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Neurons in primary visual cortex (V1) are influenced by the animal’s position in the 

environment and encode positions that correlate with those encoded by hippocampus 

(CA1). Might V1’s encoding of spatial positions be inherited from hippocampal regions? If 

so, it should depend on non-visual factors that affect the encoding of position in 

hippocampus, such as the physical distance traveled and the phase of theta oscillations. 

We recorded V1 and CA1 neurons while mice ran through a virtual corridor and confirmed 

these predictions. Spatial representations in V1 and CA1 were correlated even in the 

absence of visual cues. Moreover, similar to CA1 place cells, the spatial responses of V1 

neurons were influenced by the physical distance traveled and the phase of hippocampal 

theta oscillations. These results reveal a modulation of cortical sensory processing by 

non-sensory estimates of position that might originate in hippocampal regions. 

There is increasing evidence that the responses of 

neurons in primary visual cortex (V1) are influenced 

by the animal’s position in the environment (Fiser et 

al., 2016; Haggerty and Ji, 2015; Ji and Wilson, 2007; 

Pakan et al., 2018; Saleem et al., 2018). Positions 

encoded by V1 neurons match those encoded by 

regions of the navigational system such as the 

hippocampus (Haggerty and Ji, 2015; Saleem et al., 

2018) and fluctuations in the spatial position 

encoded by the V1 population correlate with those 

observed in hippocampus CA1 (Saleem et al., 2018). 

These correlated positional signals might reflect a 

propagation of sensory estimates from the visual 

system to the navigational system; alternatively, 

they might reflect an influence of positional 

estimates encoded by the navigational system, on 

visual processing.  

If V1 responses are influenced by the navigational 

system, they should be modulated by the non-

visual factors that affect the representation of space 

in hippocampus, and should correlate with 

hippocampal responses even in the absence of 

visual signals. Hippocampal place cells do not rely 

only on vision to encode the animal’s position; their 

place field is present also in the dark (Muller and 

Kubie, 1987; O’Keefe and Speakman, 1987); their 

spatial selectivity is influenced by the distance 

traveled in the environment (Chen et al., 2013, 2019; 

Gothard et al., 1996; Jayakumar et al., 2019; 

Ravassard et al., 2013) and on shorter timescales, 

their preferred place of firing depends on the phase 

of the ongoing 6-9 Hz theta oscillations (theta 

precession, O’Keefe and Recce, 1993; Skaggs et al., 

1996). Here we asked whether similar non-visual 

factors affect the representation of space in V1.  

 

Results 
To relate the spatial responses in area V1 to those 

of hippocampal area CA1, we recorded from both 

regions simultaneously while mice performed a 

spatial task in virtual reality (Figure 1A-1C). Head-

fixed mice ran on a wheel to explore a virtual 

corridor (Harvey et al., 2009; Saleem et al., 2018) 

defined by three landmarks (L1-L3; Figure 1A). The 

corridor was semicircular and repeated into a full 

circle without interruption, with occasional periods 

of blank screen every 10-30 trials. We trained mice 

to lick in a position centered around landmark L1 

for a water reward. To encourage the mice to use 

strategies beyond the discrimination of visual 

textures, the texture at landmark L1 alternated 

between the textures shown at L2 and L3 (a plaid 

and a grating, Figure 1A). After ~6-8 weeks, mice 

licked exclusively when approaching the reward 
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zone in more than 80% of the trials (Figure 1B). We 

then used silicon probes to record from CA1 and V1 

simultaneously (Figure 1C). We focused on neurons 

that significantly modulated their firing rate across 

positions in the corridor (p < 0.01): 1,422 neurons 

in CA1 (out of 54 recording sessions, after excluding 

putative interneurons) and 1,109 neurons in V1 (out 

of 35 recording sessions). We identified putative 

interneurons in V1 based on the width of their spike 

waveform (21.7% of neurons; Figure S1A) (Bartho et 

al., 2004; Sirota et al., 2008). Other neurons are likely 

to be mostly pyramidal. Neurons in both V1 and 

CA1 responded similarly regardless of the texture 

shown in the reward position (grating or plaid), so 

we pooled all trials together (Figure S1B-S1E).  

 

Spatial representations in V1 and CA1 

correlate in the absence of visual cues 
Populations in both CA1 and V1 represented the 

spatial position of the animal in the corridor, and 

made correlated errors (Figure 1D-1G; Saleem et al., 

2018). Similar to CA1, V1 neurons had response 

profiles that tiled the entire corridor (Figure 1D). 

Accordingly, we could use either area to decode the 

animal’s position with high accuracy (Figure 1E). 

Nonetheless, there were occasional errors in the 

spatial representation of both V1 and CA1 (Figure 

1F), which could not be explained by position or 

speed. As previously shown (Saleem et al., 2018), 

these trial-by-trial fluctuations were spatially 

aligned with each other and significantly correlated 

Figure 1 Spatial representations in V1 and CA1 correlate in the absence of visual cues. 

A. Schematic of the setup showing the running wheel surrounded by three computer screens (top) and the virtual corridor 

with three landmarks (L1, L2 and L3, bottom). B. Example trajectories, showing the locations of licks (black dots) and a 

blank interval when the task was temporarily interrupted by a gray screen. C. Schematic of the recordings with 32-

electrode silicon probes in the CA1 region of the hippocampus and in primary visual area V1. D. Responses of neurons in 

CA1 (left) and V1 (right) that showed a significant modulation of firing rate across positions in the corridor (p < 0.01). 

Neurons are ordered by the position of maximal firing (dotted curve). For each neuron, the response profile was 

normalized by the mean firing rate across all positions. E. Average decoded probability of the animal’s position as a 

function of its actual position. The decoded probability was estimated for each recording session, from neurons recorded 

in CA1 (left, n = 42 sessions) or V1 (right, n = 33 sessions), and averaged across sessions. Color scale as in F. F. Decoded 

probability distribution estimated for three successive trials in one example session (CA1, left; V1, right). Dotted curve: 

actual position of the animal. G. Noise correlations between CA1 and V1 decoded probability measured for each decoded 

position when the mice were in the virtual corridor, averaged across recording sessions (n = 27 sessions with 

simultaneous recording). H. Same as G. during blank periods. I. Average noise correlations (± s.e.m) between CA1 and V1 

decoded probability distributions, computed for different spatial shifts between the two distributions (CA1 – V1 spatial 

shift, n = 27 sessions). Gray curve: noise correlations measured in the corridor. Black curve: noise correlations measured 

during blank periods. 
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(p < 0.05, n = 27 sessions; Figure 1G and 1I, gray 

curve). 

