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Abstract

Multivariate pattern analysis (MVPA) has become vastly popular for analyz-
ing functional neuroimaging data. At the group level, two main strategies are
used in the literature. The standard one is hierarchical, combining the out-
comes of within-subject decoding results in a second-level analysis. The al-
ternative one, inter-subject pattern analysis, directly works at the group-level
by using, e.g, a leave-one-subject-out cross-validation. This study provides a
thorough comparison of these two group-level decoding schemes, using both
a large number of artificial datasets where the size of the multivariate effect
and the amount of inter-individual variability are parametrically controlled,
as well as two real fMRI datasets comprising respectively 15 and 39 sub-
jects. We show that these two strategies uncover distinct significant regions
with partial overlap, and that inter-subject pattern analysis is able to detect
smaller effects and to facilitate the interpretation. The core source code and
data are openly available, allowing to fully reproduce most of these results.

Keywords: fMRI, MVPA, group analysis

1. Introduction

Over the past decade, multi-voxel pattern analysis (MVPA, Haxby et al.
(2014)) has become a very popular tool to extract knowledge from functional
neuroimaging data. The advent of MVPA has offered new opportunities to
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examine neural coding at the macroscopic level, by making explicitly us-
able the information that lies in the differential modulations of brain acti-
vation across multiple locations – i.e multiple sensors for EEG and MEG,
or multiple voxels for functional MRI (fMRI). Performing an MVP analy-
sis commonly consists in decoding the multivariate information contained in
functional patterns using a classifier that aims to guess the nature of the
cognitive task performed by the participant when a given functional pattern
was recorded. The decoding performance is consequently used to measure
the ability of the classifier to distinguish patterns associated with the differ-
ent tasks included in the paradigm. It provides an estimate of the quantity
of information encoded in these patterns, which can then be exploited to
localize such informative patterns and/or to gain insights on the underlying
cognitive processes involved in these tasks.

This decoding performance is classically estimated separately on each of
the participants. At the group level, these within-subject measurements are
then combined – often using a t-test – to provide population-based infer-
ence, similarly to what is done in the standard hierarchical approach used
in activation studies. Despite several criticisms of this group-level strategy
that have been raised, namely on the nature of the statistical distribution of
classification accuracies Olivetti et al. (2012), on the non-directional nature
of the identified group-information Gilron et al. (2017) or on the fact that
the results can be biased by confounds Todd et al. (2013), this hierarchical
strategy remains widely used.

An alternative strategy directly works at the group-level by exploiting
data from all available individuals in a single analysis. In this case, the de-
coding performance is assessed on data from new participants, i.e participants
who did not provide data for the training of the classifier (see e.g Takerkart
et al. (2014); Helfinstein et al. (2014); Jiang et al. (2016); Kim et al. (2016);
Izuma et al. (2017); Etzel et al. (2016)), ensuring that the information nature
is consistent across all individuals of the population that was sampled for the
experiment. This strategy takes several denominations in the literature such
as across-, between- or inter-subject classification or subject-transfer decod-
ing. We hereafter retain the name inter-subject pattern analysis (ISPA).

In this paper, we describe a comparison of the results provided by these
two classifier-based group-level MVPA strategies, which, to the best of our
knowledge, is the first of its kind. This experimental study was carefully
designed to exclusively focus on the differences induced by the within- vs.
inter-subject nature of the decoding, i.e by making all other steps of the anal-
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ysis workflow strictly identical. We provide results for both two real fMRI
datasets and a large number of artificial datasets where the characteristics of
the data are parametrically controlled. This allows us to demonstrate that
these strategies offer different detection power, with a clear advantage for
the inter-subject scheme, but furthermore that they can provide results of
different nature, for which we put forward a potential explanation supported
by the results of our simulations of the artificial data. The paper is orga-
nized as follows. Section. 2 describes our methodology, including our MVPA
analysis pipeline for the two group-level strategies, as well as a description
of the real datasets and the generative model of the artificial datasets. Sec-
tion 3 includes the comparison of the results obtained with both strategies
on these data, both in a qualitative and quantitative way. Finally, in Sec-
tion 4, we discuss the practical consequences of our results and formulate
recommendations for group-level MVPA.

2. Methods

2.1. Group-level Within-Subject Pattern Analysis (G-WSPA)

Since the seminal work of Haxby et al. (2001) that marked the advent of
multivariate pattern analysis, most MVPA studies have relied on a within-
subject decoding paradigm. For a given subject, the data is split between
a training and a test set, a classifier is learnt on the training set and its
generalization performance – usually measured as the classification accuracy
– is assessed on the test set. If this accuracy turns out to be above chance
level, it means that the algorithm has identified a combination of features
in the data that distinguishes the functional patterns associated with the
different experimental conditions. Said otherwise, this demonstrates that the
input patterns contain information about the cognitive processes recruited
when this subject performs the different tasks that have been decoded. The
decoding accuracy can then be used as an estimate of the amount of available
information – the higher accuracy, the more distinguishable the patterns, the
larger the amount of information.

