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ABSTRACT 

Background: While our understanding of the role that the immune system plays in health and 

disease is growing at a rapid pace, available clinical tools to capture this complexity are lagging. 

We previously described the construction of a third-generation modular transcriptional repertoire 

derived from genome-wide transcriptional profiling of blood of 985 subjects across 16 diverse 

immunologic conditions, which comprises 382 distinct modules.  

Results: Here we describe the use of this modular repertoire framework for the development of a 

targeted transcriptome fingerprinting assay (TFA). The first step consisted in down-selection of 

the number of modules to 32, on the basis of similarities in changes in transcript abundance and 

functional interpretation. Next down-selection took place at the level of each of the 32 modules, 

with each one of them being represented by four transcripts in the final 128 gene panel. The assay 

was implemented on both the Fluidigm high throughput microfluidics PCR platform and the 

Nanostring platform, with the list of assays target probes being provided for both. Finally, we 

provide evidence of the versatility of this assay to assess numerous immune functions in vivo by 

demonstrating applications in the context of disease activity assessment in systemic lupus 

erythematosus and longitudinal immune monitoring during pregnancy. 

Conclusions: This work demonstrates the utility of data-driven network analysis applied to large-

scale transcriptional profiling to identify key markers of immune responses, which can be 

downscaled to a rapid, inexpensive, and highly versatile assay of global immune function 

applicable to diverse investigations of immunopathogenesis and biomarker discovery.   
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BACKGROUND:  

Traditionally the immune system has been viewed as playing a beneficial role in control of 

infection and a detrimental role in autoimmunity and allergic processes. More recently it has been 

appreciated to also have critical functions in a far wider range of common diseases including 

obesity, atherosclerosis, dementia, and numerous cancers among others[1-4]. The immune system 

acts as a highly interconnected network of cellular and humoral interactions and it is through either 

appropriate function or malfunction of network components that the immune system underpins 

these diverse human diseases [5-9].  

A better understanding of individual immune processes has facilitated numerous 

interventions that can alter immune responses and ameliorate outcomes. However cost-effective 

and standardized tools available to practitioners and clinical trialists that capture the complexity 

of immune responses and that could be used for monitoring the immune status of patients are 

lacking. Global monitoring of the immune system, even in clinical trials of immunotherapies, is 

often missing due to the complexity of implementing systems approaches. 

Immune responses are highly complex, dissecting out the reproducible global patterns of 

the immune system is critical to developing improved methods of immune monitoring [10]. In this 

regard, systems-scale analyses of global architecture in both normal and pathologic immune 

function is necessary. Different technologies under development and used in research have 

numerous strengths but also distinct challenges, including cost of reagents or instruments, 

complexity of the assay workflow, and complexity of data analysis and interpretation.  
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 We previously described the construction of a third-generation modular repertoire, 

compromised of 382 modules, and is representative of 16 immune states. We also described 

transcriptome fingerprinting as a novel and useful visualization scheme [11]. Here we take our 

work a step further, and describe the development of a cost-effective and practical, targeted 

transcriptome fingerprinting assay (TFA) (Figure 1), while preserving its capability of monitoring 

the same modular repertoire of immune responses. This assay is by design meant as a generic assay 

suitable for immune profiling across multiple states of health and disease. We demonstrate the 

utility of creating such an assay through a purely data-driven network analysis approach to identify 

core functional immune pathways. Our results show the complex molecular interactions in immune 

pathogenesis but also reveal a redundancy of core immune circuits.  

This assay highly simplifies the analysis and interpretation of gene transcription data in 

immunologic diseases. Several applications are envisioned, including assessment of disease 

activity, health monitoring, pre-symptomatic detection of disease, and biomarker discovery. In this 

manuscript we show application of the assay to assess disease activity in systemic lupus 

erythematosus (SLE) and for longitudinal immune monitoring during pregnancy. This assay is 

released as an “open resource”, including a complete list of reagents, detailed procedures, and 

source code for data analysis. 

 

RESULTS: 

In our third-generation modular repertoire, the 382 modules showed an inherent variability. 

We sought to show that the variability apparent in the modules can be reduced by using a subset 

of the module genes, demonstrating that there are core genes within each module that best reflect 

perturbations of that pathway. It also produces sets of genes that support rapid and cost effective 
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transcriptional profiling. In order to find a representative subset of modules that best reflects the 

variability seen across the source data, we partitioned the modules with Hartigan’s K-means 

algorithm using the jump statistic [12]  to determine an appropriate number of clusters and to 

reduce granularity, resulting in 38 subgroups. The module closest to the mean vector in each 

subgroup was selected to represent that subgroup, and if a subgroup did not contain at least one 

module in one of the 16 diseases showing at least 25% of genes up- or down-regulated, it was 

excluded from selection. This left 32 modules representative of the 382 original modules (Figure 

2). From each of the 32 modules we then selected 4 representative probes by ranking all probes 

according to the distance of each probe from the module’s mean probe vector. The highest ranking 

probes that had gene symbols unique to a module were selected.  

This unbiased process selected out modules most representative of each cluster and genes 

most representative of each module, resulting in a subset of 32 modules and 4 genes per module 

for a total of 128 genes representative of the diversity among the 382 modules and 14,502 total 

transcripts profiled. These 32 modules/128 genes were chosen to represent the “transcriptome 

fingerprint” used for assessment and monitoring of immunologic disease states (Table 1). This 

scaling down process allows the implementation of targeted assays, which, given the markedly 

reduced volumes of data generated per experiment, are cost-effective and allow higher sample 

throughput, faster turnaround and streamlined analysis and interpretation, while maintaining 

profiling of a broad repertoire of immune gene signatures.  

 

Identification of biomarkers for disease activity in SLE 

We first sought to show that a transcriptome fingerprinting assay (TFA) panel when 

measured by high-throughput qPCR, shows high correlation with gene expression data derived 
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from microarray. For this we used a cohort of adult patients with SLE, which was independent 

from the cohort used for module construction [13]. Whole blood samples from 24 SLE patients 

with varying stages of disease activity as well as 15 healthy age and gender matched controls were 

used for analysis. Samples were selected that had been drawn prior to initiation of new 

immunosuppressive treatment to reflect disease activity before therapy. Whole blood derived RNA 

samples taken at an initial visit were used to generate both microarray and qPCR data. High 

correlation values were observed between microarray and qPCR data for all genes and modules 

that had FC values greater than 1.5 for the ratio between SLE and healthy control expression levels 

(Figure 3a). 

Next, differences in immunologic pathways potentially useful for stratifying the SLE 

patients were evaluated. Four modules that are biologically relevant to SLE showed distinct up-

regulation in SLE relative to healthy controls. These were M12.15, annotated as a cell cycle 

module, M8.3 (type 1 interferon), M15.86 (interferon), and M10.4 (neutrophil activation).  

Module M12.15 (cell cycle) showed a high degree of correlation with clinical disease activity as 

measured by the SLE Disease Activity Index (SLEDAI) score (R=0.793, P=6.03E-6) [14]. This 

module showed a higher level of correlation than traditional markers of disease activity – anti-

double-stranded DNA titers (R=0.636, P=0.001) and C-reactive protein (CRP) (R=0.327, not 

significant) – which had been measured at the same time (Figure 3b) [15]. The four representative 

genes within module M12.15 are linked to SLE. TYMS is an enzyme critical for folate metabolism 

and polymorphisms in this and related genes have previously been associated with SLE [16]. CD38 

has been shown to be expressed in higher levels on circulating lymphocytes in active SLE [17]. 

TNFRSF17 (also called BCMA) is a B-cell maturation antigen that has been shown important for 

B-cell development and SLE pathogenesis in mouse models [18]. MZB1 (previously MGC29506) 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587295doi: bioRxiv preprint 

https://doi.org/10.1101/587295


has been shown to be involved in immunoglobulin heavy chain biosynthesis [19]. Our finding 

demonstrates that four genes representative of a signature important to B cell development show 

very high correlation with SLE disease activity and that TFA could present potential clinical utility 

for assessment of disease activity. 