Correlated fluctuations in the position encoded by 

V1 and CA1 could arise for two reasons. First, the 

computations estimating spatial position from 

visual input might be noisy, resulting in common 

fluctuations arising purely from visual processing. 

Second, the fluctuations might reflect an effect of 

non-visual factors on both areas, for example 

feedback of position signals from hippocampus to 

visual cortex, or a common effect of a third area on 

both.  

Our data supported a role of non-visual factors: 

correlations in the position encoded by V1 and CA1 

fluctuations were observed also in the absence of 

visual cues (Figure 1H-1I). Every 10-30 trials, the 

virtual environment was interrupted by a blank 

screen (uniform gray) ~50 cm before the reward 

region. This blank period lasted 8.5 ± 2.5 s (s.d.) 

after which the animal resumed the trial in the same 

position as before the blank (Figure 1B). Even 

during the blank periods, there was a significant 

correlation between the fluctuations in position 

decoded from V1 and CA1 (p < 0.05; Figure 1I, black 

curve). This correlation was significant at p < 0.05 in 

19/27 of recording sessions (p = 3.6 10-25, Fisher’s 

combined probability test), and it scaled with the 

correlation measured in the corridor (Pearson’s 

correlation coefficient = 0.48, p = 0.011; Figure 

S2A). During the blank periods, positions decoded 

from CA1 or V1 were unrelated to the distance run 

by the animal or the time passed; instead they 

fluctuated across a range of positions, with a bias 

towards the start of the corridor or the position 

where the animal was before the blank (Figure S2C-

S2F). Correlations between V1 and CA1 decoded 

probabilities were present across a range of 

decoded positions (Figure 1H and S2B). The 

correlation between V1 and CA1 could also be seen 

in pairs of CA1 and V1 neurons, both in the corridor 

and during the blank periods (Figure S2G).  

 

Spatial representations in V1 and CA1 

are influenced by distance run 
Hippocampal spatial representations are affected 

by a number of non-visual cues, amongst which 

idiothetic information (i.e. the distance traveled in 

the environment) is fundamental (Campbell et al., 

2018; Chen et al., 2013, 2019; Gothard et al., 1996; 

Jayakumar et al., 2019; Ravassard et al., 2013). We 

next asked whether idiothetic cues could also affect 

representations of space in visual cortex.  

To investigate the effect of idiothetic cues, we 

changed the gain of the wheel by ±20% in a fraction 

of trials (43% ± 15 s.d.), so that the animal had to 

run a longer or shorter distance than usual to reach 

a given visual position (Figure 2A-2C). This 

manipulation affected behavior: mice tended to lick 

earlier when the distance was longer (low gain), and 

later when the distance was shorter (high gain, 

Figure 2B). Consistent with a dominant role of 

vision in this task, the shift in licking position was 

smaller than would be expected if the mice were 

solely counting steps (Figure 2B). Nevertheless, the 

shift was substantial (low gain, -3.1 cm ± 2.4 s.d.; 

high gain, 2.4 cm ± 2.2 s.d.) and consistent across 

sessions (Figure 2C).  

Having established that the physical distance run 

influenced the animal’s decisions to lick, we asked 

whether it also influenced the activity of CA1 and 

V1 neurons (Figure 2D-2G). To compare responses 

across gain conditions, we focused on neurons 

whose firing rates were significantly modulated 

across positions in the corridor on both medium 

and low or high gain trials (CA1: low gain, 421/1422 

neurons; high gain, 303/1422; V1: low gain, 

566/1109 neurons; high gain, 403/1109; p < 0.01). 

Changes in gain did not affect the mean firing rate 

of V1 or CA1 neurons (Figure S3A and S3B), but did 

affect the position of their neural responses relative 

to the position of the visual cues. As expected (Chen 

et al., 2013; Gothard et al., 1996; Jayakumar et al., 

2019), CA1 place cells tended to fire at earlier 

positions at low gain, when the distance run was 

longer (53.9% of 421 neurons, p < 0.05) and at later 

positions at high gain, when the distance run was 

shorter (54.8% of 303 neurons, p < 0.05) (Figure 

2D,2E and S3C). Many V1 neurons exhibited a 

similar behavior: even though the landmarks were 

encountered at the same visual positions in all 

conditions, the neurons fired earlier on the track 

when the distance was longer (low gain; 39.6% of 

566 neurons, p < 0.05) and later when the distance 

was shorter (high gain; 37.9% of 403 neurons, p < 

0.05, Figure 2F,2G and S3D). This spatial shift 

affected V1 neurons responding throughout the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/586917doi: bioRxiv preprint 

https://doi.org/10.1101/586917
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

corridor, regardless of their preferred position 

(Figure 2F and S3D). Responses of putative V1 

interneurons and putative pyramidal cells shifted by 

similar amounts (low gain: p = 0.20; high gain: p = 

0.07, rank sum test).  

Accordingly, changing the gain shifted the spatial 

representations encoded by populations in both 

CA1 and V1 (Figure 2H-2I). CA1 and V1 tended to 

encode a position ahead of the animal at low gain 

(when the distance run was longer) and behind the 

animal at high gain (when the distance run was 

shorter; Figure 2H, S3E and S3F).  These effects 

could not be explained by changes in running 

speed, visual speed or eye position (Figure S3G-

S3L) or by an interaction of the latency of visual 

responses in V1 with the speed of the virtual 

environment (Figure S3M and S3N). Across 

recording sessions, areas V1 and CA1 showed a 

consistent decoding bias at low and high gain 

(Figure 2I). We conclude that idiothetic signals 

modulate spatial coding in V1 similarly to how they 

modulate spatial coding in CA1. 

 

V1 neurons are modulated by CA1 theta 

oscillations 
We next asked whether V1 neurons are influenced 

by another non-visual factor that affects place cells: 

the 6-9 Hz theta oscillation (Figure 3). As expected 

(Buzsáki et al., 1983), the theta oscillation 

Figure 2 Spatial representations in V1 and CA1 are influenced by distance run. 