The group-level extension of this procedure consists in evaluating whether
such information is present throughout the population being studied, which
has led to the term information-based brain mapping Kriegeskorte et al.
(2006). For this, a second level statistical analysis is conducted, for instance
to test whether the average classification accuracy (or any other relevant
summary statistic measured at the single-subject level), computed over the
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group of participants, is significantly above chance level. This can be done us-
ing a variety of approaches (see 2.5 for references). This hierarchical scheme
is the one that is most commonly used in the literature. We denote it as
Group-level Within-Subject Pattern Analysis (G-WSPA) in the rest of the
present paper and illustrate on Fig. 1.

2.2. Inter-Subject Pattern Analysis (ISPA)

Figure 1: Illustration of the two approaches available to perform classifier-based group-
level MVPA. Left: group-level within-subject pattern analysis (G-WSPA). Right: inter-
subject pattern analysis (ISPA). Note that since we use a leave-one-subject-out cross-
validation for ISPA, the two approaches yield the same number of measurements (equal
to the number of subjects S), which allows for an unbiased comparison using the same
statistical inference method.

Besides the hierarchical G-WSPA solution, another classifier-based frame-
work exists to evaluate multivariate effects at the group level. Considering
the data from all available individuals, one can train a classifier on data from
a set of subjects – the training subjects – and evaluate its generalization
capability on data from the others – the test subjects. One then use a cross-
validation scheme that shuffles the subjects between the training and test
sets, such as leave-one-subject-out or leave-n-subjects-out. In this setting,
obtaining an average classification accuracy – this time across folds of the
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cross-validation – significantly above chance level means that a multivariate
effect has been identified and is consistent across individuals, i.e that the
multivariate information is of the same nature throughout the population.
We denote this strategy as Inter-Subject Pattern Analysis (ISPA).

In this study, we use a leave-one-subject-out cross-validation in which
the model accuracy is repeatedly computed on the data from the left-out
subject. Even if other schemes might be preferable to multiply the number
of measurements Varoquaux (2017), this choice was made to facilitate the
comparison of the results obtained with ISPA and G-WSPA, as illustrated
on Figure. 1.

2.3. Artificial data

The first type of data we use to compare G-WSPA and ISPA is created
artificially. We generate a large number of datasets in order to conduct
numerous experiments and obtain robust results. Each dataset is composed
of 21 subjects (for ISPA: 20 for training, 1 for testing), with data points
in two classes labeled in Y = {+1,−1}, simulating a paradigm with two
experimental conditions. For a given dataset, each subject s ∈ {1, 2, ..., 21}
provides 200 labeled observations, 100 per class. We note the i-th observation
and corresponding class label (xsi , y

s
i ), where xsi ∈ R2 and ysi ∈ Y . The

pattern xsi is created as

xsi =

(
cos θs − sin θs

sin θs cos θs

)
x̃si ,

where

• x̃si is randomly drawn from a 2D Gaussian distribution, respectively
N (C+,Σ) and N (C−,Σ) if ysi = +1 or ysi = −1, which are defined
by their centers C+ = (+d

2
, 0) and C− = (−d

2
, 0), where d ∈ R+ and

their covariance matrix Σ, here fixed to

(
1 0
0 5

)
(see Supplementary

Materials for results with other values of Σ);

• θs defines a rotation around the origin that is applied to all patterns
of subjects s; the value of θs is randomly drawn from the Gaussian
distribution N (0,Θ), where Θ defines the within-population variance.
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Let Xs = (xsi )
200
i=1 and Y s = (ysi )

200
i=1 be the set of patterns and labels for

subject s. A full dataset D is defined by

D =
s=21⋃
s=1

{Xs, Y s}.

The characteristics of such a dataset are in fact governed by two param-
eters:

• d, which defines the distance between the point clouds of each of the
two classes, i.e the multivariate effect size;

• Θ, which controls the amplitude of the rotation that can be applied
to the data, separately for each subject: when Θ is small, all the θs

angles remain small, which means that the data of all subjects are
similar; when Θ increases, the differences between subjects become
larger; therefore, Θ quantifies the amount of inter-individual variability
that exists within the group of 21 subjects for a given dataset.

Figures 2a and 2b illustrate the effect of each of these two parameters. Figure
2c shows different datasets generated with the same values of d and Θ.

In our experiments we used 13 values for d and 11 values for Θ, d ∈
{0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.4, 0.6}, Θ ∈ {0.2π,
0.25π, 0.3π, 0.35π, 0.4π, 0.45π, 0.5π, 0.55π, 0.6π, 0.65π, 0.7π}, which gives 143
points in the two dimensional parameter space spanned by d and Θ. Note
that by changing the value of Θ while keeping Σ constant, we control the
relative amounts of within- and between-subject variance, which have been
shown to be critical in group-level decoding situations Lindquist et al. (2017).
For each pair (d,Θ), we generated 100 datasets. This yields 14300 datasets,
each comprising 21 subjects and a total of 4200 data points. The code for
generating these datasets (as well as performing the experiments detailed
hereafter) is available online at the following URL: http://www.github.

com/SylvainTakerkart/inter_subject_pattern_analysis.