Abundance of transcripts representative of two interferon modules, M8.3 and M15.86, was 

also increased in the SLE samples relative to control. Several groups have previously reported an 

increase in type I interferon (IFN) regulated genes in a subset of SLE patients (reviewed in [20] 

and [21]). More recently, whole-genome transcriptional profiling has demonstrated a higher degree 

of complexity in interferon activity with an apparent gradient of interferon responses in SLE [13, 

22]. Here our findings support this observation; since patients with SLE included in our study 

could be similarly stratified based on either absence of interferon signature, activation of a single 

interferon module M8.3, or activation of both interferon modules M8.3 and M15.86, in an apparent 

sequential pattern (Figure 3c). The genes representative of M8.3, ISG15, IFI44, LY6E, and XAF1, 

are all well characterized as IFN-alpha inducible genes. The genes representative of M15.86, 

MOV10, TIMM10, KIAA1618, and GALM are less well characterized and may represent either 

a related or distinct interferon response seen in a subset of SLE patients in parallel with a relatively 

saturated IFN-alpha response. TFA provides a straightforward framework to further investigate 

this differential interferon response in SLE. 

Module M10.4 is composed of neutrophil specific genes, but did not show significant 

correlation with participants’ absolute neutrophil counts collected at the same time (R=0.33, 

P=0.144), suggesting this module reflects alterations in neutrophil function and activity more than 

quantity. The four representative genes that were selected out of the fifteen genes constituting 

M10.4 encode well characterized proteins important to neutrophil function; CEACAM6 and 
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CEACAM8 are cell-adhesion proteins on neutrophils essential for neutrophil adhesion and 

migration [23]; DEFA4 is a defensin peptide, and ELANE or neutrophil elastase is a serine 

protease, both are contained in neutrophil azurophil granules. Many, but not all patients show 

significant increase in abundance of transcripts representative of M10.4, suggesting abnormal 

neutrophil function in only a specific subset of untreated SLE (Figure 3d). There is growing 

evidence for alterations in neutrophil chemotaxis, phagocytosis, superoxide production, and 

apoptosis in subgroups of SLE patients and investigation of neutrophil activity is an active area of 

research in SLE pathogenesis[24-26]. Our assay agrees with findings that neutrophil dysregulation 

may be observed in only a specific subset of SLE and suggests that this gene set could serve as a 

marker to identify SLE patients with neutrophil dysregulation.  

 

Longitudinal monitoring of immune status in pregnancy 

To determine the baseline expression of TFA modules in healthy adults and to assess their 

utility for monitoring of immunologic changes, the assay was run on samples collected 

longitudinally from 18 healthy non-pregnant volunteers and 12 healthy pregnant women. Samples 

were collected at 2-week intervals for up to 28 weeks. In the pregnant women, sample collection 

started at ~10 weeks into the pregnancy. All of these women had uncomplicated term deliveries of 

healthy infants. We monitored changes in gene expression of these 32 modules over time to assess 

for consistent changes attributable to pregnancy which is likely to mediate progressive 

immunological and physiological changes over time.  

Investigation of the healthy controls demonstrated no significant differences in expression 

levels of these 128 genes according to gender, age, or time point (Supplemental Figure 1). 

Therefore, these 18 individuals were used to define reference ranges for expression of these 128 
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genes. To support comparisons amongst modules, all expression values were scaled to a mean of 

1, and confidence intervals defined by the standard errors of the healthy controls. Most modules 

(26/32) had narrow confidence intervals of +/- 10% or less, demonstrating these genes show 

relatively modest fluctuation in healthy individuals (Table 2). Only one module, M8.3 (type 1 

interferon), showed particularly high variability (+/- 32%), which we believe could be related to 

viral infections in some of the controls throughout the course of monitoring or else may reflect 

higher normal temporal variability of expression of these genes. 

 Samples from the pregnant women were tested for consistent changes during the course of 

monitoring as well as group differences compared to healthy controls. After multiple testing 

correction, 7 modules, M10.4, M8.2, M12.11, M14.53, M13.16, M12.2, and M15.55, showed a 

significant linear change over time. Another 4 modules, M14.76, M15.102, M12.4, and M12.3, 

were significantly different from controls over the period of time monitored suggesting a change 

in expression occurred in the first 10 weeks of pregnancy prior to the start of sample collection 

(Figure 4 and Supplemental Figure 3). 

Several of these modules represent immune functions that are known to change during 

healthy pregnancy. M8.2 and M15.102 are both relevant to prostanoid metabolism. Prostanoids 

are critical for cervical and uterine development in preparation for delivery [27]. M8.2 shows a 

linear increase in expression throughout pregnancy with fairly narrow confidence intervals (+/- 

13%) and based on the genes in M8.2 likely relates to increasing prostanoid production. M15.102 

is decreased relative to controls throughout monitoring. M15.102 includes both GPR44 (also called 

PTGDR2) a prostaglandin D2 receptor and IL5RA a subunit of the IL5 receptor, both of which 

play critical roles in T helper cell mediated immune responses, as well as OLIG2 and PRSS33, 
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which are less well characterized. The decrease in this module may reflect a change in lymphocyte 

function in relation to changing levels of prostanoids.  

M10.4 is a neutrophil activation module. It increases dramatically during pregnancy to 

more than 4-fold on average. This is likely in part due to the known increase in neutrophil numbers 

in the peripheral blood during the 2nd and 3rd trimesters, but likely also reflects changes in 

neutrophil function as previously observed  [28] since the genes composing this module are 

specific to neutrophil activation as discussed earlier. Module M12.2 (composed of genes ALDH2, 

CEBPA, EMILIN2, and KYNU) is a monocyte module. Monocytes generally do not change in 

number during pregnancy but show increased activation in the circulation [29]. The 7 other 

modules that show different expression patterns compared to healthy controls represent several 

other biological processes including novel findings that compel further investigation 

(Supplemental Figure 2). Taken together our findings show that the TFA assay results are stable 

over time in non-pregnant healthy adults and can detect progressive immunologic changes during 

the course of a healthy pregnancy. This provides a baseline for further investigation of 

immunologic changes that can occur during both healthy and complicated pregnancies. 

 

DISCUSSION:  

We present here, the design and implementation of modular transcriptional repertoire-

based targeted assays. It is based on our prior work in constructing a third-generation modular 

repertoire in clinical immunology, whereby variation in abundance of blood RNA was captured 

through the construction of co-clustered transcriptional modules. The modular repertoire, was 

representative of 16 immune states (16 instead of 7 and 8 in earlier generations) [30, 31], and used 

as an input transcriptome profiles of nearly 1000 subjects. That approach identified 382 modules 
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showing co-clustering across a wide range of immune conditions, while others appeared to be more 

condition-specific. In this work, we show that modules can be reduced to representative genes in 

a purely data-driven fashion that does not depend on a priori knowledge about the genes or clinical 

states. 

Using such approach, we found that useful representative genes of a functional pathway 

may not be canonical genes, and that gene selection through a data-driven network analysis 

approach is powerful for novel discovery and assay development. This method, which we have 

called a “transcriptome fingerprinting assay” or TFA, enabled down-scaling from complicated 

genome-wide expression profiling to rapid and cost-effective qPCR and molecular barcoding 

platforms. Proof of principle was provided for disease pathogenesis, biomarker discovery, and 

longitudinal monitoring applications. TFA was employed to investigate immune perturbation in 

SLE and pregnancy. We were first able to establish the high degree of correlation between TFA 

and microarray data, and to demonstrate stability of the TFA gene signature in healthy adults over 

time. More importantly we were also able to demonstrate the ability of this assay to detect both 

known and novel biological changes. In the case of SLE, confirming for instance the differential 

expression of interferon genes, and adding evidence regarding neutrophil dysregulation in a subset 

of patients. We also found that a cell cycle module shows a very high degree of correlation with 

SLE disease activity, which warrants further investigation as a potential disease biomarker. 

