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Abstract 
 
Toward combating infectious diseases caused by pathogenic bacteria, there remains an unmet 
need for diagnostic tools that can broadly identify the causative bacteria and determine their 
antimicrobial susceptibilities from complex and even polymicrobial samples in a timely manner.  
To address this need, a microfluidic- and machine learning-based platform that performs broad 
bacteria identification (ID) and rapid yet reliable antimicrobial susceptibility testing (AST) is 
developed. Specifically, this new platform builds on “pheno-molecular AST”, a strategy that 
transforms nucleic acid amplification tests (NAATs) into phenotypic AST through quantitative 
detection of bacterial genomic replication, and utilizes digital PCR and digital high-resolution 
melt (HRM) to quantify and identify bacterial DNA molecules. Bacterial species are identified 
using integrated experiment-machine learning algorithm via HRM profiles. Digital DNA 
quantification allows for rapid growth measurement that reflects susceptibility profiles of each 
bacterial species within only 30 min of antibiotic exposure. As a demonstration, multiple 
bacterial species and their susceptibility profiles in polymicrobial urine specimen were correctly 
identified with a total turnaround time of ~4 hours. With further development and clinical 
validation, this new platform holds the potential for improving clinical diagnostics and enabling 
targeted antibiotic treatments. 
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Introduction 
 
Infectious diseases inflicted by pathogenic bacteria continue to threaten human health and incur 
heavy economical burdens. For example, sepsis is the leading cause of deaths in hospitals[1,2] and 
approximately 270,000 Americans die from sepsis each year.[3] Similarly, urinary tract infections 
(UTIs) affect approximately 50% of women at least once in their lifetime and incur > $2 billion 
in treatment cost in the United States per year.[4–8] Adding severity to the problem, recent reports 
reveal that these bacterial infections (e.g. UTIs[9–12] and wound infections[13–15]) can be 
polymicrobial, often leading to increased infection severity and poorer patient outcome.[16–21] To 
combat this serious threat, tools for diagnosing infectious diseases must be improved. A 
comprehensive clinical diagnosis must encompass broad identification (ID) of the causative 
bacteria and antimicrobial susceptibility test (AST). Critically, the diagnosis must be made 
rapidly (e.g., within a few hours) and ideally from various sample matrices of different diseases. 
Unfortunately, traditional diagnostic methods cannot meet these requirements as they rely 
heavily on bulk bacterial culture that can take several days or even up to weeks to complete.[22] 
The lengthy lag to definitive diagnosis obtained via traditional diagnostic methods results in the 
common use of broad-spectrum antibiotics, which can lead to poor patient outcome and rampant 
spread of antimicrobial resistance.[23,24] Consequently, there remains a clear need for new 
diagnostic technologies that can meet the multi-faceted requirements in the diagnosis of 
infectious diseases.[25]  
 By detecting specific genes within bacteria with high sensitivity, specificity, and speed, 
nucleic acid amplification tests (NAATs) such as PCR provide an effective foundation for 
accelerating bacteria ID and, to some extent, AST from days to hours. Employing NAATs for 
bacteria ID is now a turnkey process and broadly falls under two approaches. In the first 
approach, a panel of bacterial species-specific primers or probes is employed in a multiplexed 
assay to identify specific bacteria within the panel. Several FDA-approved commercial platforms 
(most notably FilmArray from BioFire Diagnostics, BD Max from Becton Dickinson 
Diagnostics, and GeneXpert from Cepheid) utilize this multiplexed detection strategy to identify 
bacteria. Though efficient, this approach would yield false negative tests for pathogenic bacteria 
outside of the existing panel. In the other approach, universal PCR using a pair of pan-bacteria 
primers is first performed to detect any bacterial species, followed by post-amplification analysis 
techniques such as high-resolution melt (HRM) to achieve species identification. Although 
requiring prior efforts in building the database of molecular profiles (e.g., melt curves) of 
bacteria, HRM provides a simple, yet practical post-PCR sequence fingerprinting solution for 
large-scale bacterial ID.[26–32] Employing NAATs for AST, in contrast to the maturity of bacteria 
ID, remains a work in progress. NAATs can detect genetic markers such as mutations that confer 
antibiotic resistance, which can serve as a surrogate for determining antibiotic susceptibility. 
Unfortunately, except for a few well-established markers (e.g., mecA[33–35] and vanA and 
vanB[36,37]), resistance genes cannot reliably predict susceptibility to a particular antibiotic.[38,39] 
Therefore, advanced NAAT-based methods that can identify bacteria and provide reliable AST 
information must be developed. 

“Pheno-molecular AST” is an emerging approach that achieves reliable AST and 
concurrent bacteria detection by combining phenotypic characterization of antibiotic 
susceptibility with quantitative, nucleic-acids-based molecular detection of bacteria.[22,40–50] In 
pheno-molecular AST, bacteria are first briefly incubated in the presence and absence of 
antibiotics. The amounts of bacterial nucleic acids – serving as surrogates of bacterial growths – 
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between antibiotic-treated samples and no-antibiotic controls are then quantitatively detected and 
compared to determine the antibiotic susceptibilities. Moreover, when coupled with NAATs for 
quantitative detection, pheno-molecular AST can significantly outpace traditional culture-based 
AST in sensitivity and assay time, while adding a layer of specificity. To date, several pheno-
molecular AST assays based on real-time PCR[40], digital PCR[45], and digital LAMP[46] have 
been demonstrated. Unfortunately, no platform has reported pheno-molecular AST with broad 
bacteria ID in a digital format for achieving a comprehensive and rapid diagnostic method. For 
example, Chen et al.[40] reported a pheno-molecular AST assay that specifically targeted N. 
gonorrhoeae. Schoepp et al.[45,46] developed microfluidic-based, digital pheno-molecular AST 
assays that shortened the antibiotic exposure time to 15 to 30 min, though they only focused on 
E. coli as the target organism. Meanwhile, although we and others[47,48] have combined pheno-
molecular AST with real-time, quantitative universal PCR and HRM analysis to achieve broad 
identification, these bulk-based assays have a limited ability of analyzing polymicrobial samples 
because composite melt curves from multiple bacteria species cannot be easily decoupled and 
resolved.  

