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Maintaining an in-focus image over long
time scales is an essential and non-trivial
task for a variety of microscopic imaging
applications. Here, we present an auto-
focusing method that is inexpensive, fast,
and robust. It requires only the addition
of one or a few off-axis LEDs to a conven-
tional transmitted light microscope. De-
focus distance can be estimated and cor-
rected based on a single image under this
LED illumination using a neural network
that is small enough to be trained on a
desktop CPU in a few hours. In this
work, we detail the procedure for gener-
ating data and training such a network,
explore practical limits, and describe rele-
vant design principles governing the illumi-
nation source and network architecture.

Many biological experiments involve imaging
samples on a microscope over time periods of
hours or days, either to observe the same struc-
ture over time, or to generate large tiled images
by scanning a sample and stitching together a
large field-of-view (FoV). In the former scenario,
thermal fluctuations can induce focus drift, and
in the latter, a sample that is not sufficiently flat
necessitates refocusing at each position. Since
it is often experimentally impractical or cumber-
some to manually maintain focus, an automatic
focusing mechanism is essential.

A variety of hardware and software solutions
have been developed for autofocus. Broadly,
these methods can be divided into two classes:
hardware-based schemes that attempt to directly
measure the distance from the objective lens to
the sample [1, 2, 6, 4, 21], and software-based

methods that take one or more out-of-focus im-
ages and use them to determine the optimal fo-
cal position [20, 9, 8]. The former usually require
hardware modifications to the microscope (e.g.
an infrared laser interferometry setup, additional
cameras or optical systems), which can be ex-
pensive and place constraints on other aspects
of the imaging system. Software-based methods,
on the other hand, can be slow. For example, a
software-based method might require a full focal
stack, then use some measure of image sharpness
to compute the ideal focal plane. More advanced
methods attempt to reduce the number of images
needed to compute the correct focus to just a
single out-of-focus image (single-shot autofocus).
However, existing single-shot methods either rely
on nontrivial hardware modifications such addi-
tional lenses and sensors [8] or are limited in
their application to specialized defocus regimes
(i.e. can only correct defocus in one direction
and in a certain range) [9]. Here, we demonstrate
a new software-based single-shot autofocus that
does not suffer from the limitations of previous
methods. Specifically, the only hardware modifi-
cation it requires is the addition of one or more
off-axis light-emitting diodes (LEDs) as an illu-
mination source, and it can correct defocus based
on a single out-of-focus image.

The central idea of our method is that a neu-
ral network can be trained to predict focus from
a single image taken under coherent or nearly co-
herent illumination at arbitrary focus relative to
the sample. Data were collected using a Zeiss
Axio Observer microscope (20× 0.5 NA objec-
tive lens) with the illumination source replaced
by a quasi-dome LED-array [13]. To train and
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validate our method, focal stacks were collected
using Micro-Magellan [14] as software control of
the microscope. Focal stacks had a total range of
60 µm with 1 µm spacing between successive im-
ages and were collected on the same part of the
sample with two different types of illumination:
one for computing the ground truth focal position
from an entire stack, and the other for training
the network to predict the output of this compu-
tation from a single image (Fig. 1a). The former
was achieved with images taken under relatively
incoherent, asymmetric illumination in order to
create phase contrast from otherwise transparent
cells [18]. This was achieved by using the LED ar-
ray to project a half annulus source pattern. The
latter was achieved by illuminating the sample
with a single off-axis LED. Image sharpness was
computed for each image in the incoherent fo-
cal stack by summing the high-frequency content
of the image’s power spectrum, and the maxi-
mum of the resultant curve was used to determine
ground truth focal position for the stack (Fig. 1a,
left). We found empirically that incoherent illu-
mination worked much better for this purpose
than coherent illumination, likely due to out-of-
focus blurring. Because this ground truth value
is calculated by a deterministic algorithm, this
paradigm scales well to large amounts of training
data. Only one coherent image is needed per a
training example, but we collect an entire stack
to get a set of training examples equal to the
number of focal planes. The defocus prediction
network architecture (Fig. 1a, right) begins with
a single coherent image. This image is Fourier
transformed, and the magnitude of the complex-
valued pixels in the central part of the Fourier
transform are reshaped into a single vector. This
vector is normalized to have unit mean to ac-
count for differences in illumination brightness,
and it is then used as the input layer of a neural
network trained in TensorFlow [3]. After the net-
work has been trained, it can be used to correct
defocus during an experiment by capturing a sin-
gle image at an arbitrary defocus under the same
coherent illumination, using the network to pre-
dict defocus distance, then moving to the correct
focal position (Fig. 1b). A single prediction from
a 2048x2048 image takes ∼50 ms on a desktop
CPU.