Clinical utility may be found through combination of these modules to provide rapid and effective 

means to stratify and monitor SLE patients.  

In the setting of pregnancy, numerous modules involved in prostanoid metabolism, 

neutrophil activation, and monocyte activation were found to change in a coherent fashion 

throughout the course of the second and third trimester. Some of those modules constitute a means 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587295doi: bioRxiv preprint 

https://doi.org/10.1101/587295


to quantify immune changes that are known to take place during pregnancy while others appear to 

track changes that have not previously been recognized and that will need to be further 

characterized. Indeed, currently there are no biomarkers for two of the most common adverse 

pregnancy outcomes: preterm labor/delivery and preeclampsia/eclampsia [32, 33]. Risk factors for 

preterm labor and delivery are believed to act through multiple immune pathways including 

altering eicosanoid metabolism and increasing prostaglandin production  [34, 35] and through 

changes in neutrophil cytokine production [36]. Similarly changes in eicosanoid metabolism play 

a major role in preeclampsia and eclampsia [37], and both neutrophil and monocyte activation are 

thought to be important in the pathophysiology of this condition [28, 38, 39]. We hypothesize that 

longitudinal measurement using TFA modules, in particular those we have demonstrated to have 

coherent change throughout pregnancy, could be used for a better understanding and eventually 

early detection of maternal and perinatal complications such as preterm birth and pre-eclampsia. 

Testing of this hypothesis is currently underway. 

 

CONCLUSION:  

To conclude, this work demonstrates the utility of purely data-driven network analysis 

applied to large-scale transcriptional profiling datasets to identify key markers of immune 

responses. From this approach we have developed a transcriptome fingerprint of the immune 

system based on a non-systems scale assay, which is applicable to investigation of 

immunopathogenesis, longitudinal monitoring, and biomarker discovery. Sample acquisition for 

this assay is straightforward as blood can be collected by venipuncture or finger stick [40] and 

requires no onsite processing. The TFA assay is cost-effective, generates a manageable volume of 

data, and does not require sophisticated bioinformatics infrastructure and pipelines for analysis. 
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Notably the successful use of both a PCR based assay and a well-established molecular barcoding 

technology (NanoString) confers additional advantages, since both technologies are known for 

sensitivity, robustness, and ease of use. Furthermore PCR is widely used in clinical diagnostic and 

research settings, which would allow our assay to be easily adopted. We are publishing this assay 

as an “open resource”, including a complete list of reagents and source code for data analysis. This 

should facilitate third party implementation of the assay and hopefully encourage re-sharing of 

iterative improvements of its design and of the downstream analytic pipeline. Indeed, taken 

together, the development of streamlined “Omics-based” assays should contribute to a wider 

adoption of systems approaches, or in this case “systems-based” approaches. 

 

 

METHODS 

Modules/Genes Selection - Downscaling to transcriptome fingerprinting 

The 382 modules comprising our third generation modular repertoire were grouped using 

Hartigan’s K-means algorithm and using the jump statistic to determine an appropriate number of 

clusters [12], resulting in 38 subgroups. The module closest to the mean vector in each subgroup 

was selected to represent that subgroup. If a subgroup did not contain at least one module in one 

of the 16 diseases showing at least 25% of genes up- or down-regulated, it was excluded from 

selection. This left 32 modules representative of the 382 original modules. From each of those 32 

modules, 4 representative probes were selected by ranking all probes according to the distance of 

each probe from the module’s mean probe vector and the number of presence calls per sample 

group (detection P< 0.01). The highest-ranking probes that had gene symbols unique to a module 

were selected.  
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Microarray data generation (SLE cohort) 

Globin mRNA was depleted using the GLOBINclear™ (Thermo Fisher Scientific). 

Globin-reduced RNA was amplified and labeled using the Illumina TotalPrep-96 RNA 

Amplification Kit (Thermo Fisher Scientific). Biotin-labeled cRNA was hybridized overnight to 

Human HT-12 V4 BeadChip arrays (IIlumina), which contains >47,000 probes, and scanned on 

an Illumina BeadStation to generate signal intensity values. 

 

TFA data generation 

For the SLE cohort, a quantitative reverse transcription PCR platform was used. Globin 

reduced RNA was reverse-transcribed to cDNA using the High-Capacity cDNA Reverse 

Transcription Kit (Thermo Fisher Scientific), followed by specific target preamplification for 14 

cycles in the presence of a pool of 136 primer pairs, including 8 reference genes (Supplemental 

Methods) (DELTAgene Assays, Fluidigm). Preamplified cDNAs were treated with Exonuclease I 

(New England Biolabs) to remove unincorporated primers and the preamplified cDNAs and 

detection assays were loaded onto a 96.96 Dynamic Array IFC (Fluidigm). Real-time PCR was 

run using EvaGreen dye (Bio-Rad) for detection on a BioMark HD System (Fluidigm). Analysis 

was performed using the Real-Time Analysis Software package (Fluidigm) to determine cycle 

threshold (Ct) values, using linear (derivative) baseline correction and auto-detected, assay-

specific threshold determination. 

For the pregnancy cohort, a NanoString assay was used. 100ng of total RNA was 

hybridized overnight (18 h) to target genes contained in a custom gene expression nCounter Plex2 

for GEx NanoString Assay (Supplemental Methods), following the manufacturer’s Gene 

Expression Assay protocol. Enrichment of hybridized reporter/capture complexes and RNA target 
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was carried out using SamplePrep Station and signal detection was carried out in an nCounter 

Digital Analyzer set for high-resolution scanning. NanoString data analysis guidelines were 

followed to carry out normalization to assay positive controls and to subtract background noise. 

Normalization to housekeeping genes included in custom gene panel (Supplemental Methods) was 

carried out using housekeeping-gene global geometric mean approach. Resulting normalized 

values were reported for downstream statistical analysis. 

Statistical Analyses 

Two-group comparisons (t-tests) were run on log2 FC values between SLE and healthy 

controls to determine modules that showed significant differences between the two groups. For the 

longitudinal pregnancy data, mixed effects models, using the lme4 package in R [41], were run to 

compare pregnancy versus healthy controls over time. Principal component analysis (PCA) was 

performed on all healthy controls but no significant differences were found according to gender, 

age, or time of sample collection, so all healthy controls samples were included. 
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BIIR: Baylor Institute for Immunology Research 

COPD: Chronic Obstructive Pulmonary Disease 
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FIGURES: 

Figure 1: Overview of the module repertoire construction and targeted assay development 

approach. All details are provided in the main text and supplemental methods sections. Briefly, 

blood transcriptional module repertoire construction takes a collection of transcriptome datasets 

as input. In this case 16 datasets constituted by 985 individual transcriptome profiles spanning a 

wide range of immunological and physiological states. Clustering behavior of gene pairs is 

recorded for each independent datasets and the information complied in a co-clustering table. 

Subsequently the co-clustering table serves as input for the generation of a co-clustering graph, 

where nodes are the genes and edges represent co-clustering events. Next the largest, most densely 

connected subnetworks among a large network constituted of 15,132 nodes are identified 

mathematically and assigned a module ID. The genes constituting this module are removed from 

the selection pool and the process is repeated. The resulting framework of 382 modules served as 

a basis for the development of targeted assay. This involves two major steps. First, the selection 

of representative modules among the 382 modules constituting the framework. Second, the 

selection of representative probes among those modules. The process can be adjusted according to 

practical constraints, such as assay throughput and cost. In our case the selection of 32 modules 

out of the original set of 382, and of 4 representative genes from each of the 32 modules yielded a 

128-gene fingerprinting assay.  
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Figure 2: Patterns of blood transcript abundance observed across 16 disease or physiological 

states (A) Depicted is the expression pattern of the gene members in each of the 382 modules 

(columns) across all 16 disease states (rows). Each pixel represents the percent of probes within 

that module that show a significant difference in expression between the disease group and the 

control group within that microarray dataset. The color scale ranges from 100% up-regulated (full 

red) to 100% down-regulated (full blue). The modules are clustered into 38 distinct subgroups 

separated by black vertical lines according to similarity of expression pattern across the 16 disease 

states. 