2.4. fMRI data

We also used two real fMRI datasets that were acquired at the Centre
IRM-INT in Marseille, France. For both experiments, participants provided
written informed consent in agreement with the local guidelines of the South
Mediterranean ethics committee.
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(a) (b)

(c)

Figure 2: Illustration of the artificial datasets generated with the model described in 2.3.
Each line is a subpart of a single dataset (5 subjects shown amongst 21 in (a) and (b), 10
subjects shown in (c)). The data points belonging to the class y = +1 and y = −1 are
shown in blue and red, respectively. (a): influence of the d parameter (increasing effect
size from top to bottom). (b): influence of the Θ parameter (increasing inter-individual
variability from top to bottom). (c) five datasets obtained with the same values of the
two parameters (d = 2 and Θ = 0.2π).

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2019. ; https://doi.org/10.1101/587899doi: bioRxiv preprint 

https://doi.org/10.1101/587899
http://creativecommons.org/licenses/by-nc-nd/4.0/


In the first experiment (hereafter Dataset1 ), fifteen subjects participated
to an investigation of the neural bases of cognitive control in the frontal lobe,
largely reproducing the experimental procedure described in Koechlin and
Jubault (2006). Participants lying supine in the MRI scanner were presented
with audiovisual stimuli that carried complex information about the laterality
of a button response, with the right or left thumb. Data was collected with a
3T Bruker Medspec 30/80 Avance scanner running ParaVision 3.0.2. Eight
MRI acquisitions were performed. First, a field map using a double echo
Flash sequence recorded distortions in the magnetic field. Six sessions with
60 trials each were recorded, each comprising 133 volumes (EPI sequence,
isotropic resolution of 3× 3× 3mm, TE of 30ms, flip angle of 81.6◦, field of
view of 192 × 192mm, 36 interleaved ascending axial slices acquired within
the TR of 2400ms) encompassing the whole brain parallel to the AC-PC
plane. Finally, we acquired high-resolution T1-weighted anatomical images
of each participant (MPRAGE sequence, isotropic voxels of 1 × 1 × 1mm,
field of view of 256× 256× 180mm, TR = 9.4ms, TE = 4.424ms).

In the second experiment (Dataset2 ), thirty-nine subjects were scanned
using a voice localizer paradigm, adapted from the one analyzed in Pernet
et al. (2015). While in the scanner, the participants were asked to close
their eyes while passively listening to a set of 144 audio stimuli, half of them
being voice sounds, the other half being non-vocal. Most of the stimuli were
taken from a database created for a previous study Capilla et al. (2012),
while the others were extracted from copyright-free online databases. The
paradigm was event-related, with inter-stimulus intervals randomly chosen
between 4 and 5 seconds. The images were acquired on a 3T Prisma MRI
scanner (Siemens, Eerlangen, Germany) with a 64-channels head coil. A pair
of phase-reversed spin echo images was first acquired to estimate a map of
the magnetic field. Then, a multi-band gradient echo-planar imaging (EPI)
sequence with a factor of 5 was used to cover the whole brain and cerebellum
with 60 slices during the TR of 955 ms, with an isotropic resolution of 2 ×
2 × 2mm, a TE of 35.2 ms, a flip angle of 56 degrees and a field of view of
200× 200mm for each slice. A total of 792 volumes were acquired in a single
run of 12 minutes and 36 seconds. Then, a high resolution 3D T1 image
was acquired for each subject (isotropic voxel size 0.8mm3, TR = 2400ms,
TE = 2.28ms, field of view of 256 × 256 × 204.8mm). Dataset2 is part of
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the InterTVA data set Aglieri et al. (2019), which is fully available online 1.
The two datasets were processed using the same sets of operations. The

pre-processing steps were performed in SPM122. They included co-registration
of the EPIs with the T1 anatomical image, correction of the image distor-
tions using the field maps, motion correction of the EPIs, construction of a
population-specific anatomical template using the DARTEL method, trans-
formation of the DARTEL template into MNI space and warping of the EPIs
into this template space. Then, a general linear model was set up with one
regressor per trial, as well as other regressors of non interest such as motion
parameters. The estimation of the parameters of this model yielded a set
of beta maps that was each associated with a given experimental trial. The
beta values contained in these maps allowed constructing the vectors that
serves as inputs to the decoders. We obtained 360 and 144 beta maps per
subject for Dataset1 and Dataset2 respectively. No spatial smoothing was
applied on these data for the results presented below (the results obtained
with smoothing are provided as Supplementary Materials).

