/10.1101/588491
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.3. MEG data acquisition81

MEGmeasurements were performed with a whole-scalp 306-channel Elekta82

Neuromag VectorView MEG system (Elekta Oy/MEGIN, Helsinki, Finland)83

at the MEG Core of Aalto Neuroimaging, Aalto University. During acqui-84

sition, the data were filtered to 0.1–330 Hz and sampled at 1 kHz. Prior to85

the MEG recording, anatomical landmarks (nasion, left and right preauricu-86

lar points), head-position indicator coils, and additional scalp-surface points87

(around 100) were digitized using an Isotrak 3D digitizer (Polhemus Navi-88

gational Sciences, Colchester, VT, USA). Bipolar electrooculogram (EOG)89

with electrodes positioned around the right eye (laterally and below) was90

recorded. Fourteen of the 15 subjects were recorded with continuous head91

movement tracking. All subjects were measured in the seated position. The92

back-projection screen was 1 m from the eyes of the subject. If needed, vision93

was corrected by nonmagnetic goggles.94

2.4. Data pre-processing95

The MaxFilter software (version 2.2.10; Elekta Oy/MEGIN, Helsinki,96

Finland) was applied to suppress external interference using temporal signal97

space separation to compensate for head movements (Taulu and Hari, 2009).98

Further analysis was performed using MNE version 2.7.4 and MNE-Python99

(version 0.14; Gramfort et al., 2014) and ScikitLearn (version 0.18; Pedregosa100

et al., 2011) software packages.101

Finite-impulse-response (FIR) filters were employed to filter the unaver-102

aged MEG data to 0.1–30 Hz for visualization of the evoked responses and103

for sensor- and source-level decoding. Ocular artifacts were suppressed by re-104

moving those independent components (1–4 per subject, on average 3) that105

correlated most with the EOG signal. 2-s long epochs with a 0.50-s pre-106

stimulus period were extracted from the data at every word stimulus. The107

delay in the sound reproduction system was considered in the epoch timing.108

Epochs were rejected if any of the gradiometer signals exceeded 4000 fT/cm.109

Responses to deviants were excluded from data analysis.110

2.5. Evoked responses111

2.5.1. Sensor-level analysis112

The trial counts were equalized across the conditions (“Attended Left”,113

“Attended Right”, “Unattended Left” and “Unattended Right”) and the tri-114

als were averaged. Only attended attention conditions were used in sensor-115

and source-level classification.116
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2.5.2. Source-level analysis117

Head models were constructed based on individual magnetic resonance118

images (MRIs) when available (N = 12) applying the watershed algorithm119

implemented in the FreeSurfer software (Version 5.3; Dale et al., 1999; Fischl120

et al., 1999). Using the MNE software, single-compartment boundary ele-121

ment models (BEM) comprising 5120 triangles were then created based on122

the inner skull surface. The MRIs of three subjects were not available and123

these subjects were excluded from the source-level analysis.124

For the source space, the cortical mantle was segmented from MRIs using125

FreeSurfer and the resulting triangle mesh was subdivided to 4098 sources126

per hemisphere. The dynamic statistical parametric mapping (dSPM; Dale127

et al., 2000) variant of minimum-norm estimation was applied to model the128

activity at these sources. The noise covariance used in the model was esti-129

mated for each subject from all epochs’ 0.50-s pre-stimulus intervals. dSPM130

sources “Attended Left” and “Attended Right” attention conditions were es-131

timated for all subjects individually. The obtained source amplitudes were132

then normalized for each subject and a group-level dSPM source estimate was133

calculated by morphing the normalized individual estimates to the FreeSurfer134

average brain and averaging them. For the group averages individual dSPMs135

were normalized by putting source peak value to 1.136

2.6. Classification137

2.6.1. Sensor-level classification138

A linear support vector machine (SVM; Cortes and Vapnik, 1995) imple-139

mented in the ScikitLearn package (Pedregosa et al., 2011) was applied for140

single-epoch classification of the conditions “Attended Left” vs. “Attended141

Right”. To this end, the pre-processed MEG data (filtered to 0.1–30 Hz) were142

down-sampled by factor 8 to a sampling rate of 125 Hz. Amplitudes of the143

planar gradiometer channels were concatenated to form the feature vector.144

Five-fold cross-validation (CV) was applied with an 80/20 split; 80% of data145

were used for training and the rest for testing. The empirical chance level146

was around 55% for our sample size of 500 trials in this two-class decoding147

task (Combrisson and Jerbi, 2015).148

Decoding was separately performed on data of 1) the entire epoch (250149

samples x 204 channels; entire-epoch decoding), 2) one time point (1 sample150

x 204 channels; spatially-resolved decoding), and 3) one channel (250 samples151

x 1 channel; time-resolved decoding).152

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2019. ; https://doi.org/10.1101/588491doi: bioRxiv preprint 

https://doi.org/10.1101/588491
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.6.2. Source-level classification153

