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Abstract

In non-model organisms, evolutionary questions are frequently addressed using reduced
representation sequencing techniques due to their relatively low cost, ease of use, and
because they do not require genomic resources such as a reference genome. However,
evidence is accumulating that many such techniques may be affected by specific biases,
questioning the accuracy of obtained genotypes, and as a consequence, their usefulness in
evolutionary studies. Here we introduce three strategies to assess genotyping error rates in
such data: through the comparison with high quality genotypes obtained with a different
technique, from independent replicates of some samples, or from a population sample when
assuming Hardy-Weinberg equilibrium. Applying these strategies to data obtained with
Restriction site Associated DNA sequencing (RAD-seq), arguably the most popular reduced
representation sequencing technique, revealed per-allele genotyping error rates that were
much higher than sequencing error rates, particularly at heterozygous sites that were wrongly
inferred as homozygous. As we exemplify through the inference of genome-wide and local
ancestry of well characterized hybrids of two widespread and intensively studied Eurasian
poplar (Populus) species, such high error rates may easily lead to wrong biological
conclusions. By properly accounting for these error rates in downstream analyses, either
through the incorporation of genotyping errors directly, or by recalibrating genotype
likelihoods, we were nevertheless able to use the RAD-seq data to support biologically
meaningful and robust inferences of ancestry among Populus hybrids.

Introduction

Despite the impressive advancements in sequencing techniques and the decrease of related
costs, whole genome sequencing (WGS) remains prohibitively expensive when working with a
large number of samples or species with large genomes. Since many applications do not
require information on the whole genome, reduced representation sequencing techniques
are valuable alternatives and have become widely used for genome-wide SNP discovery and
genotyping, especially in species with poor genomic resources (Narum et al. 2013; Andrews
et al. 2016).

A commonly used reduced representation sequencing technique is Restriction site
Associated DNA sequencing (Miller et al. 2007; Baird et al. 2008), which allows the
sequencing of massively multiplexed samples at minimal costs by focusing on the sequences
adjacent to restriction sites. Since restriction sites are often shared between individuals within
a species and often also between closely related species (Cariou et al. 2013), focusing on
adjacent sequences guarantees that sequenced loci are mostly overlapping across samples.
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Briefly, the first step in the original RAD-seq protocol is the digestion of genomic DNA with a
restriction enzyme. The resulting fragments are ligated to an adaptor and a unique barcode
for each sample, and multiple individuals are pooled. The fragments are then sheared using a
sonicator and those showing the proper size are selected and amplified through polymerase
chain reaction (PCR). At this point the library is suitable for sequencing. By focusing the
sequencing effort on tagged restriction sites, rather than on all randomly sheared genomic
fragments (Rowe et al. 2011; Arnold et al. 2013), the number of markers can be customized
through the choice of restriction enzymes. This choice will also influence which features of the
genome are sampled, since certain enzymes preferentially cut in exonic regions, while others
target intergenic and intronic regions (Arnold et al. 2013; Pootakham et al. 2016).

Several alternative RAD-seq protocols allow for ample customization of this methodology.
These include the elimination of the sonication step (Andrews et al. 2016), ddRAD (Peterson
et al. 2012), which uses two restriction enzymes rather than one, 2bRAD (Wang et al. 2012),
which uses llb-type restriction enzymes and produces fragments of 36 bp, and ezRAD
(Toonen et al. 2013), in which DNA is digested with isoschizomers (a pair of restriction
enzymes recognizing the same sequence). However, each method has different advantages
and pitfalls, and a specific protocol may be more suitable for some applications than for
others (Puritz et al. 2014). Due to this versatility, RAD-seq has been used in diverse
applications, including the study of the genomics of adaptation (Andrews et al. 2016),
hybridization and speciation (Marques et al. 2016), inbreeding depression (Hoffman et al.
2014), genetic associations (Nadeau et al. 2014), genetic mapping (Chutimanitsakun et al.
2011) and phylogeographic and phylogenomic analyses (Emerson et al. 2010; Leaché et al.
2015).

Despite this widespread use, genotypes called from RAD-seq data have been associated with
several biases, many of which are specific to RAD-seq. Several major biases potentially affect
alleles differently, which may lead to their unequal representation in sequencing data, and
hence to genotyping errors at heterozygous sites (Davey et al. 2013). For instance,
polymorphisms occurring in the restriction site may result in one allele not being cut and
therefore not sequenced, potentially causing linked sites to be erroneously called
homozygous (“allele dropout”). Polymorphisms at neighbouring restriction sites may also
result in genotyping biases, for example, if the length of the fragment of one allele falls short
of the selected size range (Andrews et al. 2016). Yet size differences among longer fragments
were also found to result in unequal sequencing depth at linked sites because sonicators
shear shorter fragments less efficiently than longer fragments (Sambrook & Russell 2006).
Finally, the PCR step present in most RAD-seq protocols may contribute to genotyping errors
through unequal amplification of the two alleles (Casbon et al. 2011) or through so-called PCR
duplicates, the sequencing of misleading clonal copies of the same initial molecule (Andrews
& Luikart 2014). Since many protocols produce single-end libraries or libraries where both
ends are defined by restriction sites (e.g. ddRAD), PCR duplicates cannot be reliably identified
bioinformatically unless very many different adapter sequences are used (Schweyen et al.
2014). This is particularly problematic in the case of PCR errors that might be sequenced in
many copies, resulting in wrongly called heterozygous genotypes (Andrews et al. 2016).
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Some consequences of these biases in downstream analyses are well documented. Gautier
et al. (2013), for instance, found that under certain circumstances allele dropout leads to
incorrect estimates of genetic diversity. Arnold et al. (2013) demonstrated through both
simulations and real data that estimates of summary statistics commonly used to infer
diversity and past demography from RAD data are severely affected by missing haplotypes
and may show strong deviations from true values. Cariou et al. (2016), finally, illustrated that
allele dropout can lead to underestimation of diversity, especially in highly polymorphic
species.