(B) The expression pattern of the gene members in each of the 32 representative modules of the 

382 original modules/38 clusters depicted in (A) representing the downscaled 32 modular 

repertoire.  

 

Figure 3: TFA analysis of SLE demonstrates activation of cell cycle, interferon, and 

neutrophil pathways. 

(A) Each point represents the fold change of a single gene comparing the average of SLE patients 

to the average of Controls as measured by qPCR (x-axis) and microarray (y-axis). Average fold 

change values were similar and proportional across technologies. The color of each point 

represents the Pearson’s correlation of fold change values among SLE patients for a given gene as 

measured by qPCR and by microarray. Those genes with high average fold change values also 

showed very high levels of correlation across platforms. 
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(B) Fold change value of module M12.15 (average of 4 genes) plotted versus the SLEDAI score 

for each SLE patient. Correlations and p values were calculated using Spearman’s rank correlation 

coefficient. 

(C) Interferon module fold change values are shown for each SLE patient (n=24) compared to the 

average of the healthy controls. Each point represents the module fold change of a single SLE 

patient. Patients are ordered according to increasing FC of M8.3. The greater the intensity of each 

point, the greater the fold change. White FC≤2. Full red ≥20. 

(D) Neutrophil module fold change values are shown for each SLE patient (n=24) compared to the 

average of the healthy controls. Each point represents the module fold change of a single SLE 

patient. Patients are ordered according to increasing FC of M10.4. The greater the intensity of each 

point, the greater the fold change. White FC≤2. Full red ≥20. 

 

Figure 4: Changes in blood transcript abundance measured during the course of 

uncomplicated pregnancies.  Average FC expression levels referenced to healthy controls from 

the blood of 12 healthy pregnant women and 18 healthy non-pregnant controls. Shown are 4 of the 

11 significant modules (see Supplemental Figure 3 for the other 7). A linear mixed effects model 

was fit to the longitudinal data from pregnant women and healthy controls to determine if there 

was a trend over time for the pregnant women (time p-value) and if there was a significant 

difference between pregnant women and healthy controls over time (condition p-value). 

 

Supplemental Figure 1: TFA gene expression in healthy controls. 

(A) Gene expression values from all healthy controls were used for principal component analysis. 

Scores from principal component 1 (PC1) and 2 (PC2) were plotted with these 2 components 
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explaining about 19% of the variability in the data. There were no group differences attributable 

to gender among the expression values (red=female, blue=male).  

(B) Plot of PC1 and PC2 from principal component analysis of gene expression values for all 

female controls, which again explains approximately 19% of the variability in the data. There were 

no group differences attributable to age (as a surrogate for child bearing status) in the expression 

values (red=women <40yo, black=women>40yo).  

(C) No significant differences were found between healthy control samples obtained in different 

seasons as shown in this principal component plot (blue=winter, yellow=spring, green=summer, 

and orange=fall). 

 

Supplemental Figure 2: TFA assessment during healthy pregnancy demonstrates 

longitudinal immunological changes. 

Average FC expression levels referenced to healthy controls from the blood of 12 healthy pregnant 

women and 18 healthy non-pregnant controls. Shown are 7 of the 11 significant modules (see 

Figure 4 in the main text for the other 4). A linear mixed effects model was fit to the longitudinal 

data from pregnant women and healthy controls to determine if there was a trend over time for the 

pregnant women (shown as the time p-value) and if there was a significant difference between 

pregnant women and healthy controls over time (shown as the condition p-value). 
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TABLES:  

Table 1: TFA modules 
ID Module title Number 

of unique 
genes 

TFA genes Module 
Variability 
in Healthy 
Controls 

Disease 
Activity Up 
>50% 

Disease 
Activity 
Down >50% 

M8.2 Prostanoids 36 CTDSPL, 
SH3BGRL2, 
TSPAN33, TSPAN9 

14.1% Staph, RSV MS, HIV 

M8.3 Type 1 
Interferon 

17 ISG15, IFI44, XAF1, 
LY6E 

32.2% HIV, SOJIA, 
RSV, 
Influenza, 
SLE, TB, 
Transplant 

  

M10.2 Protein synthesis 19 HBB, LAIR1, OAZ1, 
RPS12 

3.8%   MS 

M10.4 Neutrophil 
activation 

13 CEACAM8, 
DEFA4, 
CEACAM6, ELANE 

15.6% HIV, Staph, 
Burkholderia, 
RSV, 
Transplant, 
Kawasaki, 
Pregnancy 

  

M12.2 Monocytes 44 ALDH2, CEBPA, 
EMILIN2, KYNU 

7.7% MS, Staph, 
COPD 

  

M12.3 Cell cycle 70 ELP3, LANCL1, 
NUP160, TTC4 

5.3% MS B-Cell 
Deficiency, 
Pregnancy, 
Transplant, 
Staph, 
Burkholderia 

M12.4 Gene 
Transcription 

62 CCDC12, 
C19ORF53, E4F1, 
NDUFA8 

3.0% MS, HIV SOJIA, 
Pregnancy, 
Burkholderia 

M12.5 Protein 
modification 

91 INTS10, CCDC16, 
RPS6KB1, 
ZFYVE20 

3.0%   Transplant, 
Staph, 
Burkholderia 

M12.11 Erythrocytes 24 RAD23A, TRAK2, 
SIAH2, RPIA 

8.6% Staph, 
SOJIA, RSV, 
Transplant, 
Melanoma 

  

M12.15 Cell cycle 17 CD38, MGC29506, 
TNFRSF17, TYMS 

7.2% HIV, SLE, 
Kawasaki 

  

M13.16 Cytokines/chem
okines 

39 KCNJ2, ALPK1, 
GK, LRG1 

7.9% Staph, 
Burkholderia, 
SOJIA, 
Influenza, TB 

  

M13.19 TBD 63 MAP3K5, CEP350, 
PIK3CG, PPTC7 

3.5% SOJIA RSV, 
Transplant 

M14.30 Oxidative 
phosphorylation 

21 C11ORF48, DDT, 
RPS21, NDUFA11 

4.7% MS, HIV, 
RSV, JDM 

SOJIA, 
Pregnancy, 
Burkholderia 

M14.31 Cell cycle 22 AP3M2, ANAPC4, 
NAT9, PFAAP5 

5.0%   TB, SOJIA, 
Transplant, 
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Staph, 
Burkholderia 

M14.48 Inflammation 17 CTSS, DPEP2, 
NUP214, FCGRT 

4.4% Staph HIV 

M14.53 Erythrocytes 16 IGF2BP2, CHPT1, 
CDC34, RBM38 

11.2% Staph, RSV, 
Transplant, 
Melanoma 

HIV 

M14.67 Gene 
Transcription 

16 EAF1, C18ORF32, 
FLI1, SAP30L 

4.2% HIV   

M14.76 Leukocyte 
activation 

15 CD93, EIF2C4, 
FAM8A1, PECAM1 

4.9% Staph, 
Burkholderia, 
SOJIA 

MS 

M15.5 TBD 53 COPB1, GNG2, 
TAF7, SMEK2 

2.7%     

M15.39 TBD 32 IKBKG, AP1M1, 
MGC3731, RAB40C 

5.1%     

M15.42 TBD 30 HIVEP2, GOPC, 
SNW1, TMEM199 

3.7% HIV Transplant 

M15.49 TBD 27 RCOR3, CCNK, 
UBL3, PPP3CB 

2.7%   Transplant 

M15.55 Protein 
phosphorylation 

24 DMXL2, HERC3, 
KIF5B, NLRC5 

3.9% SOJIA   

M15.61 Monocytes 25 KCNMB1, 
ANKRD57, 
SLC27A1, ZFHX3 

7.4%   Burkholderia 

M15.67 TBD 22 C19ORF56, 
C1ORF144, SPSB3, 
HMG20B 

3.7%     

M15.86 Interferon 15 GALM, KIAA1618, 
MOV10, TIMM10 

11.4% HIV, 
Burkholderia, 
SOJIA, RSV, 
Influenza, 
SLE, TB 

  

