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Abstract 
 In this article, we describe our efforts in contact prediction in the CASP13 experiment. 
We employed a new deep learning-based contact prediction tool, DeepMetaPSICOV (or DMP 
for short), together with new methods and data sources for alignment generation. DMP 
evolved from MetaPSICOV and DeepCov and combines the input feature sets used by these 
methods as input to a deep, fully convolutional residual neural network. We also improved our 
method for multiple sequence alignment generation and included metagenomic sequences in 
the search. We discuss successes and failures of our approach and identify areas where 
further improvements may be possible. DMP is freely available at: 
https://github.com/psipred/DeepMetaPSICOV. 
 
1. Introduction 
 
The value of accurate inter-residue contact predictions in protein tertiary structure prediction 
is now well established. Recent years have seen marked improvements in accurate prediction 
of contacts, driven by improvements in methodology, most recently using meta-predictors and 
deep learning (Adhikari, et al., 2017; Buchan and Jones, 2018; Jones and Kandathil, 2018; 
Jones, et al., 2015; Liu, et al., 2018; Wang, et al., 2017; Wang, et al., 2018). For our contact 
prediction effort in CASP13, we developed DeepMetaPSICOV (abbreviated DMP), a contact 
predictor based on a deep, fully convolutional residual network and a large input feature set. 
DMP is a logical extension and combination of our previous methods MetaPSICOV (Buchan 
and Jones, 2018; Jones, et al., 2015) and DeepCov (Jones and Kandathil, 2018). The method 
is capable of precise predictions for a variety of proteins, including membrane proteins and 
those with relatively shallow sequence alignments. We also employed expanded sequence 
data banks for multiple sequence alignment (MSA) generation during the prediction season, 
which led to an overall enhancement in contact precision. In this paper, we will describe the 
method, its performance in CASP13, and successes and failures of our approach. 
 
2. Methods 
 
2.1. Feature sets 
The input features to DMP comprise the sequence profile, predicted secondary structure, 
solvent accessibility, and other features used in MetaPSICOV (see Supplementary 
Information for complete details). Features defined on single residues are converted into 2D 
maps by striping them horizontally and vertically. Other features such as the outputs from 
PSICOV (Jones, et al., 2012), CCMpred (Seemayer, et al., 2014) and FreeContact (Kaján, et 
al., 2014) are used without modification, since they are defined on residue pairs. The 58-
channel MetaPSICOV inputs are combined with the 441-channel DeepCov covariance 
matrices, which contain raw covariance values calculated for each pair of positions in the 
sequence alignment, for each pair of residue types (Jones and Kandathil, 2018). Two 
additional channels encode sequence separation between residue pairs and the sequence 
bounds; the latter is simply a channel where all input values are set to 1. 
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2.2. Model architecture 
The DMP model is a deep, fully convolutional residual neural network (ResNet; Figure 1). This 
type of model is known to be highly performant in image recognition tasks (He, et al., 2016), 
as well as in contact prediction (Wang, et al., 2017; Wang, et al., 2018). In our model, the 501-
channel inputs are fed to a convolutional Maxout layer (Goodfellow, et al., 2013), which 
reduces the input dimensionality from 501 to 64. Instance normalisation (Ulyanov, et al., 2016) 
is applied to the output of this layer, and the output is fed to a series of residual blocks. Each 
residual block (right-hand panel of Figure 1) is a set of two dilated 2D convolutional layers, 
each with 5x5 filters, 64 output feature maps and Rectified Linear Unit (ReLU) activation 
functions, together with a residual or skip-connection that adds the input of the block to its 
output, before passing the result through a final ReLU nonlinearity. A total of 18 residual blocks 
are used. Each residual block alternates between using regular and dilated 5x5 filters, with 
the dilation rates increasing in later residual blocks. Dilations are applied as a means to rapidly 
grow the receptive field of the network to encompass the whole protein input. The dilation 
rates used are 1, 2, 4, 8, 16, 32 and 64. After the last residual block employing dilated 
convolutions, a few additional blocks comprising regular (non-dilated) convolutions are used; 
the dilation rates used for each residual block are given in Supplementary Table S2. 
 