In light of these potentially common issues, our aims here were to develop strategies (1) to
estimate genotyping error rates in RAD data, and (2) to properly incorporate the resulting
genotyping uncertainty in downstream analyses to mitigate the consequences of errors. For
this we present methods to estimate genotyping errors in RAD-seq data in three different
ways: First, by taking advantage of available genotyping data based on a different, more
reliable method (e.g. using a chip or high-depth sequencing). Second, by using independent
RAD-seq replicates of individuals. And third, by assuming Hardy-Weinberg proportions among
population samples. Using simulations we show that all these methods are powerful in
inferring error rates even if limited samples are available. We then applied these methods to
RAD-seq data of the two widespread, genetically and ecologically divergent tree species
Populus alba (White poplar) and P. tremula (European aspen) and inferred high genotyping
error rates of multiple percent. By properly accounting for genotyping uncertainty, however,
we obtain biologically meaningful estimates of genome-wide and local ancestry.

Materials and Methods

Estimation of genotyping error rates

Let us denote by g;,the observed genotype of individual i=1, .., /at locus /=1, .., L,
where g; =0, 1, 2 reflects the number of copies of the alternative allele at a bi-allelic locus.
Given per-allele genotyping error rates g,and ¢, at homozygous and heterozygous sites,
respectively, the probabilities P(g;lg,,€,) of observing genotype g, are given in Table 1. We
next present three strategies to estimate the genotyping error rates g,and g, from called
genotypic data.

From a Truth Set. Consider a set of accurate genotypes vy, obtained independently for a
common set of individuals and loci. Assuming all y; to be correct and genotyping errors to be
independent between sites and individuals, the likelihood of the observed genotypes

g=1g11> - &n» - &} is then given by
1L

P(gly, gy, €)= H [TP(glvi» €05 €1)s

i=1 =1
where  P(g;lv;, €, €)is given in Table 1 and and vy ={y,;, ..., ;1> - Y. }- We obtain
maximum likelihood estimates of ¢gjand ¢, through numerical maximization (see
Supplementary Methods).
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From Individual Replicates. Consider a set of individuals for which multiple independent
sequencing experiments were conducted. Let us denote by gg) the inferred genotype of
individual i=1,..., I atlocus /=1,..., L inreplicate j=1,..., r,. The likelihood of the full
data gis then given by
L 2 r;
P(gleg.e) =TT1T 2 [P(vlf,»y) HIP(g,»;Iv,So,Sl)] :
J=

i=11=1vy=0

where ydenotes the unobserved true genotype, P(ylf;,) =/, denotes the frequency of
genotype y among all loci of individual i and P(g;lv,€,,¢€,)is given in Table 1. We obtain
maximum likelihood estimates of the parameters ¢,, € ,and f= {f|p,....f12,---.fp} With an
EM algorithm as detailed in the Supplementary methods.

From Population Samples. Consider a set of individuals i=1,...,/ sampled from a random
mating population such that the distribution of the true genotypes atloci /=1,...,L are well
described by Hardy-Weinberg proportions. While the allele frequencies f; are unknown, let
us assume that they follow a Beta distribution with parameters a, B such that f; ~ Beta(a, B), as
is expected under neutrality (Wright 1931). The likelihood of the full data is then given by

1

2
‘1 ZOP(giZ|7a80981)P(YIf)dfla
= Y:

where the sum runs over the unknown true genotype vy, P(y|f)are the Hardy-Weinberg

L
P(gley, €y, 0,B) = gf P(f}/o, B)

proportions and P(g;ly,&, &) is given in Table 1. To obtain estimates under this model we
resort to an MCMC approach under a Bayesian scheme (see Supplementary methods) with
exponential priors g,¢, ~ Exp(}) truncated at 0.5 and normal priors log(a), log(B) ~ N(u,c?).

We used A =35, p=log(0.5)and o2 = 0.25 throughout.

Error rate classes. All above methods are readily extended to jointly infer error rates for
multiple classes, such as bins of sequencing depth or groups of samples if libraries were
prepared in multiple experiments. Inferring the error rates of all classes jointly is beneficial in
the case of individual replicates or population samples, as information about hierarchical
parameters such as individual genotype frequencies fl.y or the parameters a,p of the Beta
distribution are shared across classes. Here, this allows us to infer error rates of multiple bins
of sequencing depth.

Recalibrating genotype likelihoods. We recalibrate genotype likelihoods by treating obtained
genotype calls g, as data and determining the likelihoods P(g;ly;.€y, € )for all y,=0,1,2
according to Table 1 and using parameter estimates g, and ¢, obtained for the relevant error
rate class. If a truth set is available, we also calculate the empirical likelihoods P(g;ly; = g)
across all loci with y;, = g of a particular error rate class.