In response, we have developed the first universal digital PCR and HRM (dPCR-HRM) 
platform for performing broad bacteria ID and rapid pheno-molecular AST toward clinical 
diagnosis of infectious diseases. At the center of our platform is the Nanoarray – a microfluidic 
device that we have engineered to perform dPCR-HRM upon digitizing single bacterial DNA 
molecules. In doing so, our Nanoarray not only facilitates precise quantification of bacterial 
DNA molecules but also ensures that each melt curve in the device is generated from a single 
bacterial species, which allows us to identify individual bacterial species even from 
polymicrobial samples. We have also developed a machine learning-based algorithm for the 
analysis of digital HRM (dHRM) profile from each bacterial DNA to achieve species 
identification and accurate quantification. Antibiotic susceptibility of each species can thus be 
determined based on digital counts of DNA quantity that reflects bacterial growth under 
antibiotic exposure. The quantitative precision of our dPCR-HRM platform allows for rapid 
antibiotic exposure time in as little as 30 min. As an additional benefit, our method also works 
with bacteria in urine, a complex sample matrix. For demonstration, we used our method to 
correctly identify gentamicin-sensitive E. coli and gentamicin-resistant Staphylococcus aureus 
that were both present in a polymicrobial urine sample with a total turnaround time of ~4 hours, 
illustrating the potential of our method toward clinical diagnosis. 
 
Results and Discussion  
 
Assay Overview 
We have developed a streamlined, dPCR-HRM-based workflow for performing broad bacteria 
ID and pheno-molecular AST from complex samples. We begin by evenly dividing the sample 
into two aliquots, exposing one aliquot to an antibiotic and the other to no antibiotics (i.e., no-
drug control), and incubating both aliquots at 37 °C for 30 min (Figure 1, Step 1). Following 
incubation, bacterial DNA from both aliquots are extracted in parallel, diluted (if necessary), 
mixed with universal PCR mixture, and loaded into two independent modules on a Nanoarray 
device comprising of thousands of nanoliter reaction wells (nanowells) (Figure 1, Step 2). The 
use of limiting dilutions with Nanoarrays leads to digitization of DNA molecules in the 
nanowells for dPCR and dHRM and that each melt curve is generated from a single bacterial 
species. In doing so, even multiple species in heterogeneous samples can be individually and 
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independently enumerated. Next, we place the device onto our custom thermal-optical 
platform[51] (Figure S1), which performs thermocycling for dPCR and temperature ramping for 
dHRM, and acquires fluorescence images of the entire Nanoarray at all temperature increments 
during dHRM. These “temperature-lapse” fluorescence images are then compiled to generate 
digital melt curves for all nanowells within the device in parallel. Each digital melt curve in a 
nanowell is analyzed via our in-house, machine-learning-based melt curve identification 
algorithm to match to the species-specific melt curves in our digital melt curve database, thereby 
identifying the bacterial species present in the nanowell (Figure 1, Step 3-ID). The total number 
of bacterial species-specific DNA molecules from each aliquot can then be accurately counted. 
Finally, antibiotic susceptibility of each bacterial species is determined by comparing the number 
of DNA molecules of the drug-treated aliquot with the no-drug control aliquot, where 
significantly fewer DNA counts indicate susceptibility to the antibiotic while comparable DNA 
counts indicate resistance to the antibiotic (Figure 1, Step 3-AST).  
 

 
Figure 1. Overview of digital PCR and melt platform with machine learning-assisted algorithm for rapid bacteria ID and pheno-
molecular AST. Analyzing bacterial growth under antibiotic exposure by measuring bacterial genome replication (i.e., pheno-
molecular AST) via universal digital PCR and high resolution melt (dPCR-HRM) in the Nanoarray offers an effective means for 
achieving rapid yet comprehensive bacteria ID and AST, even from complex samples (e.g., urine) that contain multiple bacteria 
with distinct antibiotic susceptibilities. The streamlined workflow begins with (1) briefly incubating evenly divided bacterial sample 
aliquots with and without antibiotics and extracting bacterial DNA from both aliquots. Next, (2) bacterial DNA from each aliquot 
is mixed with a universal PCR mixture that contain pan-bacteria primers and Evagreen dye, loaded into separate modules of a 
Nanoarray device, and placed on a thermal-optical platform to perform dPCR-HRM. The ~5,000 nanoliter reaction wells (i.e., 
nanowells) in each module of the Nanoarray, along with performing limiting dilution of both aliquots, ensure that only one DNA 
molecule is digitized and subsequently PCR-amplified in each nanowell, which guarantees that each melt curve is generated from 
a single bacterial species. During dHRM, fluorescence images of the entire Nanoarray are captured by the thermal-optical platform 
at specified temperature increments. (3) After dPCR-HRM, fluorescence intensities within all nanowells are extracted from these 
“temperature-lapse” fluorescence images to generate digital melt curves for all nanowells. The digital melt curves are analyzed by 
a machine learning-based melt curve identification algorithm to identify the bacterial species. Next, the number of species-specific 
digital melt curves is enumerated to quantify the DNA copy number for each bacterial species in each aliquot. Finally, the 
comparison between the DNA copy numbers of the two aliquots reveals the antibiotic susceptibility – higher DNA copies from the 
no-antibiotic aliquot indicate susceptibility while comparable DNA copies from both aliquots indicate resistance. 