M15.97 TBD 17 C12ORF10, SERF2, 
SH3GLB2, ROGDI 

4.7%     

M15.102 Prostanoids 15 IL5RA, GPR44, 
OLIG2, PRSS33 

18.4%     

M15.125 TBD 15 SIPA1L3, HUWE1, 
PSMD5, TEX261 

4.2%     

M16.18 TBD 82 C11ORF31, DISP1, 
SALL2, ZNF543 

3.9%     

M16.66 TBD 34 MC1R, KRI1, 
ZNF248, SCNN1D 

5.5%   TB 

M16.108 TBD 16 FMO5, ASRGL1, 
PI4K2A, SPIN3 

4.3%     

Listed are the 32 modules used in the TFA assay and their summary annotations. The size of the 

original modules is noted and the 4 central genes selected for the assay and listed. The module 

variability in healthy controls was determined from longitudinal data collected every 2 weeks for 
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~30 weeks from 18 healthy controls. The disease activity notes the behavior of these modules 

among the 16 disease datasets that were used for module construction. 
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TFA primers 

Listed are the primers used for the 8 housekeeping and 132 TFA genes. 
Module refSeq Gene	symbol Forward	Primer Reverse	Primer 

House	keeping NM_004946.1 DOCK2 GTGTGCTCCACAAAGCTCAC CCTGTAGCAGTTGAGGCTTCATA 

House	keeping NM_004048.2 EEF1A1 ACTGGGCAGTGAAAGTTGAC CCCTTCCACTCATAGGGTGTA 

House	keeping NM_001004.3 FAM105B CTGAGGAACCACCTCAACCA CACAGCATAGGCAAGAAGGAAC 

House	keeping NM_000146.3 FTL AAACCCCAGACGCCATGAA AGGAAGTGAGTCTCCAGGAA 

House	keeping NM_033546.3 MYL12B ACAGAGATGGCTTCATCGACAA ACATGGTCAGGAACATGGTGAA 

House	keeping NM_021019.4 MYL6 GACTTCACCGAAGACCAGAC TGTACAGGATCTTGCCATCAC 

House	keeping NM_001014.3 RPS10 GGTCAGCCACCTCAGTAAAA TTGGCTGTAAGTTTATTCAATGCA 

House	keeping NM_001028.2 RPS25 GGTGTCTGCTGCTATTCTCC TCTTTCTTGGCCGACTTTCC 

M10.2 NM_000518.4 HBB AAGTGCTCGGTGCCTTTAGT AGCTCACTCAGTGTGGCAAA 

M10.2 NM_021706.2 LAIR1 CGTCGGACAACAGTCACAA AGAGGAAGACCACTGAGACC 

M10.2 NM_004152.2 OAZ1 CGAGCCGACCATGTCTTCA AAGCTGAAGGTTCGGAGCAA 

M10.2 NM_001016.3 RPS12 GGAGAATGGGTAGGCCTTTGTA TGACATCCTTGGCCTGAGAC 

M10.4 NM_002483.3 CEACAM6 AGATTGCATGTCCCCTGGAA GGGTGGGTTCCAGAAGGTTA 

M10.4 NM_001816.2 CEACAM8 CCCATCTCAGCCCCTTCC CGGGTTCCAGAAGGTGAAAA 

M10.4 NM_001925.1 DEFA4 TGGGATAAAAGCTCTGCTCTTCA TGTTCGCCGGCAGAATACTA 

M10.4 NM_001972.2 ELANE TCTGCCGTCGCAGCAA TTAGCCCGTTGCAGACCAA 

M12.11 NM_005053.2 RAD23A GATCCGCATGGAGCCTGAC AGGCATCACGACCCTTCTCA 

M12.11 NM_144563.2 RPIA ACTTCGAATGGCTGTCAACA CGGTCAAACTTCCAGTCCAA 

M12.11 NM_005067.5 SIAH2 CAGGAACCTGGCTATGGAGAA GTGCAGGGTCAGGGAACA 

M12.11 NM_015049.1 TRAK2 CCTACTGCTCATCTCTACTTCTCC CGCATAGTCCCCTCAATCTCA 

M12.15 NM_001775.2 CD38 ACCTCACATGGTGTGGTGAA GTTGCTGCAGTCCTTTCTCC 

M12.15 NM_016459.3 MGC29506 AGCTGAGCGAGTTGGTCTAC TTGGTCCACTTCTCGAACTCC 

M12.15 NM_001192.2 TNFRSF17 TCTTTGGCAGTTTTCGTGCTAA TTAGCCATGCCCAGGAGAC 

M12.15 NM_001071.1 TYMS TGTCGGTATTCGGCATGCA CAGAACACACGTTTGGTTGTCA 

M12.2 NM_000690.2 ALDH2 GGGAAGAGCCCCAACATCA TGGCCCTGGTTGAAGAACA 

M12.2 NM_004364.2 CEBPA CATCGACATCAGCGCCTACA CCGGCTGTGCTGGAACA 

M12.2 NM_032048.2 EMILIN2 GTGAACGACGGGGATGTTTA ATCAGGTAGCGCCCATCATA 

M12.2 NM_003937.2 KYNU GCCATCACAAAAGCTGGACAA TCCAACTGCATGTGCTAGATCA 

M12.3 NM_018091.4 ELP3 TGCCAAACGTGGGACTAGAA AGCCCATCGGGACGAAAA 

M12.3 NM_006055.1 LANCL1 GGATGCAGAACACCAGACAC AGCAGGTCAGCCAGGAAATA 

M12.3 NM_015231.1 NUP160 GTGGCAAGTTGTTCTCCGTAA GACTCCTCCATCAGCTCCAA 

M12.3 NM_004623.2 TTC4 GCACCTTGCTACAGGTTCTA AGAGGATCCTACACAGACCAA 

M12.4 NM_014047.2 C19ORF53 TGCAGCAGCAAAAGCTCAA ACGTCATGTTCGATCTTCTTCC 

M12.4 NM_144716.2 CCDC12 AGCCAAAGACCAAGCATCTCA GGACATAGTTCCGCAGCCTAA 

M12.4 NM_004424.3 E4F1 ACCAAGGGCTCACTCATCC TCCACACTTGGAGCACTTGTA 

M12.4 NM_014222.2 NDUFA8 AAGATCCGAGGCGGTGTTTA GCTCTGCACAGTGACGTTTTA 

M12.5 NM_052857.2 CCDC16 TGGACAAAGAGTGGGACGAA CCTCATCCTCTTCGGCAACTA 

M12.5 NM_018142.2 INTS10 AGCTGGGAGTTGCTCTATTCC CAAAGCCAAGTATCCGTCTTCC 

M12.5 NM_003161.2 RPS6KB1 TTTATTGGCAGCCCACGAAC GAAGCACCTCTTCCCCAGAA 
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M12.5 NM_022340.2 ZFYVE20 CACACACCTGACATCGTGAA TTCTGGAGCTTTCTGGTCAAC 