A linear SVM decoder with five-fold CV (80/20 split) was applied to the154

individual source estimates calculated for the conditions “Attended Left”155

and “Attended Right”. A spatial searchlight across the source space was156

used on the 2-s epochs and the resulting accuracy maps were morphed to the157

FreeSurfer average brain (comprising 20484 source points) and averaged. In158

addition, the accuracies obtained for the left and right auditory cortex were159

compared across the individuals using a paired t-test.160
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3. Results161

3.1. Behavioral data162

The average relative absolute error of the reported deviant count was 49%163

for the 10-% deviant probability (N = 5; subjects S03–S07) and 12% for the164

5-% probability (N = 7; subjects S09–S15).165

Subject Score (mean ± SD; %)
S01 90 ± 1
S02 95 ± 2
S03 97 ± 1
S04 92 ± 1
S05 99 ± 1
S06 84 ± 2
S07 87 ± 2
S08 96 ± 0
S09 91 ± 3
S10 94 ± 1
S11 96 ± 1
S12 97 ± 1
S13 90 ± 1
S14 99 ± 1
S15 84 ± 2

MEAN 93 ± 1

Table 1: Entire-epoch classification accuracy for all subjects and the group mean accuracy.

3.2. Sensor-level analysis166

Average evoked responses to each attention condition (“Attended Left”,167

“Unattended Left”, “Attended Right”, “Unattended Right”) are shown in168

Figures 2 and 3.169

Time-resolved classification revealed that the most informative responses170

occurred in 100–400 ms after the stimulus onset (Figure 2 and 3). The171

average evoked responses for subject S03 (group) peaked at 185 ms (185172

ms), 236 ms (245 ms) and 309 ms (312 ms) for “Attended Left” attention173

condition. For the condition “Attended Right”, responses peaked at 193 ms174

(195 ms), 273 ms (304 ms) and 361 ms (390 ms). Both in Subject S03 and175

in the group, time-resolved classification peaked at 320 ms.176
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Figure 2: Evoked responses and classification accuracies in a representative subject (S03)
to four consecutive stimuli. A: Acoustic waveforms of the stimuli and average responses
at a planar gradiometer channel low-pass-filtered at 30 Hz in the attended (solid lines)
and unattended (dashes lines) conditions. B: Spatial patterns (gradient strength maps) of
the evoked responses. C: Time-resolved classification accuracies with standard deviation
(blue shading) computed across the folds. D: Spatially-resolved classification accuracies.
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Figure 3: Evoked responses and classification accuracies at the group level (N = 15). A:
Acoustic waveforms of the stimuli and average responses at a planar gradiometer channel
low-pass-filtered at 30 Hz in the attended (solid lines) and unattended (dashes lines)
conditions. B: Spatial patterns (gradient strength maps) of the evoked responses. C:
Time-resolved classification accuracies with standard deviation (blue shading) computed
across the folds. D: Spatially-resolved classification accuracies.
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t = 200 msA

t = 350 msB

Attended Left Attended Right

Attention conditions

0.1 0.3 0.5

Normalized score

Figure 4: Source estimates of the evoked responses. Normalized group average (N = 12).
A: “Attended Left” and “Attended Right” at 200 ms after stimulus onset; B: “Attended
Left” and “Attended Right” at 350 ms after stimulus onset .
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Accuracy, %

77.6 86.6 93.4

Figure 5: Source-level spatial-searchlight classification in a representative subject (S03)
morphed to the average brain. Color indicates the accuracy of decoding “Attended Left”
vs. “Attended Right” based on the signal from that cortical location; the top 5% of the
scores in each hemisphere are shown.

Accuracy, %

66.9 73.1 77.6

Figure 6: Source-level decoding at the group level (N = 12). Color indicates the accuracy
of classification of “Attended Left” vs. “Attended Right” based on the signal from that
cortical location; the top 5% of the scores in each hemisphere are shown.
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Spatially-resolved classification indicated that the most informative sig-177

nals arose from temporal regions. Both the temporal and spatial decoding178

patterns were qualitatively similar across the subjects; see Figure 2 for a179

representative subject and Figure 3 for the group result. Using the entire180

epochs for decoding “Attend Left” vs. “Attend Right” conditions yielded181

scores 84–99% (mean 93%; Table 1) across the 15 subjects.182

3.3. Source-level analysis183

Source modeling of the peaks of the evoked responses indicated sources184

in both auditory cortices. Paired t-tests showed significant source-amplitude185

differences (p <0.05) between the left and right hemisphere sources in the186

“Attended Left” condition but not in the “Attended Right” condition (p >187

0.05; N = 12). In addition, a paired t-test showed that in the “Attended188

Left” condition, the source amplitudes were significantly different from those189

in the “Attended Right” condition at 350 ms (p <0.05) (see Figure 6) while190

at 200 ms the difference was not significant.191

Spatial-searchlight decoding applied in source space indicated that audi-192

tory cortices were the most informative about attention target; see Fig. 6.193

All subjects (N = 12 with source estimates) showed the highest accuracy for194

source signals arising from the auditory cortices. The across-subjects average195

peak value was 74.0% in the left and 77.6% in the right temporal areas. This196

difference between the hemispheres was not significant (p = 0.389, N = 12).197
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4. Discussion198