For these real fMRI datasets, we performed a searchlight decoding anal-
ysis Kriegeskorte et al. (2006), which allows to map local multivariate effects
by sliding a spherical window throughout the whole brain and performing
independent decoding analyses within each sphere. For our experiments, we
exploited the searchlight implementation available in nilearn3 to allow ob-
taining the single-fold accuracy maps necessary to perform inference. For
Dataset1, the decoding task was to guess whether the participant had used
his left vs. right thumb to answer during the trial corresponding to the
activation pattern provided to classifier. For G-WSPA, the within-subject
cross-validation followed a leave-two-sessions-out scheme. For Dataset2, the
binary classification task consisted in deciphering whether the sound pre-
sented to the participant was vocal or non-vocal. For G-WSPA, because a
single session was available, we used an 8-fold cross-validation. Finally, all
experiments were repeated with five different values of the searchlight radius
(r ∈ {4mm, 6mm, 8mm, 10mm, 12mm}).

1https://openneuro.org/datasets/ds001771
2https://www.fil.ion.ucl.ac.uk/spm/
3http://nilearn.github.io/
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2.5. Statistical inference and performance evaluation

In order to perform statistical inference at the group level, the common
practice is to use a t-test on the decoding accuracies. Such a test assesses
whether the null hypothesis of a chance-level average accuracy can be re-
jected, which would reveal the existence of a multivariate difference between
conditions at the group level. Note that as detailed in 2.1 and 2.2, even if
the same statistical test is applied for both strategies, a rejection of the null
hypothesis reflects different underlying phenomenons: for G-WSPA, it means
that the quantity of information distinguishing the experimental conditions is
on average non null throughout the population, whereas for ISPA, it further
implies that the nature of the multivariate information is consistent across
individuals.

However, it is now well established that several properties necessary for
such parametric test to be valid are not met in this context (see e.g Stelzer
et al. (2013)), such as the fact that the accuracy of a classifier does not fol-
low a gaussian distribution. In order to overcome this limitation, we used
a non parametric permutation test Nichols and Holmes (2002) to assess the
significance of the measured t statistic, which allows revealing whether the
decoding accuracy is significantly greater than chance at the group level, for
all the experiments conducted in the present study. While other more so-
phisticated alternatives have been proposed in the literature (see e.g Olivetti
et al. (2012); Brodersen et al. (2013); Stelzer et al. (2013); Etzel (2015); Alle-
feld et al. (2016)), the implementation of this procedure is straightforward,
and it allows comparing the results given by G-WSPA and ISPA in a fair
manner, which is the objective of the present study. In practice, for the real
fMRI experiments, we used the implementation offered in the SnPM tool-
box4 to analyse the within-subject (for G-WSPA) or the single-fold (for the
inter-subject cross-validation of ISPA) accuracy maps, with 1000 permuta-
tions and a threshold classically chosen at p < 0.05 (FWE corrected). For
the simulations that used the artificial datasets, we used an in-house im-
plementation of the equivalent permutation test (also available in our open
source code; see 2.3), with 1000 permutations and a threshold at p < 0.05.
Critically, it should be noted that the same number of samples were avail-
able for this statistical procedure when using G-WSPA or ISPA, as shown
on Figure. 1.

4http://warwick.ac.uk/snpm
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In order to compare the group-level decoding results provided by G-
WSPA and ISPA, we use the following set of metrics. For the artificial
data, we generated 100 datasets at each of the 143 points of the two dimen-
sional parameter space spanned by the two parameters d and Θ. For each
of these datasets, we estimate the probability p to reject the null hypothesis
of no group-level decoding. We then simply count the number of datasets
for which this null hypothesis can be rejected, using the p < 0.05 thresh-
old, which we respectively denote NG and NI for G-WSPA and ISPA. For
the experiments conducted on the two real fMRI datasets, we examine the
thresholded statistical map obtained for each experiment. We then compare
the maps obtained by G-WSPA and ISPA by computing the size and maxi-
mum statistic of each cluster, as well as quantitatively assessing their extent
and localization by measuring how they overlap.

3. Results

In this section, we present the results obtained when comparing G-WSPA
and ISPA on both the artificial and real fMRI datasets. With the artificial
datasets, our focus is on the characterization of the space spanned by the two
parameters that control the characteristics of the data. On the real datasets,
we quantitatively and qualitatively assess the statistic maps produced by
these two strategies, examine the influence of the size of the searchlight beam,
and try to relate these results to the one obtained on the artificial data.