A. Examples of single-trial trajectories for low, medium and high gain trials, showing the effect of gain on physical distance 

run. B. Licking probability as a function of the animal’s position on medium (black), low (blue) and high (pink) gain trials 

for all correct trials in one example session. Dashed curves show the prediction if licks were based on physical distance run 

from the previous reward zone (40-cm shift). C. Spatial shift in licking probability measured from low or high gain trials 

across sessions, relative to the mean licking position on medium gain trials. D. Response profiles of CA1 neurons that 

showed a significant spatial shift of their response (in any direction) on low (left) or high (right) gain trials (low gain; 53.9% 

of 421 neurons; high gain; 54.8% of 303 neurons; p < 0.05). Response profiles were ordered according to the position of 

maximal firing on medium gain trials (dotted curve). For each neuron, the response profile was normalized by the mean 

firing across all positions. E. Distribution of spatial shifts in CA1 response profiles at low (blue) or high (pink) gain, using 

the response profile at medium gain as a reference. All neurons which had a significant modulation of their firing rate across 

positions of the corridor were included in this distribution. F-G. Same as in D-E for V1 neurons (low gain; 39.6% of 566 

neurons; high gain; 37.9% of 403 neurons, p < 0.05). H. Decoding bias (± s.e.m) measured on low (blue) or high (pink) gain 

trials from V1 (solid line) or CA1 (dashed line). Arrows indicate the bias that would accumulate if spatial representation 

depended only on physical distance run. I. Comparison of the mean decoding bias (averaged across positions) between V1 

and CA1 (n = 27 sessions). 
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modulated the firing rate of most CA1 place cells 

(86.6%, n = 1,422 neurons, p < 0.05; Figure 3A and 

3B), with firing rates highest near the trough of the 

theta cycle (i.e. 180o; p = 10-181, Rayleigh test, Figure 

3C). Hippocampal theta oscillations can also entrain 

neurons in somatosensory and prefrontal cortices 

(Jones and Wilson, 2005; Sirota et al., 2008; Zielinski 

et al., 2019). We observed a similar effect in V1, 

where the hippocampal theta oscillation 

significantly modulated the firing of 23.4% of V1 

neurons (p < 0.05, n = 1,109; p = 6.0 10-153, Fisher’s 

combined probability test; Figure 3D and 3E). The 

theta modulation of firing rates was weaker in V1 

than in CA1 (p = 10-76, rank sum test). V1 neurons 

modulated by the theta oscillation had diverse 

preferences for positions in the corridor (Figure 

S4A). Similar to previous observations in 

somatosensory and prefrontal cortices (Sirota et al., 

2008), in V1 the theta oscillation modulated 

narrow-spiking putative interneurons more than 

putative pyramidal neurons (36.9% vs. 19.6%; Figure 

3E). Putative pyramidal neurons varied in their 

preference for theta phase, whereas putative 

interneurons tended to prefer the peak of the theta 

cycle (i.e. 0o; p = 0.036, Rayleigh test; Figure 3F). 

These data demonstrate that V1 activity is 

significantly coupled to the same theta oscillation 

as CA1 place cells. 

 

Spatial representations in V1 and CA1 

oscillate with theta phase 
Our CA1 recordings showed typical theta phase 

precession in hippocampal place cells (O’Keefe and 

Recce, 1993; Ravassard et al., 2013; Figure 4A-4E). 

Indeed, CA1 neurons fired ahead of their preferred 

position at late phases of the theta cycle (180o to 

360o), and behind their preferred position at early 

phases (0o to 180o, Figure 4A-4C). This spatial 

oscillation in the position of the place field with 

theta phase was seen in 48.5% of CA1 neurons (p < 

0.05). The spatial oscillation typically went from 

negative to positive at phases near 180o (phase 

precession, Figure 4D) so the population encoded a 

position ahead of the animal at late phases and 

behind the animal at early phases (Figure 4E).  

Figure 3 V1 neurons are modulated by CA1 theta oscillations. 

A. Firing rate of CA1 neurons as a function of the phase of theta oscillations recorded in hippocampus (CA1 theta LFP). Each 

neuron’s firing rate was normalized by the mean firing across phases. Neurons were ordered according to phase of maximal 

firing. Only neurons with a significant modulation of their firing rate across theta phases are represented (86.6%, n = 1,422 

neurons; p < 0.05). B. Distribution of the amplitude of theta modulation (Theta modulation index) for CA1 neurons shown 

in A. C. Distribution of the theta phase of maximal firing (Preferred theta phase) for CA1 neurons shown in A. D-F. Same as 

A-C, showing the activity of V1 neurons relative to the theta oscillation measured in CA1. 23.5% of V1 neurons showed a 

significant modulation of firing rate across theta phase (n = 1,109 neurons; p < 0.05, D). Histograms in E and F distinguish 

putative interneurons (Int., blue; n = 240) and pyramidal cells (Pyr., red; n = 869), identified from their spike waveform. 

Percentages are relative to the total number within each class. 
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Intriguingly, positions encoded by V1 neurons also 

depended on the phase of the theta oscillation 

measured in CA1 (Figure 4F-4J). A significant 

oscillation in the position of the response profile 

across theta phases was seen in 8.5% of V1 neurons 

(p < 0.05, n = 1109; Fisher’s combined probability 

test, p = 2.4 10-17; putative pyramidal cells, 8.2% of 

868; putative interneurons, 9.5% of 241; Figure 4F-

4H and S4C). The phase of this spatial oscillation 

varied widely across V1 neurons, but tended to go 

from negative to positive at phases near 0/360o (i.e. 

opposite to the typical phase precession of CA1 

place cells; putative pyramidal cells, p = 1.4 10-4; 

putative interneurons, p = 7.7 10-4; Rayleigh test; 

Figure 4I). V1 neurons that significantly shifted their 

response across the theta cycle were found 

throughout the corridor (Figure S4B). This 

dependence of V1 spatial selectivity on theta phase 

was visible not only in a fraction of V1 neurons but 

also in the population as a whole: positions 

decoded from entire populations of V1 neurons 

were shifted ahead of the animal at late theta 

phases and behind at early theta phases (Figure 4J). 

Hippocampal theta oscillations thus appear to 

modulate V1 neurons not only in terms of firing rate 

but also in terms of spatial selectivity. Albeit smaller 

than in CA1 (Figure 4C,4H and S4D-S4E), this 

modulation echoes the phase precession observed 

in hippocampus.  

Discussion 
We found that the information encoded in primary 

visual cortex correlates with that in the 

hippocampus even without visual input, and that it 

is influenced by non-visual factors that are known 

to contribute to spatial coding in hippocampus: the 

physical distance run and the hippocampal theta 

oscillation. These results suggest that signals from 

the navigational system may shape visual 

processing in cortical areas.  

Figure 4 Spatial representations in V1 and CA1 depend on the phase of theta oscillation. 