Implementation: We implemented all algorithms developed here in the open-source C++
program Tiger (Tools to Incorporate Genotyping ERrors), available through the git repository
at https://bitbucket.org/wegmannlab/tiger.
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Simulations. We used simulations to assess the power of the methods introduced above to
infer genotyping error rates. All simulations were generated directly under the assumed
model using routines we implemented in Tiger. Under the truth set or replicate model, we
quantified the power separately for homozygous and heterozygous sites. This was not
possible under the Hardy-Weinberg model, for which we draw true allele frequencies from a
Beta distribution with parameters o=p=0.7, implying about 29% of heterozygous

genotypes.
Application to Populus species

Study system and plant material. We generated RAD-seq data of 139 individuals of the two
widespread tree species Populus alba and P. tremula, and their hybrids (P. x canescens) in
two sets. The first set consisted of 136 individuals (Supplementary Table S1) grown with
minimal interference in a common garden established at the University of Fribourg
(Switzerland) and previously genotyped by Lindtke et al. (2014). All these individuals grew
from seeds collected from 15 mother trees in a natural hybrid zone in the Parco Lombardo
della Valle del Ticino in Northern ltaly where individuals of the two species and their hybrids
grow side by side (Lindtke et al. 2012; Christe et al. 2016).

The second set consisted of four individuals for which we generated multiple replicates: a
hybrid individual (FO39_05) also included among the samples of the first set, a second hybrid
individual (I373_A) also from the Ticino hybrid zone but grown in a common garden in
Salerno, ltaly, a pure P. alba individual (J1) from the Jalén river in the Ebro watershed
(Northeast of the Iberian Peninsula), an assumed F1-hybrid tree (BET) from a population in the
Tajo river headwaters (Central Iberian Peninsula). The two Iberian individuals were previously
genotyped using microsatellites (Macaya-Sanz et al. 2011).

DNA extraction and RAD sequencing. For all samples, DNA was extracted from 15-20 mg of
silica-dried leaf material with the Qiagen DNeasy Plant Mini Kit (Valencia, CA). The
concentration of DNA was measured with a Qubit 2.0 Fluorometer using the dsDNA HS assay
kit (Invitrogen), and its integrity verified with electrophoresis on 1.5% agarose gels (1X TBE).
Concentrations were standardized to 20 ng/ul and individual samples were submitted for
library preparation and Restriction site Associated DNA sequencing (RAD-seq) to Floragenex
(Eugene, OR). There, all extractions of the individuals of the first set, as well as the replicate
extractions of FO39_05 and I373_A, were processed (together with additional samples
prepared in the same way), in five libraries of 95 individuals each. These libraries were
prepared according to Floragenex’ standard commercial protocol: genomic DNA was
digested with the restriction endonuclease Pst/ (chosen according to previous studies on
these species - Stolting et al. 2013; Christe et al. 2016) and RAD libraries were prepared with a
method similar to the one described in Baird et al. (2008). This protocol included 18 PCR
cycles, after which DNA fragments ranging from 300 to 500 bp were retained. All five libraries
were sequenced in a single run on an lllumina HiSeq2500 instrument, but on individual lanes.

Following the same protocol, an additional library was generated and sequenced by
Floragenex in a separate experiment, consisting of two and three replicate extractions of J1
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and BET, respectively, as well as extractions from offspring of a controlled cross between
them.

Bioinformatic data processing. We assigned reads to individuals or replicates with
fastg-multx (ea-utils; Aronesty 2011), allowing one mismatch in the 15 bp including barcode
and restriction site. Read quality was checked with FastQC 0.10.1 (Andrews 2010) and low
quality bases and reads were removed with condetri v.2.3 (Smeds & Kiinstner 2011) using
default parameters, except for the options -hqg (high quality threshold) and -Ifrac (maximum
acceptable fraction of bases after quality trimming with quality scores lower than the
threshold -1q), for which a value of 15 and 0.1 were chosen, respectively.

Good quality reads were aligned against the P. tremula mitochondrial reference sequence
(Kersten et al. 2016) and against the nuclear reference genome of P. trichocarpa
(Ptrichocarpa_210_v3.0; Tuskan et al. 2006) using Bowtie2 2.3.0 (Langmead & Salzberg 2012)
with “end-to-end” and “very sensitive” settings. Reads with mapping quality lower than 20
were discarded using samtools 1.3 (Li et al. 2009) and read group information was added with
picard tools 1.139 (http://broadinstitute.github.io/picard). We then used the tools TargetCreator
and IndelRealigner of GATK 3.8 (DePristo et al. 2011) to realign around indels, and recalibrated
base quality scores for each individual using the method by Kousathanas et al. (2017)
implemented in ATLAS (Link et al. 2017) on mitochondrial sequences. This method does not
require a priori information on genotyping information and instead learns base qualities from
haploid regions while integrating over genotype uncertainty. Finally, we called genotypes with
UnifiedGenotyper in GATK 3.8 (DePristo et al. 2011).

To then only retain reliable sites for comparison, we filtered resulting variants using vcftools
(Danecek et al. 2011) and custom R scripts: first, we removed sites with an average depth
across individuals >24 (the 98.7% quantile) to exclude potentially paralogous loci. Second, we
only kept variants with at most two segregating alleles. Third, we removed indels and variant
sites within 5 bp of an indel to avoid Single Nucleotide Variants (SNVs) originating from
misalignments.

Truth Set. Genotypes of the 136 individuals grown in the common gardens were previously
obtained (Lindtke et al. 2014) with a genotyping-by-sequencing (GBS) protocol very similar to
the ddRAD protocol (Peterson et al. 2012) and using the restriction enzymes EcoR/ and Msel.
Importantly, Lindtke et al. (2014) generated sequencing data also for the 15 mother trees and
used sibships in a Bayesian approach to infer genotypes while accounting for familial
relationships.