3.1. Results for artificial datasets

The results of the application of G-WSPA and ISPA on the 14300 datasets
that were artificially created are summarized in Tables S1 and S2. In order
to facilitate grasping the results on this very large number of datasets, we
proceed in two steps. First, we represent the two-dimensional parameter
space spanned by d and Θ as a table where the columns and lines respectively
represent a given value for these two parameters. The values (denoted as NG

for G-WSPA and NI for ISPA ) in these tables are the number of datasets
(out of the 100 datasets available for each cell) for which a significant group
level decoding accuracy (p < 0.05, permutation test) is obtained with G-
WSPA (Table S1 ) or ISPA (Table S2). Secondly, we arbitrarily threshold
these dataset counts, coloring only the cells where at least half of the datasets
yield significant results (in green for G-WSPA when NG > 50 and red for
ISPA when NI > 50).
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Table S1: Number of datasets NG (out of 100) for which G-WSPA provides significant
group decoding (in green: cells where NG ≥ 50)

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π 7 11 15 22 27 36 40 44 53 59 68 96 100
0.65π 9 14 16 23 29 36 39 45 55 63 70 98 100
0.6π 13 16 17 25 27 35 44 53 58 71 76 95 100
0.55π 10 14 17 21 25 32 37 46 50 61 76 96 100
0.5π 7 8 15 17 22 30 36 46 55 59 64 94 100
0.45π 4 7 13 14 22 32 39 46 51 62 69 96 100
0.4π 8 11 18 22 26 31 40 49 54 63 72 97 100
0.35π 4 7 15 24 34 37 46 51 61 61 68 96 100
0.3π 10 14 24 26 31 40 46 57 58 71 78 95 100
0.25π 9 13 20 25 32 43 45 53 60 62 69 94 100
0.2π 9 12 15 19 28 34 39 50 59 67 75 95 100

Table S2: Number of datasets NI (out of 100) for which ISPA provides significant group
decoding (in red: cells where NI ≥ 50)

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π 8 8 9 10 11 10 10 10 8 10 10 9 13
0.65π 5 8 8 8 9 10 9 10 14 14 14 13 19
0.6π 8 13 12 13 15 15 14 17 16 18 20 20 21
0.55π 13 13 14 15 20 19 23 22 25 26 26 25 27
0.5π 16 15 16 22 24 24 28 27 29 29 30 38 45
0.45π 19 21 22 26 29 32 34 42 47 53 53 59 67
0.4π 22 28 33 34 39 41 42 49 49 50 54 69 85
0.35π 21 27 32 37 44 50 55 61 68 69 74 85 93
0.3π 25 30 39 46 60 67 70 74 82 83 90 98 99
0.25π 44 56 63 69 73 79 84 90 94 96 96 100 100
0.2π 42 55 63 71 80 86 91 93 94 98 98 100 100

Table S3: Visual comparison of G-WSPA vs ISPA (in blue: cells where both NG ≥ 50 and
NI ≥ 50; in green: cells where NG ≥ 50 and NI < 50; in red: cells where NG < 50 and
NI ≥ 50).

variability
effect size

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.4 0.6

0.7π
0.65π
0.6π
0.55π
0.5π
0.45π
0.4π
0.35π
0.3π
0.25π
0.2π
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Table S1 shows that i) in any given column, the number NG of datasets for
which G-WSPA detects a significant effect seem to vary weakly, suggesting
that the influence of the amount of inter-individual variability (i.e the value
of Θ) is fairly small on the outcome of the G-WSPA strategy; ii) in any given
line, NG decreases with d, from a value of 100 (i.e all datasets) for the largest
tested effect size (d = 0.3). This produces the rectangle-like area visible in
green on Table S1. Table S2 shows that the results of ISPA are more complex
to explain, with a clear influence of both d and Θ. When the inter-individual
variability is low, ISPA can detect significant effects even with very small
effect sizes. When the variability increases, the detection power of ISPA
decreases – i.e for a given effect size, the number of datasets for which ISPA
yields a significant result decreases. Therefore the detection power of ISPA
is determined by a trade-off between d and Θ, which produces the triangle-
like area visible in red on Table S2. These observations are confirmed by
the results of 2-way analyses of variance performed on the content of each of
these two tables, i.e in which we used two factors, d and Θ to try to model
the number of data sets for which we obtained significant group-decoding.
The effects of d and Θ are significant in both tables, but it is the effect of
Θ in Table S1 that is, by far, the weakest: FG−WSPA

Θ = 7.0, p = 1.2e−8,
compared to FG−WSPA

d = 1389.3, p < 1e−121; F ISPA
Θ = 86.7, p < 1e−49, and

F ISPA
d = 19.1, p < 1e−21.

In order to easily depict the compared behaviors of G-WSPA and ISPA,
we overlapped the results of the two strategies into Table S3. In this third
table, the blue cells indicate that NG > 50 and NI > 50 (i.e that both G-
WSPA and ISPA produce significant results in more than half of the 100
datasets), while the green and red regions contain cells where it is the case
only for G-WSPA or ISPA respectively (i.e NG > 50 and NI < 50 in green
cells; NI > 50 and NG < 50 in red cells). We observe a large blue region
in which both strategies provide concordant results, for the largest values of
the effect size d and with a moderately low amount of inter-individual vari-
ability. Interestingly, the green and red regions, where one strategy detects a
group-level effect while the other does not, also take an important area in the
portion of the parameter space that was browsed by our experiments, which
means that the two strategies can disagree. G-WSPA can provide a posi-
tive detection when the inter-individual variability is very large, while ISPA
cannot (green region). But ISPA is the only strategy that offers a positive
detection for very small effect sizes, requiring a moderate inter-individual
variability (red region).
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3.2. Results for fMRI datasets