Following the residual blocks, the output layer of the model comprises a 2D convolutional layer 
with a single 1x1 filter and a sigmoid nonlinearity, with instance normalisation applied before 
the nonlinearity. To get the predicted scores for each residue pair, we average the values 
predicted for residue pairs (i,j) and (j,i) as in DeepCov. The final predicted score is the average 
of predictions from 5 versions of the DMP model, trained on the same input data independently 
using different random number seeds. 
 
2.3. Data augmentations 
Data augmentation procedures are commonly used to improve the generalisation and 
robustness of models that operate on images or audio. The idea is to generate artificial, but 
plausible, new training examples by applying transformations to a set of “true” examples. For 
example, if one is interested in recognising a piece of music, one could generate new versions 
of a given recording by generating versions played at slightly different tempos. For contact 
prediction, we used three procedures inspired by techniques used in image analysis: 
 
2.3.1. Loop sampling  
Loop regions in many proteins are capable of tolerating insertions and deletions without 
significantly affecting the overall contact pattern. Therefore, synthetic training examples can 
be generated by simply masking or deleting rows and columns in the input tensors 
corresponding to residues in loops, and by masking or deleting the corresponding sections in 
the contact maps as well (Figure 2a). 
 
Loop residues are determined according to the DSSP (Kabsch and Sander, 1983; Sander, et 
al., 2010) assignment for each protein in the training set. Features for residues given either 
no assignment or an assignment of ‘S’ corresponding to bends are considered for removal 
with a probability of 0.3. The corresponding rows and columns in the true contact map for the 
training example are also removed, and the channel encoding sequence separation 
(Supplementary Table S1) is also recomposed to reflect the modified sequence length. The 
overall procedure is applied with a probability of 0.5 and only on proteins which have 40% or 
fewer of their residues classified as loop according to the above definition. 
 
2.3.2. Feature interpolation 
Accurate prediction of contacts is challenging when one is faced with low-quality or shallow 
alignments, because one obtains sparse and/or inaccurate estimates of substitution statistics. 
To make our method robust to alignments of lower quality, we train our models on two versions 
of sequence alignments: those obtained using HHblits and the pre-clustered 
uniprot20_2016_02 database (pre-CASP12), and those obtained using PSI-BLAST searches 
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on the Swiss-Prot sequence database. In general, the Swiss-Prot alignments tend to be of 
significantly lower quality as compared to the uniprot20 alignments. As illustrated in Figure 2b, 
the augmentation procedure constructs synthetic training examples by linearly interpolating 
between two input tensors: 
 X’ = m·X1 + (1 – m)·X2 (1) 
where X’ is the synthetic training example, X1 and X2 are the original training examples, and 
m is a scalar chosen uniformly at random in the range [0, 1]. In our case, X1 and X2 correspond 
to the input feature tensors generated using uniprot20 and Swiss-Prot alignments, 
respectively, for a given protein in the training set. Using this procedure, we can simulate input 
feature tensors obtained from alignments of continuously varying quality, thus improving the 
model’s robustness to low-quality alignments. 
 
The above procedure is similar to those used in the Synthetic Minority Over-sampling 
Technique (Chawla, et al., 2002) and the mixup method (Zhang, et al., 2017). The key 
differences relative to SMOTE and mixup are that (a) the interpolation in our method is not 
designed to over-sample any particular type of training example, and (b) interpolation is 
performed only on the input features; once a synthetic training example is created, it is mapped 
to the same (true) contact map as the original training examples. 
  
2.3.3. Flipped input feature tensors and contact maps 
In image recognition, a rotated image and the original obviously contain the same information. 
Although contact maps cannot be arbitrarily rotated, a rotation of 180° is permitted, as this 
corresponds to a reversal of the protein chain direction (N and C termini are exchanged; Figure 
2c). Although the resulting sequence and contact map may well not correspond to a stable, 
folded, and functional protein, it nonetheless describes a valid chain conformation. By 
reversing both the input tensors and the target contact maps in this way, the additional 
input/target pairs help regularise the network during training. This procedure is applied with a 
probability of 0.5. When applied, the flipped inputs and outputs are appended to their regular 
versions in a batch. 
 