To compare these high quality genotypes to those obtained from our own RAD-seq
experiment, loci covered in both studies had to be identified first. Since Lindtke et al. (2014)
used an older P. tremula reference, we extracted from this reference windows of 201 bp
around each locus in the GBS data set (100 bp on either side). We then mapped these
extracted sequences against the P. trichocarpa reference with Bowtie2 2.3.0 (Langmead &
Salzberg 2012) with “end-to-end” and “very sensitive” settings and retained only those
sequences that mapped uniquely with quality of 20 or more. We then kept all loci overlapping
between the two data sets, but removed four loci for which different alternative alleles were
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called. To ensure high accuracy of the GBS data, we restricted all comparisons to genotypes
called with a posterior probability > 99% by Lindtke et al. (2014).

Estimation of genome-wide and interspecific ancestry. We estimated genome-wide (g) and
interspecific (Q,,) ancestry for the 136 common garden samples using entropy (Gompert et al.
2014), a program that implements a model similar to the admixture model in structure
(Pritchard et al. 2000). In contrast to structure, however, entropy can also make use of
uncertain genotypes from low depth sequence data by working directly with genotype
likelihoods, rather than genotype calls. Here we ran entropy on the raw genotype likelihoods,
as well as on genotype likelihoods recalibrated using empirical likelihoods, excluding sites
with >50% missing data in both cases. To stratify the estimates and have sufficient
observations to estimate these probabilities reliably, we considered five RAD-seq depth
classes: 1-3, 4-7, 8-15, 16-31 and >32.

Inference of locus-specific ancestry. To infer locus-specific ancestry, we ran RASPberry
(Wegmann et al. 201), which implements a Hidden Markov Model (HMM) to explain
haplotypes of admixed individuals as a mosaic of provided reference haplotypes for each
species. We obtained suitable reference haplotypes by phasing previously characterized pure
P. alba and pure P. tremula individuals (51 each) from the ltalian, Austrian and Hungarian
hybrid zones (Christe et al. 2016) using FastPhase (Scheet & Stephens 2006), building input
files with fcGENE (Roshyara & Scholz 2014). For use in RASPberry, individuals in the reference
panels were not allowed to have missing data. We thus restricted the comparison to only the
SNVs covered in all parental individuals.

To compute HMM transition probabilities in RASPberry, we used a default recombination rate
of 5 cM/Mb as estimated by Tuskan et al. (2006) in P. trichocarpa and the estimates of the
genome-wide ancestry g for each sample obtained with entropy from the error corrected
data. For most other parameters we used previous estimates for P. alba and P. tremula hybrid
zones (Christe et al. 2016), but scaled these as proposed by Wegmann et al. (2011) to reflect
the size of the reference panel. These include the ancestral population recombination rates
(315 and 900 for P. alba and P. tremula, respectively), mutation rates (0.00185 and 0.00349,
respectively) and the miscopying rate (0.01). However, we set the time since admixture to five
(rather than one) to reflect the different sampling strategy.

To account for genotyping errors, we estimated a per-allele genotyping error gunder the
truth-set model with the constraint ¢, =¢, =¢, and then added this estimate to the
miscopying rate and the two mutation rates. Under the RASPberry copying model, these
parameters control the rate at which the sample genotypes differ from the reference
haplotype from which the sample is copying. That rate thus depends on the reference panel
size, but also on genotyping errors.

We called ancestry segments as any stretch on a chromosome within which the posterior
probabilities for a particular ancestry (homozygous P. alba, heterozygous ancestry or
homozygous P. tremula) was > 0.5 at all SNVs, and measured its length from the first to the
last SNV.
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Results

Power to infer genotyping error rates

Simulations suggest that a few thousand loci are sufficient to accurately estimate genotyping
error rates even from just a few samples (Figure 1). Due to the extra information provided, the
smallest estimation errors were obtained when using a truth set: >90% of all estimates fell
within a range from half to two-fold the true value (Q2, e.g., within [0.005, 0.02] for a true error
rate of 0.01) if estimated genotypes were compared at 100 truly homozygous and 200 truly
heterozygous genotypes for ¢,and e, , respectively.

Similar accuracy was achieved under the Hardy-Weinberg model as soon as 5,000 sites were
used. However, the accuracy is a function of the fraction of truly heterozygous genotypes in
the data set, with the accuracy of g, being much higher than for ¢, if much fewer than 50% of
all genotypes are heterozygous, and vice versa. Here, we simulated about 29% heterozygous
genotypes and thus expect accuracy to be higher if a larger fraction of genotypes were
heterozygous.

The lowest accuracy was observed under the replicates model, especially if error rates were
low. Using 10* comparisons, for instance, all estimates were within Q2 for a true value of
g, =¢; = 0.1, but only slightly above 70% of all estimates for a true value of g, =¢, =0.01.
This is readily explained by the fact that only very limited information about the true genotype
is available: if the two replicates differ in their genotype, it is not clear which one is correct.
Consequently, the accuracy of inference is much increased if more than two replicates are
available per individual (Supplementary Figure S1). Nonetheless, even small error rates can be
estimated relatively accurately, as >90% of all estimates for true value of ¢, =¢, = 0.01fell
within Q2 as soon as 5-10* or more comparisons were used. Assuming 20% of all considered
genotypes to be heterozygous, around 10° sites are required if two pairs of replicates are
used.