 
Validation of dPCR-HRM in Nanoarray and Construction of Digital Melt Curve Database 
An enabling element of our platform is the Nanoarray – a microfluidic device that we have 
engineered to rapidly and efficiently digitize single bacterial DNA molecules and reliably 
perform dPCR-HRM. In the current iteration, our Nanoarray features 3 identical but independent 
modules; each of these high-density modules houses 5,040 1-nL nanowells (Figure 2A). The 3 
parallel modules within a single device allow us to analyze both drug-treated and no-drug AST 
conditions while performing a control dPCR-HRM with a well-characterized DNA sample. To 
ensure efficient and reliable digitization of bacterial DNA molecules, as well as robust dPCR-
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HRM, the Nanoarray was fabricated with a thin PDMS layer (~100 µm) sandwiched between a 
top glass coverslip and a bottom glass slide (Figure S2). Air-permeable PDMS in the Nanoarray 
facilitates vacuum-assisted DNA sample loading[51,52], which allows the sample to fill all 
nanowells in a pre-desiccated device in < 5 s. A brief injection of a partitioning oil into the 
device is then sufficient for isolating all sample-filled nanowells. During dPCR, the combination 
of the thin PDMS layer and the top glass coverslip minimizes evaporation of nanoliter-scale 
reactions within nanowells. The bottom glass slide, which is 1 mm in thickness, creates a rigid 
and flat bottom surface of the device that ensures the temperature uniformity across the device 
during dPCR-HRM. Finally, we note that the partitioning oil contains PDMS, which solidifies 
during thermocycling to permanently encapsulate PCR products in each nanowell, thereby 
preventing cross-contamination and easing any device handling during dHRM analysis. 

Within the Nanoarray, we have implemented a universal dPCR-HRM assay that can 
amplify a broad range of bacterial DNA in the sample and subsequently differentiate and identify 
the bacterial species. This is achived by employing a pair of universal PCR primers that 
hybridize to conserved regions (i.e., consistent among all bacteria) flanking a hypervariable 
region (i.e., unique to each bacterial species) in the 16S rRNA gene and Evagreen dye that 
facilitates HRM analysis. We first validated our universal dPCR-HRM assay in the Nanoarry 
using E. coli genomic DNA as the target. In this initial validation, we loaded the target DNA and 
PCR mixture into a module of a Nanoarray device at a “digital concentration” such that only 
some of nanowells would be filled with a single copy of E. coli DNA. After dPCR, we indeed 
observed many “negative” nanowells that showed weak green fluorescence signal comparable to 
only surrounding background and channels, indicating that no dPCR occurred in these nanowells 
as they contained no target DNA (Figure 2B, left). Importantly, we also detected a number of 
“positive” nanowells that exhibited strong green fluorescence in the module, suggesting that a 
single copy of the target DNA was digitized and amplified in each of these nanowells. 
Subsequently during dHRM, temperature-lapse fluorescence images of the entire module 
revealed that fluorescence signals in all positive nanowells decreased as the temperature ramped 
up, indicating that DNA amplicons in these nanowells became increasingly melted (Figure 2B). 
After extracting fluorescence intensities within nanowells from the temperature-lapse 
fluorescence images, we obtained hundreds high-resolution digital melt curves for E. coli (Figure 
2C, E. coli, blue). The digital melt curves not only closely resembled each other, but also the 
melt curve of E. coli obtained from a benchtop PCR-HRM (Figure S3). These results provide 
strong validation for our universal dPCR-HRM in the Nanoarray.  

We then performed dPCR-HRM in our Nanoarray to detect and generate digital melt 
curves for 4 additional bacteria, thereby building a digital melt curve database with 5 common 
UTI bacterial species toward bacteria identification. As expected, our universal dPCR-HRM 
successfully detected genomic DNA from Streptococcus agalactiae (ATCC 13813), Proteus 
mirabilis (ATCC 12453), S. aureus (ATCC 29213), and Klebsiella pneumonia (ATCC BAA-
1705) (Figure S4) and produced hundreds of digital melt curves for each species (Figure 2C). For 
all 5 species, the digital melt curves universally exhibited the single main peak profile – an 
indication that the melt curves were derived from single species. Importantly, however, the 
digital melt curves of each species differed from those of the other 4 species in their melting 
temperature (Tm) and their shape. For example, the digital melt curves from E. coli (Figure 2C, 
blue; Tm = 89.06 ± 0.12 °C) and P. mirabilis (Figure 2C, green; Tm = 88.30 ± 0.12 °C) showed 
similar shapes but differed by nearly 0.8 °C in average Tm. The digital melt curves from S. 
aureus (Figure 2C, orange; Tm = 88.35 ± 0.13 °C) displayed a distinctive ramp leading to the 
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main peak. The digital melt curves from S. agalactiae (Figure 2C, yellow; Tm = 87.93 ± 0.26 °C) 
exhibited a small bump before a low main peak. Finally, the digital melt curves from K. 
pneumoniae (Figure 2C, purple; Tm = 89.00 ± 0.11 °C) had a small but noticeable drop 
immediately before the main peak. These differences form the basis for achieving bacteria ID 
based on their unique melt curves.  