M13.16 NM_025144.2 ALPK1 TGGTGCAGTCGGTCTGTATA TTAACTCTGCTGCTTCGTACC 

M13.16 NM_000167.3 GK AAGCCAAGAATCTCTTTCAGTTCA GCAGAGGTAATTCTGTCATCCC 

M13.16 NM_000891.2 KCNJ2 AACGGTACCTCGCAGACATC ACGAAAGCCAGGCAGAAGAT 

M13.16 NM_052972.2 LRG1 ATGTCCTCTTGGAGCAGAC GCAGCAGGAACAGAGTTCTA 

M13.19 NM_014810.3 CEP350 CGTGTGGAATTTCGTGAACC CCAGATGGCTGGAACTGAAA 

M13.19 NM_005923.3 MAP3K5 ATCATTCGGAAGGCGGTACA ACTCTCAGATGCAAGGCTGAA 

M13.19 NM_002649.2 PIK3CG TGGATCTATGCCTCCTGCCATA TGTCGTGGCGTCTTTCACAA 

M13.19 NM_139283.1 PPTC7 GGCAACAGATGGACTCTTTGAC TGCTTCTGGCAGTCTGTTGTA 

M14.30 NM_024099.3 C11ORF48 GGCCTTCTTCCAAGACCAAA CAGCTGAGTCCAGCGTTAAA 

M14.30 NM_001355.3 DDT TTTCTCACCAAGGAGCTAGCC CCAATCTGCCAGGACTCCAA 

M14.30 NM_175614.2 NDUFA11 AGCCTACAGCACCACCAGTA CCCGGAGGATTGAGTGTGAC 

M14.30 NM_001024.3 RPS21 CATCATCGGTGCCAAGGAC GCCATTAAACCTGCCTGTGAC 

M14.31 NM_013367.2 ANAPC4 AGTAACTCGGATGGCCAGAA CTTCCCATGCTTCACACATACA 

M14.31 NM_006803.2 AP3M2 ACACACATTCGACCCAGTCA ATGGTCCCCTTCAAACTTGGTA 

M14.31 NM_015654.3 NAT9 CTGACCCTGGAGCAGGAGTA TCGGCATCCAGCACAATGAA 

M14.31 NM_014887.1 PFAAP5 AGCTTGGGAAATGAAGCCATA TTCCACCAAGTTTCAGGTTCA 

M14.48 NM_004079.3 CTSS CACCACTGGCATCTCTGGAA GAGACGTCGTACTGCTTCTTCA 

M14.48 NM_022355.1 DPEP2 GGTGTCTTTGTCCATGGGAGTA ACAGCCTTGATGTGGTCGAA 

M14.48 NM_004107.3 FCGRT TCATCGGTGTCTTGCTACTCA CTCCACGAAGGGAGATCCAA 

M14.48 NM_005085.2 NUP214 CTGCGGCTTCAACAGAAGTTA TCCTCCAGTAGCCAAGATTCC 

M14.53 NM_004359.1 CDC34 CACCAGCCTTTCGGTTCC GGGTGGAGGATGGAGATACAC 

M14.53 NM_020244.2 CHPT1 CATGGTGGTGTTGGCAAGAA ATGTGGAGTCCAGGTGACAA 

M14.53 NM_006548.4 IGF2BP2 AGATTCGCCGGAGCCTCTA TGATGACCATCCTTTCGCTGAC 

M14.53 NM_183425.1 RBM38 GCAAGTCCCGCGGCTA GCCCAGATATGCCAGGTTCA 

M14.67 NM_001035005.2 C18ORF32 GCCATATATATACCCTCTGGTTTCC TCTGTTGGTCCTTTTGTTGGTA 

M14.67 NM_033083.6 EAF1 GGCAAAGGAGATGAAGTCACAA TGTTCCCCTTGAACACAGTCA 

M14.67 NM_002017.2 FLI1 ACACGGAAGTGCTGTTGTCA GTCGGTGTGGGAGGTTGTATTA 

M14.67 NM_024632.4 SAP30L GGCTTCAATAAGGCCCAGTTA TCCGATTTCTGGTCCAGTCTA 

M14.76 NM_012072.3 CD93 GACAGTTACTCCTGGGTTCCA CTAGGGCCACCTCACTTTCA 

M14.76 NM_017629.2 EIF2C4 AGTGGTTATCCTGCCTGGAA ACACTGTGTGGCCATACCTA 

M14.76 NM_016255.1 FAM8A1 GAAAATGATGGTTGTGGCACTTA CCTGCTCCCCAAATGCA 

M14.76 NM_000442.3 PECAM1 GCCCTCCACAAATGGGAAAAC TGTGCGTTGCCTGAATGAAC 

M15.102 NM_138983.1 GPR44 CCAGGGCTGGAATCCTGTG GGCAGAGTGGCTTCAGTGT 

M15.102 NM_000564.2 IL5RA GATCAGCTGTTTGCCCTTCA TTCCTTCAATCTCTGCTGTGAC 

M15.102 NM_005806.2 OLIG2 CGGAGCGAGCTCCTCAAA ATGGCCCCAGGGGAAGATA 

M15.102 NM_152891.2 PRSS33 ACACCATGCCGGGTCAC AGCAGCGGCACCCTTAC 

M15.125 NM_031407.3 HUWE1 TTGCAGGTGTCTGCAAATCC TGGAGTCCAACTGAAGGAGAC 

M15.125 NM_005047.2 PSMD5 TTGTTGGGGCAGATTCAGAC CATGACAGCCAGGTTTCCAA 

M15.125 NM_002584.1 SIPA1L3 TACGTGAGATACAAGCCATCCC GTGGCTGAAGTGGGGATCA 

M15.125 NM_144582.2 TEX261 GAGAACGTCCTGCCCTCTAC CCGCTTGCCTTTGGTGAAATA 

M15.39 NM_032493.2 AP1M1 GGTCCGTTTCATGTGGATCA GAAAGAAAAGACCAGCGACAC 

M15.39 NM_001099856.1 IKBKG GCTGCCTGGAGGAGAATCA GGCTGGCTTGGAAATGCA 

M15.39 NM_024313.1 MGC3731 CGCCACCAGGAATACTTGAA ACTCCGTCTTTGCTGTCAC 
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M15.39 NM_021168.2 RAB40C TCTGCACCATCTTCAGGTCCTA CCAGCGGTTGGTGATGTCATA 