High genotyping error rates in RAD-seq

We next used our inference methods to quantify genotyping errors from our RAD-seq
experiment of 137 individuals of the two widespread tree species Populus alba and P.
tremula, and their hybrids (P. x canescens). On average, our experiment resulted in 831,160.66
(sd 153,433.62) reads per sample that passed quality trimming and mapped against the
reference genome of P. trichocarpa with mapping quality >20. From those, we called 529,305
Single Nucleotide Variants (SNVs), after removing multi-allelic sites, those with excess depth,
indels and variant sites around indels. We estimated per-allele genotyping error rates from
these SNVs through a comparison with previously published, high-quality genotypes (truth
set), and from multiple replicate libraries sequenced for a subset of our samples (replicates).

Truth set. We estimated per-allele genotyping errors by comparing genotype calls from our
RAD-seq experiment to those of a previously published GBS dataset (Lindtke et al. 2014) for
136 individuals present in both studies. In total, 7,426 SNVs overlapped between experiments,
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at which we could use a total of 16,610 genotype comparisons. Of those, only 69.9% matched,
with matching rates increasing with RAD-seq depth (Figure 2A). Strikingly, RAD-seq
genotypes were much less often heterozygous than GBS genotypes (Figure 2B), especially at
low depth. In line with these observations, we inferred per-allele genotyping error rates > 10%
whenever RAD-seq depth was < 35 and when using a model assuming a single error rate (
g, = €, ), driven by an exceptionally high error rate at truly heterozygous sites ¢, (Figure 2C).

These are surprisingly high error rates, particularly when considering that sequencing error
rates of lllumina machines are estimated at < 1% (Nielsen et al. 2011). Importantly, the bias
towards homozygous genotype calls is not simply explained by low depth. Indeed, RAD-seq
still resulted in less then half as many heterozygous calls at depths > 40x, which are usually
considered more than sufficient for accurate genotype calling (Nielsen et al. 2011). Instead, our
results suggest an inherent bias in the RAD-seq data analyzed here.

However, our estimates rely on the assumption that the GBS data reflect true genotypes. This
is based on good evidence: First, Lindtke et al. (2014) additionally sequenced the mother
trees of all individuals considered here and estimated posterior genotypes using a
hierarchical ancestry model that incorporated familial relationships with mothers and among
siblings. These updated estimates correlated with the raw maximum likelihood genotype
estimates ignoring familial data at 0.985 and differed from those in < 0.02% of all calls.
Second, we restricted this comparison to GBS genotypes with a posterior probability > 99%.
Third, the fraction of concordant genotype calls between the GBS and RAD-seq data
increased with RAD-seq depth. If the mismatches were driven by errors in the GBS data, no
such dependence should be observed.

Replicates. We next benefitted from two sets of replicate libraries to estimate per-allele
genotyping error rates. The first set consisted of two replicate libraries of each of two
individuals (FO39_05 and 1373_A) sequenced along all other samples. Error rates estimated
from that data corroborated the conclusion obtained from the comparison with GBS data
(Figure 2D): error rates at truly homozygous sites (¢g,) were on the order of 1% or less, and
those at truly heterozygous sites (¢, ) were equal or close to 50%, which is the largest value
possible under our model.

In contrast to the estimates obtained in comparison to GBS genotypes, the error rates at truly
heterozygous sites (¢, ) dropped to about 20% at high depth (= 20x). This difference might in
part be driven by errors in the GBS data slightly inflating error rate estimates. However, given
the high quality of the GBS data, it appears more likely that the error rates from replicates are
underestimated. Polymorphisms in restriction cut sites or unequal PCR amplification rates of
alleles, for instance, affect replicates systematically, while the statistical inference must
assume independence of errors between replicates.

To verify that high error rates are not specific to the RAD-seq run performed on these hybrids,
we carried out a second RAD-seq experiment including two and three replicates of a pure P.
alba individual (J1) and a putative F1 P. alba x P. tremula hybrid (BET), respectively. This
experiment resulted in 694,030.80 (sd 187,957.33) reads per sample that passed quality
trimming and mapped against the reference genome of P. trichocarpa with quality >20.
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Per-allele error rates estimated from this data were indeed lower, with error rates at truly
homozygous sites (¢g,) on the order of 0.2% and those at truly heterozygous sites (¢, ) starting

out at 50% and dropping to about 3% at a depth of 25x (Figure 2D). However, these lower
errors still point to a particular issue in calling heterozygous genotypes: of all truly
heterozygous sites with depth > 25x in our data, > 5% are expected to be called homozygous.
(The lower output of this sequencing experiment does not allow us to make reliable
statements for higher depths).

Estimation of genome-wide and interspecific ancestry

We investigated the impact of genotyping errors in our RAD-seq data on the inference of
genome-wide ancestry g as well as interspecific ancestry Q,,, which reflects the proportion of
loci of heterospecific ancestry. We estimated these ancestry components with entropy from
230,805 SNVs, and compared them to estimates from GBS obtained by Lindtke et al. (2014).

The model implemented in entropy accounts for the genotyping uncertainty reflected in the
genotype likelihoods. However, the raw genotype likelihoods obtained from our RAD-seq
data are misleading: for sites with considerable depth, the RAD-seq genotype likelihoods
often suggest almost certainty for wrong genotypes. Of all genotypes wrongly called as
homozygous at depth >30x (judged by the comparison to GBS data), 90% had a variant quality
of 77 or more. (A variant quality of 77 implies that it is more than 5 billion times less likely to
observe the obtained data from a heterozygous than homozygous site).