A. Firing rate of a CA1 neuron example as a function of position (x axis) and phase of CA1 theta oscillations (y axis). Black 

curve: spatial response profile of the same neuron. B. Spatial cross-correlogram between the response profiles at each theta 

phase and the average response profile, for the place cell example shown in A. Gray curve: position of maximal correlation 

across theta phases. C. Spatial shift in response profiles across theta phases (gray curve in B) for CA1 neurons with a 

significant spatial shift across theta phases (gray curves; 48.5%, n = 1,422 neurons; p < 0.05; Black: average). D. Distribution 

of the theta phase offset (point of zero-crossing when the spatial shift went from negative to positive), for CA1 neurons with 

a significant spatial shift across theta phases. Percentages are expressed relative to the total number of CA1 neurons (n = 

1,422 neurons). E. Mean bias in the Bayesian probability decoded from entire populations of CA1 neurons, as a function of 

the phase of the CA1 theta oscillation. Gray band shows ± s.e.m. (n = 42 sessions). F-G. Same as in A-B for a V1 neuron 

example recorded simultaneously to the CA1 neuron shown in A. H-I. Same as C-D for V1 neurons with a significant spatial 

shift across theta phases (8.5%, n = 1,109 neurons; p < 0.05). Histograms in I distinguish putative interneurons (Int., blue; 

n = 240) and pyramidal cells (Pyr., red; n = 869). Percentages are relative to the total number within each class. J. Same as 

in E, calculated from entire populations of neurons in V1 (n = 33 sessions). 
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Our observation that the activity of V1 neurons is 

coupled to hippocampal theta oscillations extends 

a number of previous observations. Theta phase 

locking of visual neurons has been observed in 

monkey V4 during a working-memory task (Lee et 

al., 2005) and in local field potential recordings from 

rats (Zold and Hussain Shuler, 2015). Hippocampal 

theta oscillations, moreover, have been shown to 

entrain the activity of cortical neurons in prefrontal, 

and somatosensory areas (Jones and Wilson, 2005; 

Sirota et al., 2008; Zielinski et al., 2019).  

We found that positions encoded by V1 neurons 

shifted spatially across phases of a theta cycle. 

Theta phase precession has been observed beyond 

hippocampus, e.g. in entorhinal cortex (Hafting et 

al., 2008; Jeewajee et al., 2014), ventral striatum (van 

der Meer and Redish, 2011) and prefrontal cortex 

(Jones and Wilson, 2005; Zielinski et al., 2019). Our 

data show that theta phase coding may also affect 

primary sensory areas that receive no direct input 

from hippocampus. It is unclear whether the theta 

phase modulation observed in V1 is inherited or 

locally generated. Nonetheless, the fact that the 

phase of the spatial oscillation varied across V1 

neurons and was more often opposite to the theta 

phase precession observed in dorsal hippocampus 

suggest that V1 may be influenced by different 

parts of the hippocampal network. Indeed, in 

hippocampus, the phase of the theta oscillation 

varies along the septotemporal axis (Lubenov and 

Siapas, 2009). V1 might thus be more influenced by 

ventral hippocampus or CA3 where theta phase 

precession is also 180o out of phase relative to 

dorsal CA1 (Lubenov and Siapas, 2009; Royer et al., 

2010).  

Our results show that in a familiar environment, V1 

is influenced by the physical distance run: when the 

distance is increased or decreased, V1 neurons 

respond at a position that is intermediate between 

the actual position where visual cues are displayed 

and the physical distance at which the animal used 

to encounter these visual cues. A possibly similar 

effect was seen in V1 neurons selective to a 

rewarded position; their firing may depend on the 

physical distance run, at least when no salient visual 

cue is present (Pakan et al., 2018). Here, we showed 

that this integration of visual cues and distance 

information in V1 may also happen throughout the 

trajectory of the animal in the corridor: in our 

dataset, V1 neurons exhibited a shift in their 

response when the distance changed, whether they 

fired preferentially at the reward position or 

elsewhere.  

The network of connections that could explain a 

top-down influence of the navigation system on 

visual cortex is unknown. Several intermediate 

cortical areas may be involved, such as the anterior 

cingulate cortex (Fiser et al., 2016), or retrosplenial 

cortex (Mao et al., 2017; Vélez-Fort et al., 2018). 

Feedback signals from the navigation system might 

also influence visual processing in thalamic neurons 

upstream to V1 (Busse, 2018; Hok et al., 2018). A 

promising way to probe these connections may be 

during sleep, when V1 and CA1 tend to activate 

together, potentially replaying sequences of 

activation observed during active exploration (Ji 

and Wilson, 2007). 

Why should the spatial representation in V1 be 

modulated by these non-visual signals? We suggest 

that V1 is part of a large network that combines 

multiple streams of input to transform sensory 

information from self-centered to world-centered 

coordinates and estimate the animal’s current 

spatial location (Nau et al., 2018). Although activity 

in V1 will have a visual bias compared to other 

regions, it will combine an estimate of visual 

position based on sensory evidence and an 

estimate of position based on non-visual cues such 

as the distance traveled from a previous visual 

location. The presence of self-motion information 

in V1 may thus reflect top-down signals carrying a 

prediction of the visual scene (Fiser et al., 2016; 

Poort et al., 2015), which would synergize with 

dynamics imposed by external sensory inputs to 

generate a more accurate positional estimate.  
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Methods 
All experimental procedures were performed in 

accordance with the UK Animal Scientific Procedure 

Act 1986, under project and personal licenses 

issued by the UK Home Office. 

 

Surgical procedure 

Data were collected from ten C57BL/6J male mice. 

The surgical procedure is similar to that described 

previously (Saleem et al., 2018). In brief, mice were 

implanted on their left hemisphere with a 4-mm 

diameter chamber at 4-10 weeks of age, under 

deep isoflurane anesthesia. Mice were left to 

recover for 3 days during which they received anti-

inflammatory drug (Carprofen/Rymadil, oral 

administration). After recovery, mice were water-

restricted and moved to light-shifted conditions (9 

a.m. light off, 9 p.m. light on). Mice were then 

trained once a day during their dark cycle, 

approximately at the same hour of the day, for 

several weeks. After they reached sufficient 

performance in the task, we performed two 1-mm 

craniotomies under deep isoflurane anesthesia: one 

over CA1 (1.0 mm lateral, 2.0 mm anterior from 

lambda), and the other over V1 (2.5 mm lateral, 0.5 

mm anterior from lambda). Recordings were carried 

on the subsequent 5-8 days with one recording 

session per day. Between recordings, the chamber 

was covered with silicon (KwikCast, World Precision 

Instrument). 