 
Figure 2. Bacteria ID via dPCR-HRM in Nanoarray and machine learning-assisted digital melt curve identification. A) Each 
Nanoarray device contains 3 independent modules for analyzing two samples and including a dPCR-HRM control. Each module 
houses 5,040 nanowells that are 1-nL in volume. B) Upon the completion of dPCR and immediately before the commencement of 
dHRM, strong green fluorescence can be observed from nanowells that have digitized and PCR-amplified bacterial DNA. During 
dHRM, double-stranded dPCR products in these strongly fluorescent, positive wells become increasingly melted as temperature 
increases, resulting in decreasing fluorescence intensities in these nanowells. Parallel measurements of fluorescence intensities in 
thousands of nanowells as a function of temperature lead to thousands of digital melt curves from a single experiment in a 
Nanoarray. C) 320 digital melt curves from 5 species of bacteria commonly found in urinary tract infections – S. agalactiae, P. 
mirabilis, S. aureus, K. pneumoniae, and E. coli – are collected to build a digital melt curve database toward broad bacteria ID. D) 
To achieve reliable bacteria ID, both the melting temperature (Tm) and the shape of the digital melt curves are used for analysis. 
Based on Tm, our digital melt curve database is divided into the low Tm group with S. agalactiae, P. mirabilis, and S. aureus, and 
the high Tm group with K. pneumoniae, and E. coli. Within each Tm group, digital melt curves are aligned to a single point to 
facilitate shape-based digital melt curve analysis before one-versus-one support vector machine algorithm is used to compare 
species-specific melt curve shapes and identify bacterial species. Also within each Tm group, principle component analysis using 
the first three principle components (i.e., PC1, PC2, and PC3) is performed to visualize that the digital melt curves from each 
species indeed cluster into distinguishable populations, thus confirming their distinct shapes. 

 
Machine Learning-Assisted Algorithm for Digital Melt Curve and Bacteria ID 
Having built our digital melt curve database, we next developed a new identification algorithm 
for distinguishing and identifying these species-specific digital melt curves. Our algorithm 
includes four key steps: 1) incorporation of in situ reference digital melt curves from E. coli, 2) 
classification of digital melt curves into relative Tm-based groups, 3) normalization and 
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alignment of digital melt curves, and 4) identification of digital melt curves based on their shapes 
using a machine learning-based algorithm. In our platform, in addition to performing dPCR-
HRM for the two samples of interest in two modules of the Nanoarray, we concurrently perform 
dPCR-HRM with purified genomic DNA of E. coli in the third module to generate reference 
digital melt curves. We then use relative Tm (i.e., differences in Tm between the digital melt 
curves of interest and the reference digital melt curves) to classify the digital melt curves of 
interest into groups that contain a subset of the bacterial species within the database (Figure S5). 
This relative Tm-based classificaition strategy is more consistent than directly using the exact Tm 
of the digital melt curves of interest toward identification, as the Tm can vary from experiment to 
experiment due to variations in devices and the non-uniform temperature distribution of the 
heating instrument. Following relative Tm-based classification, to enable the identification of 
digital melt curves of interest based on their shapes, we normalize the area under the curve of all 
digital melt curves and then align them to a single point. Finally, using an adapted in-house 
developed digital melt curve classification tool based on one-versus-one support vector machine 
(ovoSVM) algorithm[26,48,53], the shape of each digital melt curve of interest is compared to the 
digital melt curves in the Tm-classified group to identify the bacterial species represented by the 
digital melt curve of interest. 

Using a total of 1,600 digital melt curves – 320 from each of the 5 bacterial species in our 
database – we illustrate the outcomes of the key steps and demonstrate the overall performance 
of our machine learning-assisted algorithm in bacteria identification. In our database, digital melt 
curves of S. agalactiae, P. mirabilis, and S. aureus have lower Tm than those of E. coli, while 
digital melt curves of K. pneumoniae have comparable Tm as those of E. coli (Figure 2C). 
Classification of these digital melt curves based on Tm therefore results in the low Tm group with 
S. agalactiae, P. mirabilis, and S. aureus, and the high Tm group with K. pneumoniae and E. coli 
(Figure 2D). After normalization and alignment of digital melt curves, we performed principal 
component analysis (using a built-in Matlab function) to show that the digital melt curves within 
each group have distinct shapes. Indeed, principle component analysis for the low Tm group 
results in three distinct clusters, indicating that S. agalactiae, P. mirabilis, and S. aureus indeed 
have distinctly-shaped digital melt curves (Figure 2D-left). Principle component analysis 
similarly reveals that the digital melt curves of K. pneumoniae and E. coli in the high Tm group 
have distinct shapes (Figure 2D-right). Notably, principle component analysis shows that, when 
put in a single group, the digital melt curves of the 5 species are not fully distinguished (Figure 
S6). The analysis therefore confirms the importance of Tm-based classification toward robust 
identification. Finally, we iteratively performed 320 leave-one-out cross-validation experiments 
to validate our identification algorithm. That is, for each bacterial species, we trained our 
algorithm using 319 digital melt curves and then challenged our algorithm to identify the last 
digital melt curve, and repeated until all 320 digital melt curves had been tested. Our 
identification algorithm correctly identified 98.5% of the 1600 digital melt curves, illustrating the 
effectiveness of our machine learning-assisted algorithm in the identification of digital melt 
curves, and hence, bacterial species.  
 