As a result, ancestry estimates differed considerably between the GBS and RAD-seq data sets
(Figure 3). Interestingly, the estimates of the genome-wide ancestry g were much less
affected by genotyping errors than the estimates of the interspecific ancestry Q,,. This is
readily explained, however, by the directionality of the most common error, which is to
wrongly infer homozygous genotypes at heterozygous sites. We found these errors to result
more frequently in a homozygous reference than homozygous alternative call (65.0%),
particularly at low depth (84.5% at depth <5x, 49.9% at depth >20x). But this did not introduce
a bias in g towards one of the species since we were using the reference sequence of the
outgroup P. trichocarpa. The estimates of Q,, however, are very sensitive to an
underestimation of heterozygosity.

To improve these estimates, we propose to directly account for the elevated genotyping error
rates in RAD-seq data by adjusting the genotype likelihoods according to the observed
genotyping uncertainty. By treating the genotype calls as data, we can determine the
probabilities P(gly) of observing a RAD-seq genotype call g given the true genotype 1y either
by using estimates of the per-allele error rates ¢y, ¢, , or empirically from the comparison to a
truth set. Using the latter approach on our data (individually for each depth) resulted in
estimates of g and Q,, that were much closer to those obtained by Lindtke et al. (2014; Figure
3).

Some differences between the point estimates of Q,, remain, likely due to differences in the
models and their information-sharing among individuals (in Lindtke et al. (2014), information
about maternal plants and sibships was part of the model) and the extent to which information
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in uncertain genotypes was outweighed by hierarchical prior probabilities related to ancestry.
Nonetheless, these results demonstrate the importance of accounting for uncertainty in
genotyping data since the estimates of interspecific ancestry with and without correction lead
to a very different biological interpretation: With correction, the hybrid individuals appear to
be mostly early generation hybrids, suggesting meaningful reproductive isolation between the
species. Without correction, the large number of individuals with low Q,, but intermediate
values of g suggest considerable gene flow between the species, an interpretation at odds
with recent work (Macaya-Sanz et al. 2011; Christe et al. 2016, 2017).

Inference of locus-specific ancestry

We next evaluated the impact of genotyping errors on local ancestry inference. Hybrid zones
between P. alba and P. tremula are dominated by pure parental individuals and early hybrids
(mostly F1), with only few adult recombinant hybrids (Lindtke et al. 2014; Christe et al. 2016).
We chose ten individuals among our samples spanning that spectrum according to g and Q,,
values from Lindtke et al. (2014): a putatively pure P. alba individual (FO39_01), a putatively
pure P. tremula individual (FO30_01), two putative backcrosses to P. alba (FO20_04 and
F032_08), two putative backcrosses to P. tremula (1I345_02 and 1345_03), two putative F1
hybrids (1373_03 and FO30_05) and two putative hybrids of later generations (Fn - FO22_03
and FO026_05). We then used RASPberry (Wegmann et al. 2011) to infer local ancestry along
chromosomes 1 through 5, restricting our inference to the 6,445 SNVs that did not have
missing data in the parental reference haplotypes we took from Christe et al. (2016).

In line with these expected simple ancestry make-ups, we inferred many large ancestry blocks
often spanning almost entire chromosomes (Figure 4). Surprisingly, however, we inferred most
of these blocks to be of homospecific ancestry, and also inferred many short segments, which
is difficult to reconcile with the putative ancestries of our samples (Figure 4). As an example,
consider the individual 1373_03 in Figure 4 that was classified as an F1 hybrid by Lindtke et al.
(2014), but for which we inferred homospecific ancestry blocks for both parental species. Such
artifacts could arise from the reference panels being too small to properly reflect the
haplotypes found in our hybrid individuals, large gaps between neighboring SNVs limiting the
power of the HMM implemented in RASPberry, but most likely by genotyping errors towards
homozygous genotypes.

While RASPberry does not account for genotyping uncertainty via genotype likelihoods, the
implemented copying-model allows for “mutations”, or differences between the observed
genotype of an admixed individual and the reference haplotypes from which it is copying. We
thus repeated the inference by adding an average per-allele genotyping error rate of 13.7%
(weighted average across depth >5x) to the mutation rate parameters to account for the high
genotyping error in our RAD-seq data (Figure 4). Accounting for genotyping errors indeed
improved our estimates. For the putative backcrosses, for instance, we called fewer segments
homozygous for the “wrong” ancestry (11 versus 34) and these covered a smaller fraction of
the first five chromosomes (6.1% versus 11.1% of the parts at which ancestry could be called).
Similarly, we called a higher fraction of the first five chromosomes to be of heterozygous
ancestry (45.0% versus 37.2% of the parts at which ancestry could be called). While these
results corroborate the importance of accounting for the true uncertainty in genotypes in
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downstream analysis, they also illustrate that a method accounting for a uniform error fails to
fully mitigate the bias against heterozygous genotypes present in our RAD-seq data sets.

Discussion

Here, we report high genotyping error rates in two independent RAD-seq data sets. We
obtained these estimates by comparing RAD-seq calls of two independent experiments,
either to published genotype calls for the same individuals (Lindtke et al. 2014) obtained with
a different sequencing method (GBS), or to calls obtained from independent replicates of the
same individuals. Both approaches provide evidence for high per-allele genotyping errors of
several percent and show that RAD-seq has a strong bias towards calling homozygous
genotypes at heterozygous sites that is not overcome with higher sequencing depth.

Only few studies have reported estimates of genotyping errors of reduced representation
techniques to date, but all agree with the high estimates obtained here. Luca et al. (2011), for
instance, compared genotypes of human samples obtained with a technique similar to RAD to
those available in a public database, and estimated that between 6.3 and 9.7% of
heterozygous sites were called as homozygous. Similarly, Mastretta-Yanes et al. (2015) found
that, depending on the parameter settings chosen for the de-novo assembly, between 5.9
and 8.8% of alleles were not concordantly called between replicates.