 

Electrophysiological recordings 

Recordings were performed with multi-site silicon 

probes connected to a Blackrock amplifier sampling 

at 30 kHz.  Neurons in the dorsal CA1 region of the 

hippocampus were recorded using a silicon probe 

with 32 electrodes arranged in 8 tetrodes spread 

over four shanks (2 tetrodes per shank spaced by 

150 μm vertically, 200-μm distance between shanks, 

Neuronexus A4x2-tet). The pyramidal layer of CA1 

was detected by the increase in power of theta 

oscillations (6-9 Hz) and the large number of 

detected units. Neurons in primary visual cortex 

were recorded using a 32-electrode linear probe (20 

μm electrode pitch; Neuronexus A1x32-Edge). In 

V1, the probe was inserted so that the most 

superficial electrode was ~150 μm under the 

cortical surface. V1 and CA1 were recorded 

simultaneously in 35 sessions. 

The broadband signal was high-pass filtered at 500 

Hz, and spike-sorted using Klustakwik and 

Klustaviewa (Rossant et al., 2016). We identified 

2748 neurons in CA1 (out of 54 recording sessions) 

and 1,433 neurons in V1 (out of 35 recording 

sessions). Hippocampal interneurons were 

identified based on the duration of their spike 

waveform (through to next peak < 600 𝜇s) and the 

shape of their spike time auto-correlogram (no 

prominent peak between 3-8 ms) (Chen et al., 

2013). All identified interneurons were excluded 

from further analysis. Single units in V1 were 

classified as putative interneurons if the duration of 

their spike waveform was < 600 𝜇s from trough to 

next peak (Figure S1A).  

 

Local field potential and theta oscillations  

Hippocampal local field potential (LFP) was 

extracted by filtering the broad-band signal 

between 0.1 Hz and 100 Hz. The LFP signal from the 

tetrode with the largest number of pyramidal 

neurons was filtered between 6 Hz and 9 Hz to 

obtain the theta-band oscillation. The 

instantaneous phase of the theta oscillation was 

measured by detecting the peaks in the oscillation 

and measuring the relative time from one peak to 

the next, which we then converted into phase. Peaks 

which occurred earlier than 60 ms after the 

preceding one were discarded. Theta phase values 

were centered so that the overall firing rate of the 

population of CA1 pyramidal neurons peaked at 

180o theta phase. 

 

Virtual environment and behavior 

Mice navigated a virtual environment by walking on 

a cylindrical wheel made of polystyrene (Saleem et 

al., 2018). The movement of the wheel was 

measured with a rotary encoder (2400 pulses per 
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rotation, Kübler, Germany). Distance traveled on the 

wheel was used to translate the virtual environment 

presented on three LCD monitors (Hanns-G, 60Hz 

refresh rate) placed in front of the animal at 34-cm 

viewing distance. To correct for luminance drop-off, 

monitors were covered with Fresnel lenses. The eye 

position and pupil size were monitored with an 

infrared camera (DMK21BU04.H, Imaging Source) 

and a zoom lens (MVL7000, Navitar) at 25 Hz. Eye 

tracking was performed offline by fitting an ellipse 

to the pupil and measuring the center of mass and 

the area of this ellipse (Stringer et al., 2019). 

The virtual environment was a circular track made 

of two identical 200-cm semicircular corridors 

(Figure 1A). The main advantage of using a 

continuous circular track is that it avoids edge-

effects at the start and the end of the animal’s 

trajectory. The track was covered with a 16.7-cm 

periodic grating. A wall ran along the right side of 

the track and was adorned with a periodic 

Gaussian-filtered white noise which repeated every 

16.7 cm. The left side of the track had no wall. Three 

landmarks (L1, L2, L3) made of 24-cm long 

cylindrical tunnels (16 cm in diameter) were placed 

along the corridor and centered at 0 cm (L1), 83 cm 

(L2) and 117 cm (L3). The inside surface of these 

tunnels was covered with either a vertical grating 

(L1, L3) or a plaid (L1, L2). The outside surface of the 

tunnels was covered with a horizontal grating. Mice 

could navigate this environment indefinitely and 

there was no visual discontinuity going from one 

semicircular corridor to the next one. Navigation 

was however interrupted every 10 to 30 trials with a 

blank screen of several seconds (8.5 s ± 2.5 s.d.). 

This blank screen always occurred ~50 cm before 

the reward zone. Mice usually continued running 

during the blank period but withheld licking until 

the task resumed. After the blank period, navigation 

resumed in the same position as before the blank, 

regardless of the distance that the animal run 

during the blank screen. 

Mice were trained to lick selectively in a region 

centered around landmark L1 (± 12 cm). Licks were 

detected using a custom-made infrared detector. 

When licks were detected in the correct region, the 

animal was rewarded with ~2μL water by opening 

of a pinch valve (NResearch, USA). To ensure that 

the animal did not learn the task by simply 

discriminating the visual texture associated to 

landmark L1, the visual texture displayed at 

landmark L1 alternated between a grating and a 

plaid every other trial.  

Mice usually tended to lick in bouts that we 

detected by identifying succession of licks that were 

spaced by less than 20 cm. We then labelled licks as 

being correct or incorrect depending on whether 

they were part of a bout of licks that overlapped 

with the reward region. The licking probability 

distribution was computed from the spatial position 

of the first lick of these bouts, considering only 

correct licks. We measured lick counts and 

occupancy as a function of position. The lick count 

map and the occupancy map were circularly 

smoothed with a Gaussian window (8-cm s.d.). 

Licking profiles were defined as the ratio between 

the lick count map and the occupancy map. To 

calculate licking probability across position, the 

resulting distribution was normalized to sum to 1.  

Mice typically learned this task in ~6-8 weeks, i.e. 

they eventually licked exclusively when 

approaching the reward region and nowhere else in 

more than 80% of the trials. Once the animal had 

learned the task, we changed the gain of the virtual 

environment on a fraction of trials (43% ± 15 s.d.). 

On trials where the gain was lower (0.8), mice had 

to run 250 cm to reach the reward zone; on trials 

where the gain was higher (1.2), they had to run 166 

cm to the reward zone. Gain changes were made in 

blocks of 5-10 trials. This manipulation was typically 

introduced 2-3 days before recording. Mice 

performed correctly on more than 70% of the trials 

when the gain was low or high. 

We only considered time points when the animal 

run speed was >5 cm.s-1, except for estimating the 

licking probability; trials where incorrect licks were 

detected were also excluded from our analyses. 

 

Spatial response profiles 

Spike times were resampled at the screen refresh 

rate (60 Hz) and the position of the animal was 
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binned into 2-cm bins. Trials were sorted according 

to the gain of the virtual environment and response 

profiles were computed separately on medium, low 

and high gain trials. The spatial response profile of 

each neuron was computed by measuring spike 

counts and occupancy as a function of position. The 

spike count map and the occupancy map were 

circularly smoothed with a Gaussian window (8-cm 

s.d.). Spatial response profiles were defined as the 

ratio of the smoothed spike count map over the 

smoothed occupancy map.  