Bacterial DNA Quantification in Nanoarray 
Precise quantification of DNA molecules is essential for pheno-molecular AST. To this end, our 
Nanoarray supports digital quantification of DNA molecules through both dPCR alone and 
dPCR-HRM. Although dPCR alone allows for precise quantification of DNA, our dPCR-HRM 
can offer comparable level of precision as dPCR while adding the dHRM-based verification step 
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that can remove false-positives from the counting results. For example, when we performed a no 
template control (NTC) experiment, 6 nanowells (0.12%) showed strong fluorescence signal 
after dPCR and would be considered as positives. However, upon analysis with our identification 
algorithm, we found that 4 out of these 6 “positives” had digital melt curves that matched poorly 
with any of the digital melt curves from the 5 bacterial species in our database. These poorly 
matched digital melt curves likely arose from non-specific amplifications such as primer dimers 
and were thus relegated as false positives. The remaining 2 positives were identified as E. coli 
and K. pneumoniae that likely stemmed from bacterial DNA contamination that may exist even 
in DNA polymerase[54,55] (Figure S7). This result demonstrates that dHRM analysis in Nanoarray 
enhances assay specificity, as false-positives from non-specific melt curves or contaminants can 
be revealed, examined, and potentially eliminated. 

To demonstrate quantification of DNA molecules at concentrations relevant to our 
subsequent pheno-molecular AST in the Nanoarray, we performed dPCR-HRM for 3 dilutions of 
purified E. coli genomic DNA at estimated 0.01, 0.1, and 1 genomic copy per nanowell, and 
compared the target quantification results from dPCR alone and from dPCR-HRM. Based on 
dPCR alone, we counted 5.4%, 40.1%, and 99.3% positives for these 3 dilutions (Figure 3A and 
B). Using dPCR-HRM for analysis, we determined that a fraction of these “positives” in each 
dilution were non-E. coli and consequently modified the counts to 5.3%, 39.5%, and 99.2% 
positives for these 3 dilutions (Figure 3C). These results support that our Nanoarray facilitates 
precise quantitative detection of DNA molecules and that dPCR-HRM can further improve 
quantification accuracy.  

Consistent with standard digital-based quantification methods, we can calculate the 
quantity of our E. coli target based on the percent positive for each dilution. This calculation 
corrects for positive nanowells that contain more than one copy of the target. Specifically, we 
applied Poisson distribution to calculate the mean occupancy of DNA per nanowell, λ, using 
Equation 1 

𝜆 = ln        (1) 

where p represents the percent positives. Hereafter, we used λ as our standard quantitation 
metric. Based on the percent positives from dPCR, the λʼs were 0.056, 0.513, and 4.906 for the 3 
dilutions. Using the percent positives from dPCR-HRM, the λʼs were 0.054, 0.503, and 4.787 for 
the 3 dilutions. We can also calculate the probability distribution of the number of DNA 
molecules per nanowell (k) that would result from λ of each dilution calculated from our dPCR-
HRM results using Equation 2 (Figure 3D, based a total of 5,000 wells). 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 (𝑘, 𝜆) =
!

   (2) 

More importantly, we observed strong linear relationships between λʼs and the input genomic 
copy numbers for both dPCR (Figure 3E) and dPCR-HRM (Figure 3F). The excellent linearity in 
both cases provides strong support for precise quantification of DNA molecules in the Nanoarray 
and comparable precision in quantification between dPCR and dPCR-HRM. Finally, we note that 
a single E. coli genome contains ~7 copies of 16S rRNA gene[56], which explains why we 
measured ~5 times more DNA than the estimated input from our 3 dilutions of E. coli target. The 
small difference is presumably due to typical DNA fragmentation during DNA extraction and 
locations of the 7 copies of the gene. Specifically, fragment sizes of extracted DNA generally 
range from 20 to 200 kb[57,58], while the distance between copies of the 16S rRNA gene ranges 
from 40 to 2,700 kb.[59] It is thus likely that E. coli genomic DNA molecules were fragmented 
such that most copies of the 16S rRNA gene were digitized into separated nanowells, while some 
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adjacent 16S copies were in the same fragments, resulting in fewer positives that could be 
measured in the Nanoarray.  