Several factors could explain the high genotyping error and the lack of heterozygous
genotypes in RAD-seq data. For example, one allele might not have been sequenced or
sequenced only at very low depth because of differences in fragment length that can lead to
amplification bias, less efficient shearing, or loss in size selection. This is a likely explanation,
since Davey and colleagues (2013) showed that there is a high correlation between read
depth and fragment length. Similarly, differential efficiency of PCR among alleles could have
masked one allele (i.e., PCR duplicates), causing it to be represented in a very low number of
reads (Schweyen et al. 2014). Finally, the well-known issue of allele dropout due to
polymorphisms in the restriction site and the “loss” of one allele at heterozygous sites may
have contributed to the inaccurate, low observed heterozygosity (Davey et al. 2013; Puritz et
al. 2014; Andrews et al. 2016). However, this problem is a less likely explanation as it should
not affect RAD-seq at a higher rate than the double-digest GBS protocol we used for the error
estimation.

Several bioinformatic solutions have been suggested to mitigate the apparent biases in
RAD-seq. Both Arnold et al. (2013) and Gautier et al. (2013) recommend the comparison of
read depth across sites, to identify loci likely exhibiting allele dropout. In our case, however,
depth varied substantially across sites, because of PCR duplicates or stochastic events,
rendering such an approach difficult. Davey et al. (2013) also noted that alleles present in two
copies at homozygous sites have higher depth compared to alleles present in single copy at
heterozygous loci, but read depths for the two sets of alleles overlap, inhibiting the accurate
detection of loci with allele dropout by using depth alone. To improve upon this, Cooke et al.
(2016) developed a method to infer the likelihood of observing allele dropout at a site on the
basis of the coverage of each sample, and suggested to ignore sites where this likelihood is
high. Finally, it was also suggested to discard any locus with a missing genotype, since this
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might indicate a polymorphism in the restriction site. In many studies with moderate depth,
including ours, the amount of missing data prevents the adoption of such drastic solutions. In
summary, all these filtering suggestions result in a massive reduction in usable loci, and hence
further accentuate the already limited genome-wide coverage of reduced library techniques
such as RAD.

As a model-based alternative, we propose here to properly account for the high genotyping
errors in downstream analysis. A first such attempt was recently proposed by Cariou et al.
(2016), who developed an Approximate Bayesian Computation (ABC) method to estimate
genetic diversity while accounting for allele dropout, but found this method not to be accurate
under elevated levels of diversity. A more general solution, we believe, is to make use of the
large number of recently developed tools that do not require genotype calls but rather work
directly from genotype likelihoods to account for uncertainty in the data (Fumagalli et al.
2014; Korneliussen et al. 2014; Kousathanas et al. 2017; Jersboe et al. 2017). Using such tools
minimizes the necessity to filter data stringently and is readily applied to low-depth data
(Nielsen et al. 20M).

However, for such methods to work properly, the genotype likelihoods need to accurately
reflect the uncertainty in genotypes. While all modern genotype callers also calculate
genotype likelihoods, these do not reflect biases specific to individual sequencing protocols
such as RAD-seq, as we illustrate here, and must thus be recalibrated. Here we propose two
recalibration strategies: If accurate genotype calls are available for a subset of the individuals
and markers, empirical genotype likelihoods can be obtained by comparing those to calls
from a reduced representation sequencing experiment. Alternatively, sample replicates may
be used to infer per-allele genotyping error rates, from which recalibrated genotype
likelihoods are readily calculated. Tools for both of these strategies are available through the
software Tiger, which also accounts for sequencing depth as an additional covariate. While
we found sequencing depth to be a particularly important predictor, the model is also readily
extended to additional covariates such as the raw genotype likelihood or genotype call, which
might provide additional information about genotyping error rates.

However, both strategies might be biased. Genotyping errors in a set of genotype calls
considered to be accurate (the truth set), for instance, will result in an overestimation of
genotyping error rates. Consistent biases in genotype calls affecting replicates similarly, on
the other hand, might be difficult to infer and result in an underestimation of genotyping error
rates. But despite these caveats, recalibrated genotype likelihoods are likely reflecting
genotype uncertainty much more accurately, particularly for protocols with error rates as high
as those we report here for RAD-seq. Indeed, we found here that genotype recalibration was
essential to avoid drawing inaccurate conclusions and instead recovered biologically
meaningful results about the ancestry of Populus hybrids.

We also note that if no tools accepting genotype likelihoods as input information are available
for specific applications, this should not discourage users from incorporating genotyping
uncertainty in the analyses. We have shown here that local ancestries were more reliably
estimated by RASPberry (Wegmann et al. 2011), a tool requiring genotype calls, when adding
the estimated genotyping error rate to the parameters of the model. But we note that given
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the particular lack of heterozygous genotypes in the RAD-seq data analyzed here, a model
using a single per-genotype error rate as implemented in RASPberry was not sufficient to
overcome all biases.