3.2.1. Qualitative observations

The searchlight decoding analyses performed at the group level were all
able to detect clusters of voxels where the decoding performance was signifi-
cantly above chance level (p < 0.05, FWE-corrected using permutation tests)
with both G-WSPA and ISPA, for Dataset1 and Dataset2 and with all sizes
of the spherical searchlight. The detected clusters were overall consistent
across values of the searchlight radius, with an increasing size of each cluster
when the radius increases. In Dataset1, both strategies uncovered two large
significant clusters located symmetrically in the left and right motor cortex.
Additionally, ISPA was able to detect other significant regions located bilat-
erally in the dorsal part of the cerebellum and the parietal operculum, as
well as a medial cluster in the supplementary motor area (note that some of
these smaller clusters also become significant with G-WSPA with the larger
searchlight radii). In Dataset2, both G-WSPA and ISPA yielded two large
significant clusters in the temporal lobe in the left and right hemispheres,
which include the primary auditory cortex as well as higher level auditory
regions. Figure. 3 provides a representative illustration of these results, for
a radius of 6mm.

3.2.2. Quantitative evaluation

Our quantitative evaluation focuses on the two largest clusters uncovered
in each dataset, i.e the ones in the motor cortex for Dataset1 and the ones in
the temporal lobe for Dataset2. We first examine the size of these clusters,
separately for each hemisphere and each of the five values of the searchlight
radius. The results are displayed in the left column of Figure. 4. In almost
all cases, the size of the significant clusters increased with the searchlight
radius (left column). Moreover, the cluster located in the right hemisphere is
consistently larger than the one on the left. In Dataset1, the cluster detected
by ISPA is larger than the one detected by G-WSPA, regardless of the hemi-
sphere, while in Dataset2, it is G-WSPA that yields larger clusters (except
for a 4mm radius where the sizes are similar). Then, we study the peak
value of the t statistic obtained in each cluster (right column of Figure. 4).
In Dataset1, the peak t value is higher for ISPA than G-WSPA, for all values
of the radius. In Dataset2, ISPA yields higher peak t values than G-WSPA
for the searchlight radii smaller or equal than 8mm, and lower peak t values
for the larger radius values.
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Figure 3: Illustration of the results of the group-level searchlight decoding analysis for a
6mm radius. Top two rows: Dataset1 ; bottom two rows: Dataset2. Brain regions found
significant using G-WSPA and ISPA are respectively depicted in green and red.
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Figure 4: Quantitative evaluation of the results obtained on the real fMRI datasets for
G-WSPA (green curves) and ISPA (red curves). Solid and dashed lines for the largest
cluster respectively in the left and right hemispheres. Left column: size of the significant
clusters. Right column: peak t statistic. Top vs. bottom row: results for Dataset1 and
Dataset2 respectively.

Then, we quantify the amount of overlap between the clusters found by
G-WSPA and ISPA, by splitting the voxels into three sub-regions: voxels
uncovered only by ISPA, only by G-WSPA or by both strategies (overlap).
Figure. 5 provides an illustration of these sub-regions, which shows that
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the overlap region (in blue) is located at the core of the detected clusters,
while the voxels significant for only one strategy are located in the periphery;
these peripheral voxels appear to be mostly detected by ISPA for Dataset1
(red voxels) and by G-WSPA for Dataset2 (green voxels). Figure. 6 shows
the voxel counts in each sub-region, which confirms this visual inspection.
Overall, the size of the sub-region found by the two strategies increases with
the searchlight radius. The ISPA-only sub-region is larger in Dataset1 than
in Dataset2, representing between 38% and 83% of all significant voxels.
Conversely in Dataset2, the G-WSPA-only sub-region is more important –
with a percentage of all significant voxels comprised between 18% and 60%.

Figure 5: Comparison of the clusters detected by G-WSPA and ISPA for the different
values of the searchlight radius, in Dataset1 (top row) and Dataset2 (bottom row).

We also count the number of voxels in each sub-region for each hemi-
sphere. Figure 6 shows that for both datasets, the clusters in the right
hemisphere are larger than in the left hemisphere. For both hemispheres, in
most cases the number of voxels in each sub-region increases as the search-
light radius increases. However, in Dataset1, the number of voxels found
only by G-WSPA is much smaller than that of overlap and ISPA-only sub-
region with all five radius values. While in Dataset2 the number of voxels in
ISPA-only sub-region decreases for the four smallest values of the searchlight
radius, and voxels only uncovered by ISPA are much fewer than those found
only by G-WSPA.
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Figure 6: Comparison of the voxel counts detected by G-WSPA-only (green), ISPA-only
(red) or both (blue) for the different values of the searchlight radius, in Dataset1 (left)
and Dataset2 (right).