 
Figure 3. Digital bacterial DNA quantification in Nanoarray. The Nanoarray supports digital quantification of bacterial DNA 
through dPCR alone or dPCR-HRM. A) After performing dPCR for 3 concentrations of E.coli genomic DNA (estimated at 0.01, 
0.1, and 1 copy per nanowell), increasing numbers of positive nanowells can indeed be observed from the fluorescence images of 
the 3 Nanoarray modules as the DNA concentration increases. B) In dPCR-based quantification, which is based only on the 
fluorescence level within nanowells, a histogram of relative fluorescence brightness is plotted to quantify the percentage of positive 
wells in each Nanoarray module for each DNA concentration. Based on dPCR, 5.4%, 40.1%, and 99.3% positive nanowells are 
detected for the 3 DNA concentrations. C) In contrast, dPCR-HRM-based quantification relies on counting the number of correctly-
identified digital melt curves, which can enhance the assay specificity. Indeed, dPCR-HRM reveals that a fraction of the “positive 
nanowells” in each dilution originates not from E. coli but instead non-specific amplifications. The percentages of positive 
nanowells are therefore re-calculated to 5.3%, 39.5%, and 99.2% for these 3 dilutions. D) The percentage of positive nanowells 
from of each concentration can be used to calculate the corresponding mean occupancy (λ). Based on the calculated λʼs, the number 
of nanowells containing different copies of target in each nanowell can be visualized via Poisson distribution. A strong linear 
relationship between the estimated number of genomic copy per nanowell and λ can be observed from these 3 input concentrations 
quantified via both E) dPCR and F) dPCR-HRM, which provides strong evidence of precise quantification of DNA molecules in 
the Nanoarray and comparable precision in DNA quantification between dPCR and dPCR-HRM. 
 
dPCR-HRM-based Pheno-Molecular AST in Nanoarray 
The capacity for digitally detecting even minute increases in the quantity of DNA molecules via 
dPCR-HRM in the Nanoarray enables brief antibiotic exposure and consequently rapid pheno-
molecular AST. To demonstrate this concept, we incubated gentamicin-susceptible and 
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gentamicin-resistant strains of E. coli with gentamicin (a commonly used intravenous antibiotic 
for infections caused by gram-negative bacteria such as E. coli) at either 0 or 4 μg mL-1 (the low 
end of the clinical breakpoint for resistance/susceptibility) for 30 min before quantifying the 
DNA molecules from each case via dPCR-HRM in the Nanoarray. For the gentamicin-
susceptible E. coli strain,  λ of 0.120 (i.e., 0.120 λ) and significantly lower 0.042 λ were 
measured for the no-gentamicin control and the gentamicin-treated sample, respectively, 
suggesting that gentamicin indeed inhibited the growth of this susceptible E. coli (Figure 4A). 
Conversely, for the gentamicin-resistant E. coli strain, comparable 0.037 λ and 0.033 λ were 
observed from the no-gentamicin control and the gentamicin-treated sample, respectively, 
indicating that gentamicin could not inhibit the growth of this resistant E. coli (Figure 4B). By 
taking the ratio between λ of the drug-treated sample and λ of the no-drug control (i.e., Equation 
3),  

𝐺𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑖𝑜 =        (3) 

we calculate the “growth ratio” to concisely represent bacterial susceptibility and resistance to 
drugs. Here, the growth ratios of the gentamicin-susceptible E. coli strain and the gentamicin-
resistant E. coli strain were 0.418 ± 0.100 and 0.985 ± 0.124, respectively (Figure 4C). The 
clearly distinguishable growth ratios demonstrate that, when coupling pheno-molecular AST 
with dPCR-HRM in the Nanoarray, even 30 min of exposure was sufficient for completing the 
AST that effectively ascertained the susceptibility or resistance of E. coli strains to gentamicin.  

Similarly, our Nanoarray accurately identified the susceptibility profile of S. aureus to 
gentamicin. After 30 min incubation with 0 or 4 μg mL-1 of gentamicin, for gentamicin-
susceptible S. aureus, we measured 0.140 λ and substantially lower 0.026 λ from the no-
gentamicin control and the gentamicin-treated sample, respectively, indicating growth inhibition 
from gentamicin to this susceptible S. aureus (Figure 4D). On the contrary, for gentamicin-
resistant S. aureus, we observed similar 0.037 λ and 0.046 λ from the no-gentamicin control and 
the gentamicin-treated sample, respectively (Figure 4E). The similar λʼs suggest that gentamicin 
did not affect the growth of this resistant S. aureus. The growth ratio of the gentamicin-
susceptible S. aureus was 0.217 ± 0.043, whereas the growth ratio of the gentamicin-resistant S. 
aureus was 1.282 ± 0.024 (Figure 4F). The distinct growth ratios between these two strains 
demonstrate that performing pheno-molecular AST with Nanoarray effectively identified the 
susceptibility profiles of S. aureus. To the best of our knowledge, this is the first demonstration 
of rapid pheno-molecular AST with S. aureus with only 30 min of antibiotic exposure.  