2.4. Training 
Network weights were trained using batches of 8 training examples. The data augmentation 
procedures were applied on-the-fly as each batch was prepared. The implementation in 
PyTorch allows the training loop to accumulate weight gradients based on forward passes of 
individual examples. Following this, the network parameters can be updated using the 
gradients accumulated over each batch. With such a setup, training examples are passed 
through the network one at a time, removing the need for zero padding to have training 
examples of differing sizes in a batch. 
 
The weights in the network were initialised using Xavier initialisation (Glorot and Bengio, 2010) 
with weights drawn from the uniform distribution. Network weights were optimised using the 
Adam method (Kingma and Ba, 2014) with an initial learning rate of 0.001. The binary cross-
entropy between the predicted and true contacts was used as the loss function during training, 
with the loss calculated on residue pairs with sequence separation greater than 4. Training 
progress was monitored using the Matthews correlation coefficient (MCC) of the predictions 
on a separate validation set of proteins (see below). Once again, residue pairs fewer than 5 
residues apart in sequence were excluded from the MCC calculation. Training was stopped 
when the MCC on the validation set did not improve for a number of consecutive epochs. 
 
2.5. Datasets for training and testing 
DMP was trained using the same set of 6729 proteins and alignments used to train DeepCov 
(Jones and Kandathil, 2018). The proteins in the training set were selected such that any two 
chains are < 25% sequence-identical and any single chain has fewer than 500 residues. 
Chains with missing residues were also excluded. The training set includes both single- and 
multi-domain proteins and has no overlap with the CASP12 free-modelling domains, which 
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was used as a test set during development. Overlap between the training and test sets was 
assessed using ECOD database classification, rather than sequence identity, as the former is 
a much more rigorous procedure for exclusion of topologically similar proteins. Proteins were 
removed from the training set if they were in the same ECOD T-group as a test example. The 
validation set comprised the first 200 chains in the alphabetically ordered list of PDB and chain 
identifiers for the training set. During development, the effectiveness of the model was 
assessed on a variety of datasets including the CASP11 and CASP12 free-modelling (FM) 
domains, the PSICOV150 set (Jones, et al., 2012), and membrane proteins from Nugent and 
Jones (2012) and Hayat, et al. (2015). 
 
2.6. Multiple sequence alignment (MSA) generation 
Having a deep, diverse multiple sequence alignment for a protein of interest is essential for 
successful contact prediction. It has been established that metagenomic sequence collections 
are a rich source of sequence data that can be used for this purpose (Ovchinnikov, et al., 
2017). Therefore, in CASP13 we improved upon our previous approach for generating deeper 
MSAs (Buchan and Jones, 2018; Kosciolek and Jones, 2016) by including both UniRef100 
and metagenomic sequences in the search. Additionally, we used profile HMMs rather than 
single sequences to build the target-specific HHblits database. The procedure is described in 
detail below. 
 
Each target sequence was used as a query for an initial HHblits (Remmert, et al., 2011) search 
against the UniClust30 database provided by the Söding group. If at least 10L raw sequences 
were found (where L is the length of the target sequence), the alignment was used as-is. For 
targets for which fewer than 10L sequences were obtained, the query sequence was scanned 
against a custom sequence database using jackHMMER (Clements, et al., 2011; Johnson, et 
al., 2010). This custom database is the set union of UniRef100 and the EBI MGnify 
(Tarkowska, et al., 2017) protein sequences at a sequence identity threshold of 100%. 
Significant hits obtained from this search were then clustered using kClust (Hauser, et al., 
2013) and the clusters were aligned using MAFFT (Katoh and Standley, 2013). These 
alignments and the alignment from the initial HHblits search were then used to build a HHblits 
database specific to the target sequence. A final HHblits search was run against this target-
specific HHblits database to derive the final MSA. 
 