M15.42 NM_020399.2 GOPC AGCCCAGTCTGTGTCTCAAA GCTTGGGTTTCTGTCAGTTCA 

M15.42 NM_006734.3 HIVEP2 TCCAAACAAACTGAGCCAATCC GGCCACGTCCTCTGACATATA 

M15.42 NM_012245.2 SNW1 CCAAATTGGCAGAAGCCCTCTA TACTTGGGCACGCATTTCCA 

M15.42 NM_152464.1 TMEM199 CTGCCTTCGTCTGCACTTAC GCGACGATCAATGCAGCTA 

M15.49 NM_003858.3 CCNK TTGGCCAGTTTGGAGATGAC TCAAACTTGATGGTCTGCAGTAA 

M15.49 NM_021132.1 PPP3CB GTGTTCATGGTGGACTTTCAC AATGCAGGTGGCTCTTTGAA 

M15.49 NM_018254.2 RCOR3 GCAAAGGAAAAGCATGGCTA GATCAGCAAGGGACTTCTCA 

M15.49 NM_007106.2 UBL3 TCAAGGACGATTTCTACATGGAA ATGTCTCTCTGGCCACCAA 

M15.5 NM_016451.3 COPB1 CATTCCTGTTCTGTCCGATTTCC CTGCTGCTTCGTTGTTGTCA 

M15.5 NM_053064.3 GNG2 CAACAACACCGCCAGCATA TGCTTCACAGTAGGCCATCA 

M15.5 NM_020463.1 SMEK2 ACCTCAAAACAGGGATGCA TCTGTAGCAGCTGATCTGAC 

M15.5 NM_005642.2 TAF7 TCCAGGAATGTCTGGTCACA CTGCTGCTGAGGTCATTGAA 

M15.55 NM_015263.2 DMXL2 GAGGATAGAGAACGGGGTTTAC ATGATCCTGTACCTGCCTCA 

M15.55 NM_014606.1 HERC3 CCCTAAGAGAGCTGAGCATTCA TCCACTGCTTCTTCACCATCA 

M15.55 NM_004521.1 KIF5B TCGCCAAGTTTCAGGGAGAA GAGATGTGCTTGACTGGAACAC 

M15.55 NM_032206.3 NLRC5 CCTGTGTCCACGGGTTAAAA TCCTCCTCGTTGGATCTGAA 

M15.61 NM_023016.3 ANKRD57 ACTTCAAGGAGCTGGTGAAC TCTTCTTGAGGTGCACGTAC 

M15.61 NM_004137.2 KCNMB1 GACTGTGCTGCCCCTCTAC GGTCCCTGATGTTGGTCTCAA 

M15.61 NM_198580.1 SLC27A1 CTGGGACGACTGCATCAAGTA CGGCTGCTTCAGCAGGTA 

M15.61 NM_006885.3 ZFHX3 GAGGCCAGCCTGAAGTTGTA TGCACAGAACGCAGTGGTA 

M15.67 NM_016145.2 C19ORF56 ACGCCGGACTACATGAACC AGCTGATGAAGGAGCAGTAGAC 

M15.67 NM_015609.2 C1ORF144 GATCTCCCAACCCGAAGACA TTGAAGCCTTGAGACCCATCA 

M15.67 NM_006339.1 HMG20B TCGAGCTCTGGGCTCATGAA TGGGAACATCGAAGGTGGAGAA 

M15.67 NM_080861.3 SPSB3 GCTCCACTAACTGGGGCTAC GCGGCAGCGTGGAGTA 

M15.86 NM_138801.1 GALM CTGTGGATGAAACCCTGATTCC ACTGGCTTTCTCAGGTCGAA 

M15.86 NM_020954.2 KIAA1618 AGGAAGCAGATGTCCAGGAA AGAGAGATGATGGCGTGGAA 

M15.86 NM_020963.2 MOV10 CAGCAAACACCACAAGTCAC ACATCCACACCATGTTTCCC 

M15.86 NM_012456.2 TIMM10 TGCGGAGCTGGAGGTG GTAGTGAGGAGGCACACACT 

M15.97 NM_021640.3 C12ORF10 TGCACGAGTTGCTCGACTTA ATCCATTGCACGCTTGAACC 

M15.97 NM_024589.1 ROGDI AGGTGAAGGGTGTGCTGAC TTGTTCCGGGGCATCTTCA 

M15.97 NM_001018108.2 SERF2 CCGAGATGACGGGCTTTCT GGGTTCCTCCTTCTTCTCGTT 

M15.97 NM_020145.2 SH3GLB2 GCAAAGCGAGGCTGAAGAA ACGAGGTCTAGTCTCCTGAAA 

M16.108 NM_025080.2 ASRGL1 CGCAGTCCAGTGTATAGCAA CCTTGGTCAGTCAGAAAGCA 

M16.108 NM_001461.1 FMO5 TTTGCACTGGCCATCACAC GTGGAAGTACTGCCCTTTGAAC 

M16.108 NM_018425.2 PI4K2A AACTCAACATTGTTCCCCGTAC TCACTCGGTCAATGGCACTA 

M16.108 NM_001010862.1 SPIN3 GAGAAGTCATAGACAGCCTGGT ACCATGCCAGTTCTCTTGGA 

M16.18 NM_170746.2 C11ORF31 CAGTAAAGGTGAACCCGACGAA GCCCCTTCTTAATCCCAGTCC 

M16.18 NM_032890.2 DISP1 TCTGTGCCTTGGTTGGAGTA CTCTGGCCTATTGCTGTTCC 

M16.18 NM_005407.1 SALL2 GGCAACTCGCATGCAACTAA AGTGGACTTGAAGTGGTTGGT 

M16.18 NM_213598.1 ZNF543 GACCTCTCCCAAAGCTCCTA AGGCCAGGTGAGAAAAGGTA 

M16.66 NM_023008.3 KRI1 AGATTCGGAACCCAGATTCCC ATCCAACTCAGGGTCGTTCC 

M16.66 NM_002386.2 MC1R TGGTGAGCTTGGTGGAGAA GCAGCAGATGAAGCAGTACA 

M16.66 NM_002978.2 SCNN1D CTGCTACACAACACCTCCTACA CCACAGGAGCAGGTCTCC 
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M16.66 NM_021045.1 ZNF248 AAGGAGAAGAGCCCTGGATA TTTCCTGGCTGCTCTCTAAC 

M8.2 NM_005808.2 CTDSPL CCGGTTGAAATCGATGGAACTA CTGGCAGTAAAGAGCACACA 

M8.2 NM_031469.2 SH3BGRL2 CCCCTGCCACCTCAGATATTTA TGTGTTGCTTTCCTTGGATTCA 

M8.2 NM_178562.2 TSPAN33 TCCTGTTGCTTGCCTACTCC AGTAGTCAAAGGCCTGCATACC 

M8.2 NM_006675.3 TSPAN9 GGGGCCATCAAGGAAAACAA TCTGCTAGGAGGATGACCAAC 

M8.3 NM_006417.3 IFI44 GGCTTTGGTGGGCACTAATA TGCCATCTTTCCCGTCTCTA 

M8.3 NM_005101.1 ISG15 CTGAGAGGCAGCGAACTCA GCTCAGGGACACCTGGAA 

M8.3 NM_002346.1 LY6E TGCTCCGACCAGGACAACTA GGCTGTGGCCAAATGTCAC 

M8.3 NM_199139.1 XAF1 AGAGCAGAACATGGAAGGAGAC AGGGTGAAGTTGGCAGAGAC 
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TFA Analysis Code 

The	R	code	below	can	be	used	to	analyze	TFA	data	that	have	been	converted	from	Ct	values	to	
FC	relative	to	reference	samples.	The	structure	expected	for	this	analysis	is	a	directory	for	the		
#	set	up	the	project	directory	
	
currentDirectory<-"/Projects/Project_Name/"	
dataDirectory<-paste(currentDirectory,	"Data/",	sep="")	
resultsDirectory<-paste(currentDirectory,	"Results/",	sep="")	
scriptsDirectory<-paste(currentDirectory,	"scripts/",	sep="")	
source(paste(scriptsDirectory,	"genomicCBCMATfunctions.R",	sep=""))	
#	load	required	packages	
packageLoad("limma")	
#	read	in	data	
expData<-readData(dataDirectory,	"FC.csv")	
designData<-readData(dataDirectory,	"designFile.csv")	
moduleAssignData<-readData(dataDirectory,	"moduleAssignFile.csv")	
#	FC	values	have	row	names	in	the	first	column	
rownames(expData)<-as.character(expData[,1])	
expData<-expData[,-1]	
subExpData<-subsetExpData(expData,	designData,	moduleAssignData)	
#	next	calculate	FC	values	compared	to	controls	(rather	than	reference	samples)	
FCcomparedToControls<-FCtocontrols(subExpData,	designData)	
#	these	are	the	individual	module	level	results	
FCmoduleLevelControls<-convertFCtoModule(FCcomparedToControls,	moduleAssignData)	
write.csv(FCmoduleLevelControls,	 file=paste(resultsDirectory,	 "individualModuleLevelFC.csv",	
sep=""))	
#	next	run	gene	level	analysis	using	limma	to	find	statistically	significant	genes	
#	use	the	original	FC	values	(compared	to	reference	sample)	-	get	the	exact	same	results	if	use	
data	compared	to	controls	
geneLevel<-fitLimmaToGenes(subExpData,	designData,	moduleAssignData)	
#compareGeneLevel<-fitLimmaToGenes(FCcomparedToControls,	 designData,	
moduleAssignData)	
write.csv(geneLevel,	 file=paste(resultsDirectory,	 "geneLevelStatistics.csv",	 sep=""),	
row.names=FALSE)	
#	now	calculate	an	average	FC	for	each	module	
modLevelFCavg<-CaseVsControlModuleLevelFC(FCmoduleLevelControls,	designData)	
modLevelFCavg<-as.data.frame(modLevelFCavg)	
colnames(modLevelFCavg)<-"FC"	
write.csv(modLevelFCavg,	file=paste(resultsDirectory,	"groupModuleLevelFC.csv",	sep=""))	
	