Through experimentation, we settled on a neu-
ral network architecture consisting of 10 fully-

connected hidden layers of 100 units each fol-
lowed by a single scalar output (i.e. the defocus
prediction). In addition, we experimented with
several other hyperparameters to improve train-
ing time and generalization ability. The most
successful of these were: 1) applying dropout [16]
to the vectorized Fourier transform input layer
(but not other layers) 2) Dividing the input im-
age into patches, and averaging the predictions
over each patch 3) Using only the central part
of the Fourier transform magnitude as an input
vector. Each of these were manually tuned to
maximize performance.
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Figure 1: Training and defocus prediction a)
Training data consists of two focal stacks for each
part of the sample, one with incoherent phase
contrast, and one off-axis coherent illumination.
(Left) The high spatial frequency part of each im-
age’s power spectrum from the incoherent stack
is used to compute a ground truth focal position.
(Right) A single coherent image is Fourier trans-
formed, and the magnitude of the central pixels
are used as input for a neural network that is
trained to predict defocus. This process is re-
peated for each of the coherent images in the
stack to generate a set of training examples. b)
During an experiment, a single coherent image
is collected off-focus and fed through the same
pipeline to predict defocus.

Using this architecture, we were able to train
networks capable of predicting defocus with root-
mean-squared error (RMSE) smaller than the ax-
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ial thickness of the sample (cells). Training with
440 focal stacks took 1.5 hours on a desktop CPU
or 30 minutes on a GeForce GTX 1080 Ti GPU,
in addition to 2 minutes per focal stack for pre-
computing ground truth focal planes and Fourier
transforms.
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Figure 2: Performance across sample types
a) Representative images of cells and tissue sec-
tion samples. b) Defocus prediction performance
(measured by validation RMSE) as a function
of the number of focal stacks used during train-
ing. c) A network trained on focal stacks of cells
predicts defocus well in other samples of cells,
but fails at predicting defocus in tissue sections.
With additional training on limited tissue section
data, however, we can learn to predict defocus in
both sample types.

To test the performance of our method for dif-
ferent samples, we collected data on two different
types of samples: white blood cells attached to
coverglass and an unstained, mounted 5 µm thick
histology section (Fig. 2a). Figure 2b shows the
performance of defocus predictions on a valida-

tion set based on the number of focal stacks used
to train the network, where each focal stack con-
tained 60 planes spaced 1 µm apart, distributed
symmetrically around the true focal plane. This
curve can be quite different depending on the
sample type and quality of training data. In gen-
eral, we observed better performance training on
noisier and more varied inputs (i.e. cells at dif-
ferent densities, particularly lower densities, and
different exposure times). This is consistent with
other results in deep learning, where adding noise
to training data improves performance [19].

Figure 2c shows the ability of the network to
generalize to new sample types. It performs well
on different samples of the same type (i.e. trained
on one slide of blood cells and tested on another
slide of blood cells). Training on cells, then test-
ing on a different type of sample (tissue section)
yields poor performance. However, we can gen-
eralize to other sample types by diversifying the
training data. Additional training using a smaller
amount of data from the new sample type (here
130 focal stacks, compared to 440 stacks of cell
data it was originally trained on) is sufficient.
The best performing neural networks in other do-
mains are typically trained on large and varied
datasets [7]. If this architecture is trained on
defocus data from a variety of sample types, it
should generalize to new types more easily.

Empirically, we discovered that discarding the
phase of the Fourier transform and using only
the magnitude as the input to the network dra-
matically boosted performance. This observa-
tion is further supported by comparing networks
trained using the Fourier transform magnitude
as input vs. those trained on the argument of
the Fourier transform phase (Fig. 3a). Not only
were networks using magnitude able to better fit
the training data, they also generalized better to
a validation set. This suggests useful informa-
tion for predicting defocus in a coherent inten-
sity image is relatively more concentrated in the
magnitude compared to the phase of its Fourier
transform.