In this paper, we showed that the target of selective auditory attention199

to concurrent streams of naturalistic speech stimuli can be robustly detected200

from unaveraged MEG responses and that this detection is most accurate for201

signals arising from the auditory cortices 300–400 ms after stimulus onset.202

In our data, the earliest clearly-discernible response peaks at about 200 ms203

after the onset of the spoken-word stimulus. This response – often referred to204

as N2 or N200 in EEG literature – shows only weak dependence on attention205

in our results. In contrast, the responses occurring within 300–400 ms are206

significantly modulated by attention. Several studies have shown that the207

late component of the P300 response is affected by attention (see e.g. Chennu208

et al., 2013; Picton, 1992) and this component is likely the largest contributor209

to our classification results.210

In general, an increased P300 amplitude can be due to unexpected changes211

in the stimulus sequence (e.g. in an auditory oddball task). As opposed to212

the mismatch negativity (MMN) response occurring earlier and indexing local213

deviants (Näätänen et al., 2007), the P300 appears to reflect mostly global,214

consciously-perceived changes in the stimulus stream, e.g. an unexpected215

stimulus sequence (Bekinschtein et al., 2009). These observations provide216

further evidence that the P300 response echoes cognitive processes, such as217

attention, that are closely linked to conscious perception.218

To elicit brain responses with maximal attentional modulation but with219

minimal subject training, we employed meaningful stimuli that are easy to220

attend to even during dichotic listening. As pointed out by Hill and colleagues221

(2014), applying naturalistic stimuli as opposed to meaningless tone pips222

could make dichotic listening more pleasant and thus contribute to stronger223

attentional modulation of the responses and eventually to higher accuracy in224

classifying the target of attention.225

Due to the above factors and the obtained high classification accuracy,226

our paradigm could be well-suited for a brain–computer interface (BCI).227

Several studies have exploited selective auditory attention and/or P300 re-228

sponses to drive a BCI but usually not with real spoken words. For ex-229

ample, Halder and colleagues (2018) used five Japanese Hiragana syllables230

(/ka/,/ki/, /ku/, /ke/, and /ko/) presented at different spatial locations231

in the auditory scene while measuring EEG, applied shrinkage Linear Dis-232

criminant Analysis (LDA) to classify the target of attention from the P300233

responses, and obtained classification accuracy of about 70%. Sugi and col-234
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leagues (2018) similarly employed spatially distinct sound sources (six in235

their case) and optimized the stimulus onset asynchrony for maximal infor-236

mation transfer rate; the optimal SOA was found to be 400–500 ms, which237

yielded over 85% accuracy when classifying the target sound source vs. all238

others. Heo and colleagues (2017) utilized piano and violin music, sounds239

of nature as well as pure tones which were all amplitude modulated at 38240

and 42 Hz to elicit auditory steady-state responses. LDA classification of the241

EEG responses to sounds of nature yielded the highest accuracy (83%), and242

the authors argue that this due to the acceptance, or pleasantness, of these243

stimuli compared to the other stimuli in that study.244

The high classification accuracy we have now obtained offline does not245

readily indicate high online accuracy. In an online setting, the classifier can246

only be trained with samples from the beginning of the recording, which may247

lower the classification accuracy if the responses evolve in the course of the248

measurement session due to adaptation or change in the mental strategy to249

maintain attention in one stream. In addition, all the pre-processing that we250

now perform offline to improve data quality may not be available online due251

to computational reasons.252

Individual differences in response latencies and spatial patterns on the253

MEG sensor array may limit across-subject generalization of trained clas-254

sifiers. Future studies could assess these differences and their impact on255

classification accuracy.256

Our current results are based on MEG measurements. As a non-portable257

and expensive technology, MEG-based BCIs have limited applications be-258

yond neuroscientific experimentation. However, a MEG BCI could assist the259

development of an eventual EEG-based BCI that could be adopted widely.260

Despite the current limitations above, our paradigm and classification261

approach holds promise for a future BCI. The use of stimuli that directly262

carry the semantics of the communication or control elements and an intuitive263

selection task make such a BCI easy to use and likely reduce the training time264

of both the subject and the classifier.265
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5. Conclusions266

We have shown that the target of auditory attention to one of two con-267

current streams spoken words can be robustly decoded from single MEG re-268

sponses. Our result corroborates attentional modulation of auditory evoked269

responses also to naturalistic stimuli. The achieved high decoding accuracy270

could enable the use of our experimental paradigm and classification method271

in an efficient and intuitive brain–computer interface.272
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