2.7. Calculation of effective sequence count (Meff) 
Sequences in the MSA for each target were clustered using CD-HIT (Fu, et al., 2012; Li and 
Godzik, 2006) at a sequence identity threshold of 62% and a word size of 4. The number of 
clusters returned by CD-HIT was taken as the Meff. Unless otherwise mentioned, Meff values 
are calculated on the alignment obtained by the MSA generation procedure described above 
for the full-length target sequence. 
 
2.8. Automatic domain parsing 
We attempted to automatically parse domains in each target sequence using the same 
approach we used in CASP12. Briefly, each target sequence was first run through the 
alignment generation and contact prediction steps to generate an initial contact list. Using 
HHblits, the target sequence was scanned against the PDB70 database provided by the 
Söding group. Regions of the sequence that did not match a PDB template and that were at 
least 30 residues long were extracted, and the alignment generation and contact prediction 
steps were re-run on the putative domain sequence. The contact scores predicted for such 
domains were then copied back into the relevant region(s) of the initial contact list to yield the 
final prediction. 
 
3. Results 
 
3.1. Performance in CASP13 
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Our move to a deep residual neural network model for generating contact predictions proved 
to be quite successful. In an early test on the CASP12 FM domains, we observed that DMP 
was substantially more precise than MetaPSICOV2 and DeepCov on the same input 
alignments. Addition of the data augmentation procedures and averaging predictions over 5 
versions of the trained model also led to small improvements in mean precision on these 
targets. 
 
Table 1 shows the precision obtained by DMP on the domains classified as FM or FM/TBM 
by the CASP13 assessors. Over these targets, DMP obtained a mean precision of 66.18% 
when considering the top-L/5 long-range contacts. Our predictions were more than 90% 
precise for 16 domains, and a top-L/5 precision of 100% was achieved on 7 of these domains. 
Notably, some very precise predictions were obtained even though the MSA for the target had 
a low effective sequence count; considering the 16 domains in Table 1 for which our 
alignments had an Meff <= 50, DMP obtained a mean long-range precision of 44.48% for the 
top-L/2 contacts, and 57.88% on the top-L/5 contacts. The corresponding mean precision 
values considering both medium and long-range contacts are 61.11% and 76.33%. This 
represents a strong improvement in our ability to accurately predict contacts for relatively 
shallow MSAs, especially when one considers (for example) that PSICOV requires many 
hundreds of effective sequences in the MSA to achieve similar precision (Jones, et al., 2012). 
 
3.2. Successes and failures in MSA generation 
The addition of metagenomic sequences to our MSA generation step proved beneficial in an 
initial test on a subset of the CASP12 FM domains, where we found that we were able to 
obtain as many as double the number of sequences as compared to using UniRef100 alone. 
In CASP13, we saw an improvement in alignment depth over using HHblits alone (Figure 3a) 
for all but 3 targets which had fewer than 10L raw sequences in the initial HHblits MSA. The 
new procedure for MSA generation guarantees that the MSA derived by searching the custom 
database of UniRef100 + EBI MGnify sequences will have an equal or greater number of (raw) 
sequences as compared to the initial HHblits MSA, and thus all points in Figure 3a are on or 
above the dashed line. The increase in alignment depth translated into more precise contact 
predictions overall (Figure 3b). Strong improvements in precision were seen when using the 
deeper MSAs on domains T0958-D1, T1010-D1, and T0957s2-D1, among several others. 
 
From Figure 3b, there are a few cases in which deeper alignments led to significantly reduced 
contact precision. Reduced performance with deeper alignments could indicate (among other 
factors) misalignment, ‘blurring’ or loss of structural signal in MSAs with very distant sequence 
relatives, or that the MSA contains sequences incorrectly matched due to profile drift. We 
found evidence of the latter on target T1015s1-D1, for which we obtained a top-L/5 long-range 
precision of 27.78%. The full MSA (Meff = 580) for this target shows very highly conserved 
CXC and CXXC motifs, corresponding to a metal binding site in the tertiary structure. Despite 
these patterns of conservation, many of the sequences in the alignment appear to be 
artefactual hits brought in by profile drift. Indeed, when predicting contacts using just the initial 
HHblits MSA (Meff = 79), the top-L/5 long-range precision jumps to 55.56%. These 
observations highlight challenges encountered when using a one-size-fits-all approach to 
MSA generation, and this is an area that we plan to develop further. 
 