4. Discussion

4.1. G-WSPA and ISPA provide different results

In this study, we have performed experiments on both real and artificial
functional neuroimaging data in order to compare two group-level MVPA
schemes that rely on classifier-based decoding analyses: the vastly used G-
WSPA, and ISPA. Our results show that both strategies can offer equivalent
results in some cases, i.e that they both detect significant group-level multi-
variate effects in similar regions of the cortex for our two real fMRI datasets,
and in parts of the two-dimensional parameter space browsed using our artifi-
cially generated datasets, but that their outcomes can also differ significantly.
For instance, in Dataset1, ISPA was the only strategy that detected multi-
variate group-level effects in several regions such as the supplementary motor
area, the bilateral parietal operculum and dorsal cerebellum, for most of the
searchlight radii that we tested. Furthermore, when a cluster is detected by
both strategies, it usually differs in its size, extent and/or precise location,
resulting in partial overlap; in most cases, the areas of concordance between
the two strategies appeared to be centrally located in the cluster, while the
disagreements are located towards the periphery: in some areas, G-WSPA
detects a group-level effect while ISPA does not, and inversely in other ar-
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eas. Note that for Dataset2, our observations are consistent with what was
reported in Gilron et al. (2017) with a different, yet comparable, framework
of analysis, on a closely related data set.

Surprisingly, the peripheral behaviors were not consistent across the two
real fMRI datasets: on Dataset1, ISPA only was able to detect effects on
the periphery of the core region where both strategies were equally effective,
while on Dataset2, it was G-WSPA which provided significant results on the
periphery. The results of the experiments conducted on the artificial datasets
can actually shed some light on these results, thanks to the clear dissociation
that was observed in the two-dimensional parameter space browsed to con-
trol the properties of the data. Indeed, ISPA is the only strategy that allows
detecting smaller multivariate effects when the inter-individual variability re-
mains moderate, which is the case in the main clusters detected in Dataset1
because they are located in the primary motor cortex, the primary nature of
this region limiting the amount of inter-subject variability. On the opposite,
the peripheral part of the main clusters detected in Dataset2 are located an-
teriorly and posteriorly to the primary auditory cortex, towards higher-level
auditory areas where the inter-individual variability is higher, a situation in
which G-WSPA revealed more effective in the experiments conducted with
our artificial data.

4.2. ISPA: larger training sets improve detection power

Our experiments revealed a very important feature offered by the ISPA
strategy: its ability to detect smaller multivariate effects. On the one hand,
this greater detection power was explicitly demonstrated through the simula-
tions performed on artificial data, where the multivariate effect size was one
of the two parameters that governed the generation of the data; we showed
that with an equal amount of inter-individual variability, ISPA was able to
detect effects as small as half of what can be detected by G-WSPA. Further-
more, on both real fMRI datasets, ISPA was able to detect significant voxels
that were not detected using G-WSPA, in a large amount in Dataset1, and
to a lesser extent in Dataset2. This detection power advantage is of great
importance, since detecting weak distributed effects was one of the original
motivations for the use of MVPA Haxby et al. (2014).

This greater detection power of ISPA is in fact the result of the larger size
of the training set available: indeed, when the number of training examples
is small, the performance of a model overall increases with the size of the
training set, until an asymptote that is reached with large training sets –

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2019. ; https://doi.org/10.1101/587899doi: bioRxiv preprint 

https://doi.org/10.1101/587899
http://creativecommons.org/licenses/by-nc-nd/4.0/


as encountered in computer vision problems where millions of images are
available from e.g http://www.image-net.org. In the case of functional
neuroimaging where an observation usually corresponds to an experimental
trial, we usually have a few dozens to a few hundreds samples per subject,
which clearly belongs to the small sample size regime, i.e very far from the
asymptote. In this context, ISPA offers the advantage to multiply the number
of training samples by a factor equal to the number of subjects in the training
set, which is of great value. However, here, the increased sample size comes
at the price of a larger heterogeneity in the training set, because of the large
differences that can exist between data points recorded in different subjects.
In the general case, such an added heterogeneity can represent an obstacle
for learning if it is very important, but can also reveal beneficial if more
moderate by increasing the diversity of the training set. The fact that we
observe a higher detection power with ISPA than with G-WSPA suggests
that we are in the latter situation.

4.3. ISPA offers straightforward interpretation

When using the ISPA strategy, obtaining a positive result means that
the model has learnt an implicit rule from the data available in the training
subjects that provides statistically significant generalization power on data
from new subjects. Since a cross-validation of the type leave-one-subject-out
or leave-n-subjects-out is performed on the available data to quantitatively
assess such results, it allows to draw inference on the full population from
which the group of participants was drawn, including individuals for which
no data was available. As previously pointed out in Kragel et al. (2018), the
interpretation that follows is straightforward: a significant effect detected
with ISPA implies that some information has been identified to be consistent
throughout the full population. In more details, this means that the modu-
lations of the multivariate patterns according to the experimental conditions
that were the object of the decoding analysis are consistent throughout the
population, at least at the resolution offered by the modality used for the
acquisition. This is the case for all voxels colored blue and red on Figure. 5.