In conclusion, and in line with others (Mastretta-Yanes et al. 2015; Cooke et al. 2016; Cariou et
al. 2016), we strongly suggest to carefully assess genotyping error rates in reduced
representation sequencing experiments, and to properly account for those in downstream
analyses, for instance using the tools we present here through Tiger. For this purpose, we
recommend to either sequence a subset of individuals and markers at much higher quality, or
to include sufficient replicates, from which genotyping error rates can be inferred. Knowledge
on these error rates then allows to properly account for genotyping errors in downstream
analyses, rather than losing a large amount of information due to stringent filtering. However,
with ever dropping costs for sequencing and library preparation, low-depth whole-genome
sequencing may become a valuable alternative in many applications. Indeed, simulations
have shown that low-depth data spanning a larger fraction of the genome yield accurate and
precise estimates of population genetics parameters (e.g. Buerkle & Gompert 2013;
Kousathanas et al. 2017; Rustagi et al. 2017). The problem of high error rates in RAD-seq or
other reduced representation libraries is thus likely transient and we expect that the field will
quickly adopt new sequencing technologies that circumvent it entirely.
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Tables

Table 1. Per-allele genotyping error model. Shown are the probabilities of observing a
RAD-seq genotype given the the true genotype and the per-allele genotyping error rate &.

Observed genotype
True genotype 0 1 2
0 (1-€,)? 2e,* (1-€,) g2
0] 0 0] 0
* 2 2 *
1 g (1-s) (1-e) + ¢ g (1-s)
2 g2 2e,* (1-€,) (1-,)?
0 0 0] 0]
o
Figures
€ Truth Set & € Replicates & £ Hardy-Weinberg £
n=1 n=10 n=100 n=1 n=10 n=100 n=1 n=10 n=100 n=1 n=10 n=100 n=20 n=100 n=200 n=20 n=100 n=200
: : 7 z : ;
" E=c o o =1 o o
3, T A gl - Albdi 2l 0TIV YOV P
éé:‘;“ : ‘:‘- 4 z -:l ip"“&-v: H‘ :‘.‘ s + iw;:f #‘ #*
$E3 i i H L 3 i
2 3 42 3 42 3 4 2 3 42 3 42 3 4 2 3 42 3 42 3 4 2 3 42 3 a2 3 4 2 3 42 3 42 3 4 2 3 42 3 42 3 4
21 3 | 3 3 3 |‘ 3-”‘
5 8: a2l il Sl o O
T B o ULLL b s L s - o |[HERL) o |l]eend ;
gge“-‘ e s \'WW R | CERTE + nwfﬁ ;’F““Mé H : ﬁr 4
KR IRIRE: ] ] L
3 3 3 ‘ 3 b 3
! W - G

3 42 3 42 3 4 2 3 42 3 42 3 g 42.8 42 44 2 '3 42 3 42 3 4 23 423 42 3 4
log10 #sites log10 #sites. log10 #sites log10 #sites log10 #sites log10 #sites

Fig. 1: Accuracy of error rate estimates. Shown are the estimated error rates relative to the
true error rates (red line) of 100 replicates for different samples sizes n (shown on top), the
two error rates 0.1 and 0.01 (top and bottom row, respectively) and different numbers of
unlinked loci. The horizontal dashed lines indicate Q2, the interval within which an estimate is
less than a factor of two away from the true value (i.e. within half and two times the true
value). Simulations were generated for the truth set (left), the individual replicate (middle) and
Hardy-Weinberg models (right).
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Fig. 2: Estimates of genotyping errors in RAD-seq data. A. Maximum likelihood estimate (MLE)
of the frequency of genotypes estimated from GBS and RAD-seq data that match as a
function of RAD-seq sequencing depth. The gray region indicates the range of frequencies
within two log-likelihood units of the MLE. B. MLE estimate of the frequency of heterozygous
calls with RAD-seq among all calls of a particular depth. Gray region as in A. The
heterozygosity observed among all GBS genotypes is given as dashed line. C. Per-allele
RAD-seq genotyping error rates for homozygous (g, , black open symbols) and heterozygous
(e,, blue filled symbols) genotypes estimated using a GBS truth set, limited to depth class
with at least 100 comparisons. Estimates for a model assuming g, = €, are shown with yellow
closed circles. D. Per-allele RAD-seq genotyping error rates obtained from two replicates of
FO39_05 and I373_A each (circles) and two and three replicates from J1 and Bet, respectively
(triangles), limited to depth class with at least 1000 sites. Colors as in C.
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Fig. 3: Comparison of genome-wide (q) and interspecific (Q,,) ancestry estimates of 136
individuals obtained from GBS data (open circles, Lindtke et al. 2014) and estimates from
RAD-seq data (black circles) using either the raw (left panel) or corrected (right panel)
genotype likelihoods. Grey lines connect values obtained for the same individual.


https://paperpile.com/c/xrWJyG/5cfA
https://doi.org/10.1101/587428
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/587428; this version posted March 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

F030_01

e I
s b R
e Il vtk I
w0 R T Y
'373‘031: N FIH: r:’ H I IH II “} iﬂ I ‘__:____ H:[___I]___H_j:t
e PR

F032‘08. | I I - -T -f '“
F039_01_+

1 2 3 4 5
Chromosomes

Fig. 4: Comparison of local ancestry patterns on chromosomes 1-5 for (top to bottom) a
putatively pure and P. tremula individual (FO30_01), two putative backcrosses to P. tremula
(1345_02 and 1345_03), two putative hybrids of later generation (FO22_03 and F026_05),
two putative F1 hybrids (1373_03 and FO030_05), two putative backcrosses to P. alba
(FO20_04 and F032_08) and a putatively pure P. alba individual (FO39_01). For each
individual, RASPberry results with (+) and without (-) correction are shown. Blue represents P.
alba ancestry, orange P. tremula ancestry and grey heterospecific ancestry, with darker
shades showing higher confidence in the ancestry estimates. To facilitate visualization, only
sites with data are not shown.
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