3.3. Domain parsing 
Our automatic domain parsing procedure detected domains on a total of 20 out of the 90 
regular targets during the prediction season. Of the contact prediction targets, our domain 
parsing procedure detected domains for 5 targets corresponding to 6 domains (Table 2). Of 
these, only T0981-D3 benefitted clearly from the automated domain parsing, gaining between 
35 (top-L) and 12.2 (top-L/5) percentage points in precision. T0981-D2 showed a mixed result, 
gaining significantly in terms of top-L/10 precision, but showing no difference or worse 
precision on longer contact lists. No change in precision is obtained on T0949, reflecting the 
fact that the alignment for the full-length sequence was already very deep (Table 1). In 
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summary, from a contact prediction perspective, automatic domain parsing results in little or 
no benefit in terms of contact precision when domains are detected. These findings are in 
general agreement with our findings in CASP12 (Buchan and Jones, 2018), where we 
observed only minor improvements in top-L/5 contact precision on a few targets after parsing 
domains. 
 
Non-detection of domains proved to be a significant issue for some targets. A clear example 
of this was T1021s3, for which our pipeline did not detect any domains. The MSA for this target 
had 3112 raw sequences (Meff = 979). Figure 4 shows the gap fraction in each column of the 
MSA generated for this target, along with the official domain boundaries. The region of this 
MSA corresponding to the second domain is almost entirely covered by gaps, meaning there 
is little information to use. Consequently, the contact precision in this domain is very low. In 
contrast, contacts in the first domain are very precise owing to much better coverage in this 
region and the high effective sequence count of the alignment. In this instance, the gap fraction 
in the MSA columns would have alerted us to the existence of the second domain, however 
gap content on its own is very unlikely to be a general solution to the problem.  
 
3.4. Incorrect calculation of mutual information 
After the prediction season, we noticed that our calculation of mutual information (MI) values 
during inference was incorrect due to a bug in an in-house program. This bug affected all our 
predictions during the CASP13 prediction season, although we verified that it did not affect 
training of the DMP models. After correcting the bug, we determined its impact on performance 
by repeating our predictions on the 43 domains in Table 1. As with our “official” predictions, 
contacts were predicted for full-chain sequences, and precision was assessed on the official 
domains for these targets. 
 
Incorrect MI calculations led to a loss of roughly 2-4% mean long-range precision on this set 
of domains, depending on the length of the contact list considered ( 
Table 3). The worst-affected cases were domains T0998-D1, T0990-D2 and T1001-D1, for 
which using the correct version results in gains of 20.59, 21.28 and 39.29 percentage points 
in top-L/5 precision respectively relative to the incorrect version. Interestingly, incorrect MI 
values tend to have a greater impact on contact precision for targets with an Meff of around 
100 or lower (Figure 5). This observation suggests that MI features may have a greater 
influence on the predictions made by the DMP neural network model when other features are 
sparse and appear to be an important contributor to performance on MSAs with low Meff.  
 
4. Discussion 
 
It is evident from our results in CASP13 (and those of other groups) that methods based on 
deep learning now represent the state of the art in inter-residue contact prediction. DMP is our 
most effective contact prediction method to date. Nevertheless, results from this CASP 
indicate that there is considerable room for improvement. 
 