Based on the growth ratios, we established a “susceptibility threshold” for distinguishing 
resistance from susceptibility for subsequent AST experiments. Our experimental results show 
that gentamicin-resistant strains of E. coli and S. aureus both had growth ratios of ~1, which 
reflect bacterial growth even in the presence of gentamicin. Meanwhile, both susceptible strains 
had growth ratios of < 1, indicating that gentamicin could effectively prevent their growth. Here, 
we set the susceptibility threshold that is applicable for both species by subtracting 3 standard 
deviations from the mean of the growth ratio for the gentamicin-resistant E. coli and obtained 
0.614 as our susceptibility threshold. In subsequent experiments, bacteria samples with growth 
ratios below the susceptibility threshold will be identified as susceptible. Conversely, bacteria 
samples with growth ratios above the susceptibility threshold will be called resistant. 
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Figure 4. Characterization of pheno-molecular AST with dPCR-HRM-based quantitative analysis in Nanoarray. A panel of 4 
bacterial strains with distinct susceptibilities to gentamicin is used to characterize the performance of pheno-molecular AST coupled 
with dPCR-HRM-based quantitative analysis. In all cases, the gentamicin-treated aliquot and the no-antibiotic control aliquot are 
incubated for only 30 min and immediately analyzed via dPCR-HRM in the Nanoarray. Here, species-specific, color-coded 
Nanoarray images acquired from dPCR-HRM provide effective representation of the pheno-molecular AST results.  A) For 
gentamicin-susceptible E. coli, significantly more E. coli DNA is measured from the no-gentamicin control aliquot (λ = 0.120) than 
the gentamicin-treated sample aliquot (λ = 0.042). B) For gentamicin-resistant E. coli, comparable amounts of E. coli DNA are 
measured from the no-gentamicin control aliquot (λ = 0.037) and the gentamicin-treated sample aliquot (λ = 0.033). C) The “growth 
ratios” of gentamicin-susceptible E. coli and gentamicin-resistant E. coli – calculated from the ratio between λ of the gentamicin-
treated sample and λ of the no-gentamicin control from duplicate experiments – are 0.418 ± 0.100 and 0.985 ± 0.124, respectively. 
In the growth ratio plot, the dashed line represents the susceptibility threshold for determining whether the bacteria strain is 
susceptible (S) or resistant (R) to gentamicin, which is set at 3 standard deviations from the mean of the growth ratio for the 
gentamicin-resistant E. coli. Similar results are observed for S. aureus, where D) significantly more S. aureus DNA is measured 
from the no-gentamicin control aliquot (λ = 0.140) than the gentamicin-treated sample aliquot (λ = 0.026) for gentamicin-
susceptible S. aureus, and E) comparable amounts of S. aureus DNA are measured from the no-gentamicin control aliquot (λ = 
0.037) and the gentamicin-treated sample aliquot (λ = 0.046) for gentamicin-resistant S. aureus. F) The growth ratios from duplicate 
experiments are 0.217 ± 0.043 for gentamicin-susceptible S. aureus and 1.282 ± 0.024 for gentamicin-resistant S. aureus, and 
correctly fall below and above the susceptibility threshold, respectively. 
 
Bacteria ID and Pheno-Molecular AST from Complex Samples 
By performing dPCR-HRM in the Nanoarray, our platform offers unique capacity for analyzing 
complex samples – samples that may contain multiple species of bacteria in a clinically relevant 
sample matrix – without additional sample processing or species isolation steps. For initial 
demonstration, we used the Nanoarray to identify and enumerate a polymicrobial sample that 
contains two bacterial species. This mock polymicrobial sample was generated by mixing S. 
aureus with P. mirabilis at equivalent amount. After dPCR-HRM and species identification 
using our identification algorithm, 0.011 λ were identified as S. aureus and relatively similar 
amount of 0.012 λ were identified as P. mirabilis (Figure 5A). This result evidently supports that 
our Nanoarray is capable of simultaneously identifying multiple bacterial species in a single 
sample. 

As the final demonstration of our method, we identified two species of bacteria and 
determined their susceptibilities to gentamicin directly from a simulated polymicrobial urine 
sample. Here, we created the simulated polymicrobial urine sample by spiking both gentamicin-
susceptible S. aureus and gentamicin-resistant E. coli in culture medium laced with 10% culture-
negative (i.e., bacteria-free) urine sample (Figure 5B). After 30 min gentamicin exposure, in a 
representative no-gentamicin control, 0.072 λ were identified as S. aureus and 0.032 λ were 
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identified as E. coli. On the other hand, from the corresponding gentamicin-treated sample, we 
identified 0.015 λ as S. aureus and 0.034 λ as E. coli (Figure 5B, representative color-coded 
Nanoarray devices are shown; S. aureus – orange, E. coli – blue). Similarly, from duplicate 
experiments, growth ratios were calculated to be 0.224 ± 0.022 and 0.991 ± 0.133 for S. aureus 
and E. coli, respectively (Figure 5C). By comparing these ratios with the susceptibility threshold 
previously determined for these two bacterial species, S. aureus was determined to be 
gentamicin-susceptible while E. coli was determined to be gentamicin-resistant – both in 
accordance with what we expected. These results demonstrate the use of Nanoarray for 
simultaneously identifying multiple bacterial species and performing AST, even in the presence 
of urine. 
 

 
 
Figure 5. Bacteria ID and pheno-molecular AST from complex samples in Nanoarray. A) Our platform offers unique capability 
for analyzing polymicrobial samples. For example, equal concentrations of S. aureus and P. mirabilis spiked in the same sample 
are both correctly identified and enumerated by performing dPCR-HRM and machine learning-assisted bacteria ID. The 
simultaneous ID results for both species can be clearly visualized through digital melt curves, as well as the corresponding species-
specific, color-coded Nanoarray image. B) Our platform is also capable of achieving comprehensive bacteria ID and pheno-
molecular AST for urine sample containing multiple bacteria with distinct antibiotic susceptibilities. Here, samples containing 10% 
urine with spiked-in gentamicin-susceptible S. aureus and gentamicin-resistant E. coli are used for testing. Following pheno-
molecular AST, dPCR-HRM, and machine learning-assisted bacteria ID, color-coded Nanoarray images clearly show that not only 
are both species in the sample are identified, but more S. aureus DNA is detected in the no-gentamicin control (λ = 0.072 for the 
no-gentamicin control and λ = 0.015 for the gentamicin-treated sample) and comparable amounts of E. coli DNA are detected in 
the no-gentamicin control (λ = 0.032) and the gentamicin-treated sample (λ = 0.034). C) After multiple tests, the corresponding λʼs 
and growth ratios confirm the identity and the gentamicin susceptibility for both gentamicin-susceptible S. aureus and gentamicin-
resistant E. coli. These results validate the repeatability of our platform in achieving bacteria ID and AST in polymicrobial urine 
samples. 
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Conclusions 
 