The	functions	that	are	called	above	are	defined	below:	
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packageLoad	=	function(x)	{	
	 #	returns	a	matrix	of	the	installed	packages	
	 inst	=	installed.packages()	
	 matchVals	=	match(x,	inst[,"Package"])	
	 missing	=	x[is.na(matchVals)]	
	 if	(length(missing)>0)		
	 {	
	 	 cat("Installing	packages...",	"\n")	
	 	 lapply(missing,	 install.packages,	 repos="http://www.revolution-
computing.com/cran/")	
	 }	
	 if	("limma"	%in%	missing)	
	 {	
	 	 source("http://bioconductor.org/biocLite.R")	
	 	 biocLite("limma")	
	 }	
	 #	then	load	libraries	
	 for	(i	in	1:length(x))	
	 {	
	 	 require(x[i],	character.only=TRUE)	
	 }	
}	
readData<-function(path,	dataFile)	
{	
	 dataPath<-paste(path,	dataFile,	sep="")	
	 checkFile<-unlist(strsplit(dataFile,	"\\."))	
	 fileType<-tolower(checkFile[length(checkFile)])	
	 if	(fileType=="csv")	
	 			 curData<-read.csv(dataPath)	
	 if	(fileType=="txt"	|	fileType=="tsv")	
	 	 curData<-read.delim(dataPath)	
	 return(curData)	
}	
#	subset	samples	and	genes	to	only	those	in	design	and	moduleAssign	
subsetExpData<-function(expData,	designData,	moduleAssignData)	
{	
	 subExpData<-expData	
	 #	first	remove	any	columns	(samples	that	are	not	in	designData)	
	 matchIndex<-match(colnames(subExpData),	designData$sampleID)	
	 if	(any(is.na(matchIndex)))	
	 {	
	 	 remIndex<-which(is.na(matchIndex))	
	 	 subExpData<-subExpData[,-remIndex]	
	 }	
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	 if	(any(!(designData$groupID	%in%	c(0,1))))	
	 {	
	 	 #	remove	these	samples	that	are	not	controls	or	cases	(may	be	NTC	or	reference)	
	 	 keepIds<-designData$sampleID[c(which(designData$groupID==0),	
which(designData$groupID==1))]	
	 	 #	check	-	yes	this	is	correct	
	 	 #table(designData$groupID[match(keepIds,	designData$sampleID)])	 	 	
	 	 matchIndex<-match(keepIds,	colnames(subExpData))	
	 	 keepIndex<-matchIndex[which(!is.na(matchIndex))]	
	 	 subExpData<-subExpData[,keepIndex]	
	 	 #	check	that	this	is	correct	-	yes	
	 	 #table(designData$groupID[match(colnames(subExpData),	
designData$sampleID)])	
	 }	
	 #	next	remove	rows	(such	as	housekeeping	genes)	
	 matchIndex<-match(rownames(subExpData),	moduleAssignData$geneID)	
	 if	(any(is.na(matchIndex)))	
	 {	
	 	 remIndex<-which(is.na(matchIndex))	
	 	 subExpData<-subExpData[-remIndex,]	
	 }	 	
	 return(subExpData)	
}	
	
#	calculate	FC	values	compared	to	controls	rather	than	reference	samples	
FCtocontrols<-function(subExpData,	designData)	
{	
	 controlIndex<-which(!is.na(match(colnames(subExpData),	
designData$sampleID[which(designData$groupID==0)])))	
	 #	convert	to	delta	delta	Ct	values	before	standardizing	to	control	means	
	 controlDelta<-	-log2(subExpData[,controlIndex])	
	 controlMeans<-apply(controlDelta,	1,	mean,	na.rm=T)	 	
	 allDelta<-	-log2(subExpData)	
	 allDeltaToControls<-apply(allDelta,	2,	function(x)	
	 {	
	 	 x-controlMeans	
	 })	
	 allFCtoControls<-2^(-allDeltaToControls)	
	 return(allFCtoControls)	
}	
	
#	convert	the	FC	values	from	gene	level	to	module	level	
convertFCtoModule<-function(FCvals,	moduleAssignData)	
{	
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	 #	loop	through	all	modules	
	 uniModules<-sort(as.character(unique(moduleAssignData$module)))	
	 FCtoModule<-c()	
	 for	(i	in	1:length(uniModules))	
	 {	
	 	 curMod<-uniModules[i]	
	 	 curGeneIDs<-
moduleAssignData$geneID[which(curMod==moduleAssignData$module)]	
	 	 matchIndex<-match(curGeneIDs,	rownames(FCvals))	
	 	 if	(any(is.na(matchIndex)))	
	 	 	 matchIndex<-matchIndex[-which(is.na(matchIndex))]	
	 	 curMeans<-2^apply(log2(FCvals[matchIndex,]),	2,	mean,	na.rm=T)	
	 	 FCtoModule<-rbind(FCtoModule,	curMeans)	
	 }	 	
	 rownames(FCtoModule)<-uniModules	
	 #apply(FCtoModule,	1,	function(x)	{sum(is.na(x))})	
	 return(FCtoModule)	
}	
	
#	run	model	fits	at	the	gene	level	
fitLimmaToGenes<-function(FCvals,	designData,	moduleAssignData)	
{	
	 #	make	a	design	matrix	-	first	order	the	columns	in	FCvals	to	match	those	in	designData	
	 matchIndex<-match(colnames(FCvals),	designData$sampleID)	
	 curGroups<-designData$groupID[matchIndex]	
	 if	(all(curGroups	%in%	c(0,1)))	
	 {	
	 	 curMM<-model.matrix(~1+factor(curGroups))	
	 	 curFit<-lmFit(log2(FCvals),	curMM)	
	 	 curFit<-eBayes(curFit)	
	 	 curTT<-topTable(curFit,	coef=2,	adjust.method="BH",	number=nrow(FCvals))	
	 	 #	output:	gene	name,	module,	test	statistic,	p-value,	and	adjusted	p-value	
	 	 #	need	to	add	module	to	curTT	
	 	 curTT<-curTT[,1:5]	
	 	 curTT$module<-moduleAssignData$module[match(curTT$ID,	
moduleAssignData$geneID)]	
	 	 curTT$geneName<-moduleAssignData$geneName[match(curTT$ID,	
moduleAssignData$geneID)]	
	 	 return(curTT)	
	 }	
	 else	
	 	 print("ERROR:	Columns	in	FC	matrix	belong	to	a	group	that	is	not	case	or	control.")	
}	
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#	assumes	the	FC	values	are	already	at	the	module	level	
#	starts	with	module	level	FC	and	compares	case	to	control	
CaseVsControlModuleLevelFC<-function(FCvals,	designData)	
{	
	 controlMatch<-match(designData$sampleID[which(designData$groupID==0)],	
colnames(FCvals))	
	 if	(any(is.na(controlMatch)))	
	 	 controlMatch<-controlMatch[-which(is.na(controlMatch))]	
	 controlVals<-FCvals[,controlMatch]	
	 caseMatch<-match(designData$sampleID[which(designData$groupID==1)],	
colnames(FCvals))	
	 if	(any(is.na(caseMatch)))	
	 	 caseMatch<-caseMatch[-which(is.na(caseMatch))]	
	 caseVals<-FCvals[,caseMatch]	
	 #	take	mean	on	log2	scale	
	 controlMeans<-2^apply(log2(controlVals),	1,	mean,	na.rm=T)	
	 caseMeans<-2^apply(log2(caseVals),	1,	mean,	na.rm=T)	
	 modMeans<-caseMeans/controlMeans	
	 return(modMeans)	
}	
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Figure	4
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Supplementary	Figure	1
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Supplementary	Figure	2

M12.3	– Cell	cycle
p<0.05	(condition)

M12.4	– Gene	Transcription
p<0.05	(condition) p<0.001	(time)

M12.4	– Erythrocytes

M13.16	– Cytokines/Chemokines
p<0.001	(time	and	condition)

M14.53	– Erythrocytes
p<0.001	(time) p<0.001	(condition)

M14.76	– Leukocytes	activation

M14.53	– Protein	Phosphorylation
p<0.05	(time)
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