The addition of metagenomic sequences during MSA generation was beneficial overall, and 
we plan to integrate additional sources of sequence data in the future. However, in some cases 
the deeper alignments did not yield benefits in contact precision, and thus care must be taken 
that sensitive, iterated sequence homology searching procedures do not pull in unrelated 
sequences due to profile drift. Nevertheless, there are early indications that careful application 
of remote homology searching can yield even greater benefits than we were able to realise in 
CASP13. Towards the end of the prediction season, we experimented with an iterated version 
of our MSA generation procedure (Section 2.6) which uses hmmbuild and hmmsearch instead 
of jackHMMER to search the custom sequence database. The advantage of this setup is that 
it allows the entire process of searching the custom database to be iterated using the MSA 
generated at the end of each round. Initial testing indicated that the procedure was prone to 
profile drift, and we deemed it too unstable to use as our default MSA generation strategy. 
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However, in at least one case (T1010-D1), this procedure provided a much deeper alignment 
after 3 iterations (Meff increased from 89 to 200), concomitant with an increase in top-L/2 
medium+long range precision from 79.05% to 91.43%. Despite these encouraging results, it 
is not yet clear if such procedures can be reliably used in a fully automated manner, although 
this is something that we are keen to explore. 
 
Further improvements in predictive accuracy may be possible by testing different architectures 
for the DMP neural network. Early results indicate that moving to an even deeper network 
architecture is beneficial, albeit with diminishing returns as network depth increases. More 
broadly, from the perspective of 3D structure determination, it is becoming clear that deep 
learning models like ours can also be used to extract much richer forms of structural 
information such as interatomic distances (e.g. Wang, et al., 2018; Xu, 2018). Our tertiary 
structure prediction effort in CASP13 did not make use of the contacts predicted by DMP. 
Instead, we developed a tertiary structure prediction method that uses distances predicted 
from the same input features used by DMP (Greener, et al., 2018), in common with the 
approach taken by other groups in CASP13. Initial results were encouraging, and we are 
continuing to develop the method. 
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Tables 
 
Table 1: Performance of DMP in CASP13. Top-L/5 long-range precision is shown for 43 FM 
and FM/TBM domains. Targets are ordered by domain classification, followed by domain 
identifier. Meff values (see Section 2.7) are calculated on the MSA for the full-length target 
sequence, and so different domains of the same target have the same Meff.  

Domain Classification Length Precision (%) Meff 
T0950-D1 FM 342 94.20 111 
T0953s2-D2 FM 111 100.00 180 
T0953s2-D3 FM 93 93.75 180 
T0957s1-D1 FM 108 36.36 43 
T0957s2-D1 FM 155 87.10 37 
T0960-D2 FM 84 17.65 70 
T0963-D2 FM 82 11.76 58 
T0968s1-D1 FM 119 54.17 116 
T0968s2-D1 FM 116 39.13 229 
T0969-D1 FM 354 98.59 645 
T0975-D1 FM 293 80.70 4918 
T0980s1-D1 FM 105 100.00 50 
T0981-D2 FM 80 31.25 6 
T0986s2-D1 FM 155 80.65 56 
T0987-D1 FM 185 100.00 23 
T0987-D2 FM 207 92.50 23 
T0989-D1 FM 134 55.56 65 
T0989-D2 FM 112 43.48 65 
T0990-D1 FM 76 37.50 31 
T0990-D2 FM 231 36.17 31 
T0990-D3 FM 213 55.81 31 
T0991-D1 FM 111 0.00 1 
T0998-D1 FM 166 44.12 8 
T1000-D2 FM 431 95.95 873 
T1001-D1 FM 139 10.71 11 
T1010-D1 FM 210 88.10 89 
T1015s1-D1 FM 88 27.78 580 
T1017s2-D1 FM 128 72.00 87 
T1021s3-D1 FM 178 94.12 979 
T1021s3-D2 FM 101 15.00 979 
T1022s1-D1 FM 156 90.62 1393 
T0949-D1 FM/TBM 139 100.00 6067 
T0953s2-D1 FM/TBM 44 66.67 180 
T0958-D1 FM/TBM 77 100.00 22 
T0970-D1 FM/TBM 97 88.24 43 
T0978-D1 FM/TBM 413 87.80 1602 
T0981-D3 FM/TBM 203 100.00 6 
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T0986s1-D1 FM/TBM 92 73.68 187 
T0992-D1 FM/TBM 107 100.00 436 
T0997-D1 FM/TBM 185 94.59 963 
T1005-D1 FM/TBM 326 93.94 872 
T1008-D1 FM/TBM 77 6.25 5 
T1019s1-D1 FM/TBM 58 50.00 267 

 
 

Table 2: Change in precision after automatic domain parsing. Values are expressed as 
percentage point differences relative to predictions made without domain parsing. 