To test for the significance of response profiles, we 

circularly shifted in time each neuron spike train 500 

times by a random period > 5 s. Neurons were 

considered to have a significant modulation of their 

firing rate by position if the maximal amplitude of 

their response profile was higher than the 99-

percentile of the distribution of response amplitude 

computed from the shuffled controls. Neurons were 

then ordered according to their preferred position, 

defined as the position of maximal firing rate.  

To estimate the shift in response profiles across 

gain conditions, we computed the spatial cross-

correlogram between medium and low- or high-

gain response profiles, for neurons which had a 

significant response modulation across compared 

gain conditions (p < 0.01). The spatial shift was 

defined as the position of the peak in the spatial 

cross-correlogram between response profiles. To 

test for the significance of the spatial shift, we 

shuffled 500 times the gain values associated to the 

spikes of each neuron. Neurons were considered to 

have a significant shift of their response profile on 

low or high gain trials when this shift was larger 

than the 95-percentile of the distribution of shifts 

measured from the shuffled controls.  

We also measured mean firing rates as a function of 

gain. To test if changes in gain significantly affected 

mean firing rates, we circularly shifted in time each 

neuron’s spike train 500 times. The mean firing rate 

was considered to be significantly different 

between medium and low or high gain trials, if the 

measured difference in firing rate was higher than 

the 99-percentile of the distribution of the same 

difference computed from the shuffled controls. 

We also computed the response profile of each 

neuron as a function of position along the two 

successive semicircular corridors, which only 

differed by the presence of a grating or a plaid at 

landmark L1 (Figure 1A and S1B-S1C). We 

measured the difference in peak firing rate between 

the second and the first corridor at matching 

positions (i.e. 200 cm apart). To test if the difference 

in peak firing rate was significant, we shuffled 500 

times the identity of the semicircular corridor (first 

vs. second). A neuron was considered to respond 

differently in the first and second corridor if the 

difference in peak firing rate was larger than the 99-

percentile of the distribution of the same difference 

computed from the shuffled controls. 

 

Theta modulation 

Firing rate as a function of the phase of theta 

oscillations was computed similar to spatial 

response profiles. Theta phases were binned into 

20o bins. We measured the spike counts and 

occupancy as a function of the phase of theta 

oscillations.  The spike count map and the 

occupancy map were circularly smoothed with a 

Gaussian window (40o s.d.). The average firing rate 

across theta phases was defined as the ratio of the 

smoothed spike count map over the smoothed 

occupancy map. The preferred theta phase of firing 

was measured for each neuron from the position of 

the peak. The theta modulation index was 

computed as 

𝑇ℎ𝑒𝑡𝑎 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =
𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛

𝐹𝑚𝑒𝑎𝑛

 

Where Fmax and Fmin correspond to the maximum 

and minimum firing rate across theta phases; Fmean 

is the mean firing rate across all theta phases. 

To measure the significance of theta modulation of 

firing rate, we circularly shifted in time each 

neuron’s spike train 500 times by a random period 

> 5 s. Firing rate was considered significantly 

modulated by theta phase if its theta modulation 

index was higher than the 95-percentile of the 

distribution of theta modulation index computed 

from the shuffled controls. 
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Theta phase dependent response profiles 

To assess how spatial selectivity changed as a 

function of theta phase, we measured average firing 

rate as a function of both the position of the animal 

and the phase of theta oscillations. Positions were 

binned in 2-cm bins and theta phase into 20o bins. 

Spike count and occupancy were measured for each 

position and theta phase bin. The spike count map 

and the occupancy map were circularly smoothed 

using a 2d-Gaussian window (40o x 8-cm s.d.). The 

theta phase x position response profile was defined 

as the ratio between the spike count and occupancy 

maps. We then measured the spatial cross-

correlogram between the response profile 

estimated at each theta phase with the mean 

response profile averaged across all phases. The 

spatial drift of the response profile across a theta 

cycle was defined as the maximum of this cross-

correlogram across theta phases. This maximum 

position curve was fitted with a sinusoid from which 

we measured the theta phase offset (i.e. the phase 

of zero-crossing) and the amplitude. To measure 

the significance of the spatial drift across theta 

phases, we shuffled the theta phases of the spikes 

of each neuron 500 times. Neurons were 

considered to have a significant spatial drift when 

the amplitude of the drift measured from the spatial 

cross-correlogram was higher than the 95-

percentile of the distribution of spatial drifts 

measured from the shuffled controls. The spatial 

cross-correlogram has two main advantages over 

the more classical linear-circular correlation 

(Kempter et al., 2012): 1) it is independent of the 

static modulation of firing rate by theta phases and 

2) it does not require the identification of the peak 

and extent of the place field. For comparison, we 

also estimated the relationship between the theta 

phase and position of spikes by estimating the 

linear-circular correlation in the theta phase x 

position maps (Kempter et al., 2012). With this 

metric, response profiles were considered to show 

a significant association between theta phase and 

position when their linear-circular correlation 

coefficient was smaller or larger than the 5- or 95-

percentile of the distribution of correlation 

coefficients measured from the shuffled controls. 

Using this method, we found similar fractions of 

response profiles that were spatially shifted across 

phases of a theta cycle (Figure S4E).  

 

Bayesian decoding 

To decode positions from populations of 

simultaneously recorded neurons, we used an 

independent Bayes decoder, assuming spike times 

followed a Poisson distribution. Decoding was 

performed for recording sessions where >10 

neurons showed a significant modulation of their 

firing by position (CA1, n = 42 sessions; V1, n = 33 

sessions; n = 27 sessions with simultaneous 

recording). For every time bin, we estimated the 

probability of the animal being at a given location 

(P(x|R), decoded probability) from the spike count 

of CA1 or V1 neurons, using the following formula 

(Zhang et al., 1998): 

𝑃(𝑥|𝑅) =
1

𝑍
 𝑃(𝑥) (∏ 𝑓𝑖(𝑥)𝑟𝑖

𝑀

𝑖=1

) 𝑒𝑥𝑝 (−𝑡 ∑ 𝑓𝑖(𝑥)

𝑀

𝑖=1

) 

Where x is the position of the animal, ri is the spike 

count of cell i, fi(x) is the spatial response profile of 

cell i estimated as described above, M is the total 

number of neurons, t is the size of the spike 

counting window and Z is a normalizing constant 

that ensures that the resulting distribution sums to 

1.  

The response profiles fi(x) were computed from 

medium gain trials as described above. The spike 

count window was fixed to 250 ms (except when we 

assessed the bias in decoded probability across a 

theta cycle where we used 50 ms; Figure 4E and 4J). 