We have developed the first microfluidic-based universal dPCR and machine learning-assisted 
dHRM analysis platform that enables broad bacteria ID and rapid pheno-molecular AST for 
addressing critical unmet needs in the clinical diagnosis of infectious diseases. We first 
developed the Nanoarray device and performed dPCR-HRM to broadly detect 5 common UTI 
species based on their universal 16S rRNA gene and generate hundreds of melt curves for each 
bacterial species in parallel, which have been stored in our digital melt curve database. We 
subsequently created our machine learning-based melt curve classification algorithm, and used it 
in tandem with reference melt curves generated directly in each Nanoarray device to achieve 
bacteria ID. We have also shown the capability of the Nanoarray in measuring the concentrations 
of E. coli genomic DNA across three titrations. Precise quantification of bacterial DNA in the 
Nanoarray allowed us to accurately determine susceptibility profiles of gentamicin-susceptible 
and gentamicin-resistant strains of E. coli and S. aureus via pheno-molecular AST with as little 
as 30 min exposure to gentamicin. Moreover, sample digitization in our Nanoarray allows each 
bacterial DNA molecule to be individually interrogated through dPCR-HRM, which enables 
polymicrobial detection. Leveraging this unique capability, we analyzed a spiked, polymicrobial 
urine sample and correctly identified the gentamicin-sensitive E. coli and the gentamicin-
resistant S. aureus that were both present in the sample with a turnaround time of ~4 hours. 
These results illustrate the potential of our platform as a comprehensive and rapid diagnostic 
method for infectious diseases. 

We highlight several technical and conceptual advances of our work. First, by digitizing 
DNA molecules through limiting dilution in the Nanoarray, our platform ensures that each DNA 
molecule can be individually quantified and analyzed, and thus enables the detection of 
individual bacterial species in polymicrobial samples. This advance addresses an intrinsic 
limitation of PCR-HRM-based bacteria identification performed in bulk (e.g., reaction tubes), 
which has a limited capacity in diagnosing polymicrobial samples because composite melt 
curves from multiple bacterial species in the sample cannot be easily resolved. Second, we 
demonstrate that, in the Nanoarray, dPCR-HRM offers comparable level of quantitative 
precision as dPCR alone while adding the potential benefit of reducing false-positives. Third, 
within a single Nanoarray device, we can generate hundreds or even thousands of digital melt 
curves for each species from a single experiment, allowing us to rapidly accumulate large sets of 
digital melt curves in our database for supervising, training, and improving the robustness of our 
machine learning-based digital melt curve identification algorithm. We also introduce using a 
reference module in the Nanoarray to perform dPCR control and generate reference digital melt 
curves in situ, which provides effective means for mitigating potential variations in digital melt 
curves due to experimental conditions. Finally, we demonstrate a new approach for achieving 
digital melt curve-based identification, in which we first classify the melting temperatures and 
then differentiates the shape of digital melt curves. This approach provides a solid conceptual 
framework as we expand our bacteria ID capacity.  

We also envision making a number of improvements and expanding the scope of testing 
our platform so that our platform can be used in clinical settings to enable precision-directed 
therapy, improve patient outcome, and reduce the spread of antibiotic resistance in the future. 
For example, it is imperative to continue simplifying and accelerating our method. To this end, 
we can expand the dynamic range of the Nanoarray by increasing the number and/or the volume 
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of the nanowells to facilitate direct analysis of bacterial DNA without dilution. This strategy 
could be particularly useful for the diagnosis of UTIs, for which the relevant bacteria 
concentrations range from 104 to 107 colony forming units per mL. In addition, we can 
implement a rapid PCR assay in the Nanoarray to shorten the turnaround time of our method. 
Although we have established the conceptual framework for achieving broad bacteria ID, we 
must continue expanding the number of bacterial species in our digital melt curve database and 
refining our digital melt curve identification algorithm accordingly to broaden our capacity of 
bacteria ID. Similarly, for pheno-molecular AST, we must test our platform against bacteria with 
various growth rates, as well as antibiotics with different mechanisms and at their respective 
minimum inhibitory concentrations (MICs). The expanded testing conditions would allow us to 
optimize the incubation time and refine the antibiotic susceptibility threshold for various 
bacterial species. Finally, our platform offers unique capacity for diagnosing polymicrobial 
infections, which present an increasingly relevant clinical challenge, especially for UTIs.[12,17,18] 
For example, up to 1 in 3 elderly UTI patients are polymicrobial[60] and up to 31% of catheter-
associated UTIs especially with long-term catheters are polymicrobial.[10,61] We therefore 
envision testing the performance of our platform in diagnosing polymicrobial infections from 
urine and potentially other types of clinical samples. Given the demonstrated capability and the 
potential for expansion, we believe that our platform, when fully developed, will become a 
useful diagnostic tool for rapid pathogen identification and antibiotic susceptibility testing from 
complex specimen. 
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