In the case of a significant result detected by G-WSPA but not ISPA –
i.e the green voxels on Figure. 5, the interpretation is not as straightforward.
Such a result indeed implies that on average over all subjects of the popu-
lation, there is information in the input patterns that can discriminate the
different experimental conditions – since it is significant for G-WSPA, but
that the nature of the discriminant information present in the input voxels
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differs across individuals – since it is not detected by ISPA. This could be
caused by two phenomenons. First, it could mean that the underlying coding
strategy is nonetheless invariant across individuals, but that the nature of the
data or of the feature space used in this analysis does not allow to identify
it as such. One would then need to acquire additional data using a different
modality (Dubois et al. (2015)) or to transform the feature space (e.g using
methods such as Haxby et al. (2011), Takerkart et al. (2014) or Fuchigami
et al. (2018)) in order to attempt to make this invariance explicit. Secondly,
it could also mean that the coding principle is simply intrinsically different
across subjects (as might be the case for the two subjects framed at the
bottom right of Figure 2b, in a dataset for which G-WSPA provides a pos-
itive detection), for instance because several strategies had been employed
by different individuals to achieve the same task, or because each subject
employs its own idiosyncratic neural code. In this second hypothesis, one
could cast some doubt on the validity of tagging these voxels as significant
at the group-level. This risk does not only apply to results obtained using
searchlight decoding analyses, but also to analyses performed in pre-defined
regions of interest, which are extremely common in the literature. Even if
these limitations have been pointed out previously in the literature, as in e.g
Todd et al. (2013), Allefeld et al. (2016) or Gilron et al. (2017), we feel that
the community should tackle this question more firmly. This could start by
defining what a group-level multivariate analysis should seek – a consistent
amount or nature of the information, or by promoting the ISPA strategy
which allows directly circumventing such potential risks.

4.4. ISPA: a computational perspective

From a practical point of view, one can ask two questions that are critical
if one would like to promote the use of ISPA. First, what is the computational
cost of ISPA and how does it compare to the one of G-WSPA? And secondly,
is it easy to implement ISPA with the existing MVPA software packages?

In order to address the former question, we first compare the number
of classifiers that need to be trained for a full group analysis. Using G-
WSPA, we need to train K classifiers per subject, where K is the chosen
number of within-subject cross-validation folds, so KS classifiers in total
(where S is the number of available subjects). For ISPA, the number of
cross-validation folds equals to S (for leave-one-subject-out), meaning we
need to train a total of S classifiers. The training time of a classifier also
depends on the number of training examples: it is linear for classifiers such as
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logistic regression (when using gradient-based optimizers Dreiseitl and Ohno-
Machado (2002)), and quadratic for e.g support vector machines Bottou and
Lin (2007). Assuming we have n examples per subject, the number of training

examples available for each classifier is (K−1)n
K

for G-WSPA and (S − 1)n for
ISPA. Overall, with linear-time classifiers, the total complexity of a group-
level decoding analysis amounts to O(nKS) for G-WSPA and O(nS2) for
ISPA, which makes them almost equivalent if one assumes that K and S
are of the same order of magnitude. With quadratic-time classifiers, the
total complexity is O(n2KS) for G-WSPA and O(n2S3) for ISPA, which
makes ISPA significantly more costly. We therefore advice to use linear-time
classifiers such as logistic regression to perform ISPA analyses, particularly
with searchlight decoding where the computational cost is further multiplied
by the number of voxels.

In terms of software implementation, because within-subject analyses
have been the standard since the advent of MVPA, all software packages
provide well documented examples for such analyses which are the base tool
for G-WSPA. Even if it is not the case for ISPA, it is easy to obtain an equiv-
alent implementation because to perform inter-subject decoding, one simply
need to i) have access to the data from all subjects, and ii) set up a leave-
one-subject-out cross-validation, these two operations being available in all
software packages. As an example, we provide the code to perform ISPA
searchlight decoding from pre-processed data available online, which allows
reproducing the results described in the present paper on Dataset2 : http://
www.github.com/SylvainTakerkart/inter_subject_pattern_analysis.

5. Conclusion

In this paper, we have compared two strategies that allow performing
group-level decoding-based multivariate pattern analysis of task-based func-
tional neuroimaging experiments: the first is the standard information-based
method that aggregates within-subject decoding results and a second one
that directly seeks to decode neural patterns at the group level in an inter-
subject scheme. Both strategies revealed effective but they only provide par-
tially concordant results. Inter-subject pattern analysis offers a higher detec-
tion power to detect weak distributed effects and facilitate the interpretation
while the results provided by the information-based approach necessitate
further investigation to raise potential ambiguities. Furthermore, because
it allows identifying group-wise invariants from functional neuroimaging pat-
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terns, inter-subject pattern analysis is a tool of choice to identify neuromark-
ers Gabrieli et al. (2015) or brain signatures Kragel et al. (2018), making it
a versatile scheme for population-wise multivariate analyses.
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