In order to understand what features of the
images the network learns to make predictions
from, we compute a saliency map. The saliency
map attempts to identify which parts of the input
the neural network is using to make decisions, by
visualizing the gradient of a single neuron with
respect to the input [15]. The idea is that the
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Figure 3: Understanding how network pre-
dicts defocus a) A network trained on the mag-
nitude of the Fourier transform performs better
than one trained on the argument of phase of the
Fourier transform. b) Left, a saliency map (the
magnitude of the defocus prediction’s gradient
with respect to the Fourier transform magnitude)
shows the edges of the object spectrum have the
strongest influence on defocus predictions. Right,
edges correspond to high-angle scattered light,
which may not be captured off-focus.

output is more sensitive to features with a large
gradient and thus these have a greater influence
on prediction. In our case, the gradient of the
output neuron (i.e the defocus prediction) was
computed with respect to the the Fourier trans-
form magnitude. Averaging the magnitude of
the gradient image over many examples clearly
shows that the network recognizes specific parts
of the the overlapping two-circle structure [5]
that is typical for an image formed by coherent
off-axis illumination (Fig. 3c). In particular, re-
gions on the edges of the circles have an especially
large gradient. These areas correspond to the
highest angles of light collected by the objective
lens. Intuitively, this makes sense because chang-
ing the focus will lead to proportionally greater
changes in the light collected at the highest an-
gles (Fig. 3c).

Finally, we analyze the choice of illumination
on our defocus prediction network performance.
Since our setup has a programmable illumina-

tor [13], we can choose the source patterns at will.
First, using one LED at a time, we tested how
the angle of single-LED illumination affected per-
formance (Fig. 4a). We found that performance
improves with increasing angle of illumination,
up to a point where performance rapidly de-
grades. This drop-off occurs in the ’darkfield’ re-
gion (where the illumination angle is larger than
the objective’s NA), likely due to the low signal-
to-noise ratio (SNR) of the higher-angle darkfield
images (see inset images in Fig. 4a). This drop
in SNR could plausibly be caused by either a de-
crease in the number of photons hitting the sam-
ple from higher angle LEDs, or a drop off in the
content of the sample itself at higher frequencies.
To rule out the first possibility, we compensated
for the expected number of photons incident on a
unit area of the sample, which is expected to fall
off approximately proportional to 1

cos(θ) , where

θ is the angle of illumination relative to the op-
tical axis [12]. The dataset used here increases
exposure time in proportion to cos(θ) in order
to compensate for this. Thus, the degradation
of performance at high angles is most likely due
to the amount of high frequency content in the
sample itself at these angles and therefore might
be somewhat sample-specific.

Finally, we tested 18 different source patterns
chosen from within the distribution of x and y
axis-aligned LEDs available on our quasi-dome
(Fig. 4b). Since the light from any two LEDs
is mutually incoherent, single-LED images can
be added digitally to synthesize the image that
would have been produced with multiple-LED il-
lumination. This enabled us to computationally
experiment with different illumination types on
the same sample. Figure 4c shows the defocus
prediction performance of various patterns of il-
lumination. The best performing patterns were
those that contained multiple LEDs arranged in
a line. Given that specific parts of the Fourier
transform contain important information for de-
focus prediction and that these areas will move
to different parts of Fourier space with different
angles of illumination, we speculate that the line
of LEDs helps to spread relevant information for
defocus prediction into different parts of the spec-
trum. Although this analysis demonstrates more
and higher angle LED patterns seem to yield su-
perior performance, there are potential caveats:
In the former case, it could fail to hold when ap-
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plied to a denser sample (i.e. not a sparse distri-
bution of cells). In the latter, there is the cost of
the increase in exposure time needed to acquire
such images.
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Figure 4: Illumination design a) Increasing
the numerical aperture (NA) (i.e. angle relative
to the optical axis) of single-LED illumination
increases the accuracy of defocus predictions, up
to a point at which it degrades. b) Diagram of
LED placements in NA space for our LED quasi-
dome. c) Defocus prediction performance for dif-
ferent illumination patterns. Patterns with mul-
tiple LEDs in an asymmetric line show the lowest
error.

To summarize, we have demonstrated a
method for training and using a neural network
for single-shot autofocus, with analysis of design
principles and practical trade-offs. The method
works with different sample types and is sim-
ple to implement on a conventional transmit-
ted light microscope, requiring only the addition
of off-axis illumination. Alternately, it can be
thought of as a new modality for existing coded-
illumination setups, which have been demon-
strated for super-resolution [22, 11, 17], quanti-
tative phase [22, 18, 11], and multi-contrast mi-
croscopy [23, 10]. Our method provides a low-
cost, simple mechanism for automated autofocus
if coded illumination becomes standardized on
microscopes of the future. Additionally, we have
shown an example of how deep learning can be

mixed with conventional signal processing tech-
niques to boost performance and and interpret
the functionality of neural networks.

Open source

The code needed to implement this technique
and reproduce all figures in this manuscript
can be found in the Jupyter notebook: 1. H.
Pinkard, ”Single-shot autofocus microscopy us-
ing deep learning–code,” (2019), https://doi.

org/10.6084/m9.figshare.7453436.v1. Due
to its large size, the corresponding data is avail-
able upon request.
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