 
∆Precision after domain parsing (percentage points) 

Domain Top-L Top-L/2 Top-L/5 Top-L/10 
T0949-D1 0.00 0.00 0.00 0.00 
T0960-D2 0.00 4.76 0.00 0.00 
T0978-D1 4.60 3.38 3.61 -4.76 
T0981-D2 -6.25 -12.50 0.00 37.50 
T0981-D3 34.98 26.47 12.20 0.00 
T1000-D2 0.54 1.09 0.00 0.00 

 
 
Table 3: Mean precision values obtained for 43 CASP13 domains using correct or incorrect 
MI values in the input to the DMP neural network model. The ‘Incorrect MI’ results were 
obtained during the CASP13 prediction season due to a bug in our MI calculations, whereas 
the ‘Correct MI’ data were obtained post-hoc using corrected MI values and operating on the 
same inputs.  

 
Mean long-range precision (%) 

Top-L Top-L/2 Top-L/5 Top-L/10 
Correct MI 43.87 56.94 69.54 75.84 
Incorrect MI 41.93 53.49 66.27 71.25 
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Figures 

 

 
Figure 1: Architecture of the DeepMetaPSICOV residual neural network model. On the left, 
the overall organisation of the model is shown, beginning with the inputs, and ending in the 
final sigmoid output layer. The numbers in parentheses represent the dimensionality of the 
output from each layer in the format (number of feature channels, width, height). The network 
takes in input features for a protein of length L and produces correspondingly sized output. 
Most of the model is comprised of 18 residual blocks (denoted ResBlock; only a few are 
shown), and the structure of each block is shown on the right. The convolutional layers 
(Conv2D) in a residual block have 5x5 filters with a dilation rate d. The values of d for each 
residual block in the model are given in Supplementary Table S2. 
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Figure 2: The data augmentation procedures used during the training of DeepMetaPSICOV. 
(a) Deletions in loops can be simulated by probabilistically removing rows and columns in the 
input tensors and contact maps corresponding to residues classified as loops by DSSP. The 
DSSP assignment for an example protein is shown above its contact map, with blue rectangles 
representing alpha helices, and line segments representing loops. (b) Input tensors generated 
using different alignments can be linearly interpolated to produce new training examples, 
simulating inputs generated from alignments of varying quality. Inputs thus generated for a 
given protein are mapped to the same contact maps. (c) New examples are generated by 
flipping the input feature tensors and contact maps by 180º, corresponding to a reversal of the 
chain direction. 
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Figure 3: (a) Comparison of effective sequence count (Meff) between alignments generated 
using only HHblits, or HHblits and jackHMMER. In the latter case, the jackHMMER search 
makes use of UniRef100 and EBI MGnify metagenomic protein sequences. (b) Plot of top-L/5 
long-range precision values obtained using the deeper alignments versus those obtained 
using HHblits only. Using the deeper alignments was beneficial overall, although there are a 
few domains for which just the HHblits alignment would have provided much higher precision; 
these are marked. 
 
 

  
Figure 4: Gap fraction per column in the MSA generated for target T1021s3 (3112 raw 
sequences, Meff = 979). Official domain boundaries are shaded in light blue and brown, and 
the precision obtained by DMP on these domains (long-range, top-L/5) is shown. The region 
of the MSA covering the C-terminal domain D2 is comprised mostly of gaps, and thus has little 
to no information content. Consequently, the obtained contact precision on this domain is 
much lower than that obtained for D1. 
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Figure 5: Impact of incorrect mutual information (MI) calculations on top-L/5 long-range contact 
precision. Values are expressed as percentage point differences, with positive values 
indicating a gain in precision upon using the correct MI calculation. 
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