To avoid over-fitting, the posterior probability 

decoded from medium gain trials was computed 

using a 20-fold cross-validation procedure: 

response profiles were calculated from 95% of the 

data and the posterior probability was estimated 

from the spike counts recorded in the remaining 

5%; this procedure was repeated iteratively on 

different subsets until all trials were decoded. 

To minimize the impact of running speed on 

decoded probability, the running speed distribution 

measured from medium gain trials was divided into 
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5 quantiles at each position and the decoder was 

run for each of these speed ranges independently. 

For low and high gain conditions, data were sliced 

according to the same absolute speed ranges as in 

the medium gain condition. We used the average 

response profiles computed from medium gain 

trials to decode positions from the spike counts 

measured on low or high gain trials.  

The mean decoded probability (Figure 1E and S3E-

S3F) was computed by averaging the posterior 

probability for each position of the mouse. The 

resulting distribution was smoothed with a 2d-

Gaussian window (2 x 2-cm s.d.) and the mean 

decoded trajectory was estimated by computing 

the weighted circular average of this probability 

distribution for every position of the animal. To 

estimate the decoding bias between gain 

conditions, we measured the difference between 

the mean decoded trajectory computed in the low 

or high gain condition with the mean decoded 

trajectory computed in the medium gain condition. 

The standard error of this decoding bias was 

estimated using a 20-fold Jackknife resampling 

procedure.  

 

Noise correlations 

Noise correlations in the virtual corridor were 

measured from correct trials that were not 

interrupted by a blank screen. To compute the noise 

cross-correlograms between V1 and CA1 decoded 

probability, we first computed the mean decoded 

probability for every position and speed bins 

(defined as described in Bayesian decoding). At 

every time point, we subtracted the mean decoded 

probability estimated at the corresponding position 

and speed of the animal from the probability 

distribution decoded at that time point. The noise 

cross-correlogram was finally obtained by 

computing the Pearson’s correlation between the 

residual CA1 and V1 distributions, after shifting 

circularly the CA1 distribution in space by various 

amounts. To test for the significance of the 

measured CA1-V1 noise correlation, V1 and CA1 

decoding probability were shifted relative to one 

another 500 times by a random time period (> 5 s). 

We considered that CA1 and V1 shared significant 

noise correlation in a particular recording session 

when the measured Pearson’s correlation 

coefficient was higher than the 95-percentile of 

correlation coefficients obtained from the shuffled 

controls. 

To measure the noise correlation between pairs of 

individual CA1 and V1 neurons recorded 

simultaneously, we first subtracted from each 

neuron’s spiking activity the mean spike count 

corresponding to the position and speed of the 

animal (defined as in Bayesian decoding). The 

remaining spiking activity corresponded to the 

residual that could not be explained by position or 

speed. The noise correlation (or spike count 

correlation) between two neurons was estimated by 

computing the Pearson’s correlation between the 

residual spiking activity of these two neurons. To 

test for the significance of the measured spike 

count correlations, we shifted the neuron’s residual 

spike counts relative to one another by a random 

time period (> 5 s) 500 times. We considered two 

neurons to be significantly correlated when the 

measured spike count correlation was smaller or 

larger than the 5- or 95-percentile of spike count 

correlation coefficients obtained from the shuffled 

controls.  

Noise correlations were also estimated over periods 

where the task was interrupted by a blank screen 

using a similar method. We first excluded the first 

and last 500 ms of the blank screen periods. In the 

rare case when mice licked during the blank, we also 

excluded a 500-ms time window centered around 

the lick. We then defined 5 speed ranges based on 

quantiles of the distribution of run speeds during 

blank screen periods.  The noise correlation 

between CA1 and V1 decoded probability was 

computed within each speed range. At every time 

point, we subtracted the mean decoded probability 

estimated at the corresponding speed of the animal 

from the probability distribution decoded at that 

time point. We next obtained the noise cross-

correlogram by computing the Pearson’s 

correlation between the residual CA1 and V1 

distributions, after circularly shifting the CA1 
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distribution across space by various amounts. 

Similarly, to estimate the spike count correlations 

between pairs of neurons during blank periods, we 

subtracted the mean spike count corresponding to 

the speed of the animal at each time point. The 

spike count correlation between pairs of CA1 and 

V1 neurons was then measured as the Pearson’s 

correlation between their residual spiking activity. 

The significance of the correlation coefficients 

measured during the blank periods was estimated 

using the same method as described above for 

correlation coefficients measured in the corridor.
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Figure S1 

 

CA1 and V1 neural responses are similar whether the texture displayed at the reward location is a 

grating or a plaid 

A. Putative neocortical interneurons and pyramidal cells were isolated from the duration of their extracellular spike 

waveform (Bartho et al., 2004; Sirota et al., 2008). Top, distribution of the duration of spike waveforms (trough to next 

peak; high-pass cutoff, 500 Hz) across V1 neurons (Blue, putative interneurons; red: putative pyramidal neurons; threshold: 

0.60 ms). Bottom, other metrics such as the spike asymmetry (Sirota et al., 2008) did not help to better separate putative 

interneurons and pyramidal cells in our dataset. B. The virtual corridor was defined by three landmarks (L1, L2 and L3) 

and repeated in a full circle with texture at landmark L1 alternating between a grating and a plaid every other trial. C. 

Response profiles of CA1 (left) and V1 (right) neurons estimated as a function of position along the two successive 

semicircular corridors, which differed by the texture associated with landmark L1 (grating vs. plaid). Neurons are ordered 

according to the position of their peak response. Matching positions in the two semicircular corridors (200 cm away) are 

indicated by the dashed lines. Although the texture at the reward zone (L1) alternated between a grating and a plaid, 

responses were very similar between the two corridors. D. Distribution of the difference between peak responses in the 

first (starting with a grating, white line in B) and second (starting with a plaid, gray line in B) corridor, for CA1 (left) and V1 

(right) neurons. The difference is expressed relative to the mean firing rate across all positions. Black bars: neurons with 

significant difference in peak firing rate between the first and second corridor (CA1, 1.19%, n = 1422 neurons; V1, 1.26%, 

n = 1109 neurons; p < 0.01). E. Same as C after selecting only neurons which had a maximal firing rate within 40 cm around 

landmarks L1 (neurons with significant difference in firing rate: CA1, 3.41%, n = 348 neurons; V1, 3.73%, n = 205 neurons; 

p < 0.01).  
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Figure S2 

Correlations between V1 and CA1 

representations in the absence of 

visual cues 

A. Noise correlation between CA1 and V1 

decoded probability distribution, measured 

either in the corridor (x axis) or during the 

blank periods (y axis). Each dot corresponds to 

one recording session (n = 27). In the corridor, 

all sessions showed a significant noise 

correlation between CA1 and V1 decoded 

probability (p < 0.05). In the blank periods, 

this correlation was significant in 70.4% of all 

sessions (p < 0.05; n = 19 out of 27, filled 

circles). The correlation measured in the 

corridor and during the blank periods scaled 

with each other (Pearson’s correlation 

coefficient = 0.48, p = 0.011). Dotted line: 

regression line. B. Noise correlations between 

V1 (y axis) and CA1 (x axis) decoded 

probability, measured for each decoded 

position independently, after shuffling time 

points within conditions. C. Bayesian 

probability decoded from CA1 for one trial 

example which was interrupted by a blank 

period. Green line: position of the animal. D. 

Bayesian probability decoded from V1 for the 

same trial as in C. E. Bayesian probability 

decoded from CA1 as a function of time from 

the start (left) or the end (right) of the blank 

period, averaged across all recording sessions 

(CA1, n = 42 sessions). F. Same as E for V1 (V1, 

n = 33 sessions). G. Spike count correlations 

between pairs of CA1 and V1 neurons 

recorded simultaneously (n = 20,563 pairs). 

Histograms show the distribution of spike 

count noise correlations in the corridor (top) 

or during the blanks (right), across all neuron 

pairs (gray bars). Black bars include only 

neuron pairs which had significant spike count 

correlation (p < 0.05; corridor, 17,8%; blank, 11.8%). The correlation coefficients measured during the blanks were 

significantly correlated with those measured in the corridor (Pearson’s correlation coefficient = 0.30; p < 0.002, 

permutation test; Solid line shows regression line).
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Figure S3 

Positions encoded by V1 and CA1 are 

influenced by the physical distance run  

A. Distribution of the difference in mean firing rate 

between medium gain trials and low (left) or high (right) 

gain trials, for CA1 neurons (n = 1422 neurons). The 

difference was normalized by the mean firing rate on 

medium gain trials. Darker colors represent neurons 

which had a significant change in firing rate on low or high 

gain trials compared to medium gain (low gain, 5.2%; high 

gain, 4.9%; p < 0.01). B. Same as A for V1 neurons 

(proportion of V1 neurons with significant change: low 

gain, 8.3%; high gain, 6.5%; p < 0.01). C. Spatial shift in CA1 

response profiles on low (blue) and high (pink) gain trials, 

as a function of the position of the maximal firing along the 

corridor. Each dot corresponds to one neuron. Closed 

circles correspond to neurons with a significant spatial 

shift. D. Same as C for V1 neurons. E. Average Bayesian 

probability distribution decoded from CA1 on low (left) or 

high (right) gain trials. F. Same as E for V1. G. Mean 

running speed as a function of positions in the corridor. 

Running speed profiles were similar across gain 

conditions, except at the start of the corridor where mice 

used to accelerate slightly earlier or later. H. Mean 

decoding bias measured in CA1 (left) and V1 (right) for 

different ranges of running speed. Speed ranges were 

defined as the deviation of the running speed from the 

median of the running speeds at the animal’s current 

position on medium gain trials. I-J. Same as G-H for visual 

speed. Given similar running speed profiles across gain 

conditions (I), the visual speed was different between gain 

conditions. Speed ranges in J were defined as the deviation 

of the visual speed from the median of the visual speeds at 

the animal’s current position on medium gain trials. K-L. 

Same as G-H for pupil position along the horizontal axis. 

Pupil position was correlated with animal speed: gazing 

more forward when speeding up. The ranges of pupil 

position were defined by 0.2-quantiles of the distribution 

of eye positions at the animal’s current position on 

medium gain trials. M. Distribution of the time delays in 

neural responses that might explain the spatial decoding 

bias observed across CA1 recording sessions on low 

(median: 800 ms; left) or high (median: 750 ms; right) gain 

trials. Since mice ran at similar speeds across gain 

conditions, the virtual environment moved faster or 

slower depending on the gain (I). The spatial shifts in 

decoded positions could thus potentially reflect a temporal 

delay in the response of these neurons, which would 

translate into a displacement of their response in space at 

low or high gain. To estimate this ‘equivalent time delay’, 

we shifted the spike trains backward by various time 

delays, before performing again the same decoding analysis. The ‘equivalent time delay’ was measured as the time delay 

that minimized the decoding bias on low or high gain trials. N. Same as M for V1 recording sessions. The time delays that 

minimized the decoding bias measured in V1 (median: low gain, 750 ms; high gain, 650 ms) are not compatible with the 

latency of visual responses commonly observed in V1.  
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Figure S4 

Theta phase dependence of V1 and 

CA1 responses 

A. Percentages of CA1 (left) or V1 (right) 

neurons with a significant modulation of 

their firing rate by theta phases (‘Theta-

modulated neurons’; p < 0.05), as a function 

of the position of maximal firing along the 

corridor. B. Percentages of CA1 (left) or V1 

(right) neurons with a significant spatial shift 

of their response across theta phases 

(‘Theta-shifted neurons’; p < 0.05), as a 

function of the position of maximal firing 

along the corridor. C. Examples of V1 

neurons with a significant spatial shift of 

their response profiles across theta phases 

(p < 0.05). For each neuron, we plotted from 

top to bottom: 1) the mean response profile; 

2) the raster plot of the theta phase of the 

spikes as a function of positions in the 

corridor; 3) the mean firing rate as a function 

of theta phases and positions; 4) the spatial 

cross-correlogram between the response 

profile at each theta phase and the mean 

response profile. D. Distribution of the 

amplitude of the spatial shift across theta 

phases for CA1 (left) or V1 (right) neurons 

whose responses were significantly shifted. 

The amplitude of the spatial shift was 

measured from the amplitude of the sinusoid 

that best fitted the maximum curve of the 

spatial cross-correlogram (black curve in C). 

Putative V1 interneurons were identified 

according to their spike waveform. 

Percentages are expressed relative to the 

total number of neurons within each 

category (CA1, n = 1422; V1 interneurons, n 

= 240; V1 pyramidal neurons, n = 869). E. 

Distribution of the linear-circular correlation 

coefficient measured from CA1 (left) or V1 

(right) neurons. The linear-circular 

correlation coefficient was measured from 

the mean firing rate as a function of theta 

phases and positions (firing rate maps in C). 

Black bars: neurons which showed a 

significant linear-circular correlation (p < 

0.05, CA1, 42.5%; V1, 11.45%); gray bars: all 

neurons. 
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