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ABSTRACT 17 
 18 
A comprehensive reference map of all cell types in the human body is necessary for improving our 19 
understanding of fundamental biological processes and in diagnosing and treating disease. High-20 
throughput single-cell RNA sequencing techniques have emerged as powerful tools to identify and 21 
characterize cell types in complex and heterogeneous tissues. However, extracting intact cells from 22 
tissues and organs is often technically challenging or impossible, for example in heart or brain 23 
tissue. Single-nucleus RNA sequencing provides an alternative way to obtain transcriptome 24 
profiles of such tissues. To systematically assess the differences between high-throughput single-25 
cell and single-nuclei RNA-seq approaches, we compared Drop-seq and DroNc-seq, two 26 
microfluidic-based 3’ RNA capture technologies that profile total cellular and nuclear RNA, 27 
respectively, during a time course experiment of human induced pluripotent stem cells (iPSCs) 28 
differentiating into cardiomyocytes. Clustering of time-series transcriptomes from Drop-seq and 29 
DroNc-seq revealed six distinct cell types, five of which were found in both techniques. 30 
Furthermore, single-cell trajectories reconstructed from both techniques reproduced expected 31 
differentiation dynamics. We then applied DroNc-seq to postmortem heart tissue to test its 32 
performance on heterogeneous human tissue samples. We compared the detected cell types from 33 
primary tissue with iPSC-derived cardiomyocytes profiled with DroNc-seq. Our data confirm that 34 
DroNc-seq yields similar results to Drop-seq on matched samples and can be successfully used to 35 
generate reference maps for the human cell atlas.  36 
 37 
Introduction 38 
 39 
The identification and characterization of cell types from solid tissues and organs in the human 40 
body is the necessary basis for a comprehensive reference map of all human cells1. Such tissue 41 
atlases will provide a basis for understanding fundamental biological processes and to diagnose 42 
and treat disease. Single-cell RNA-sequencing (scRNA-seq) has emerged as a key tool to 43 
decompose complex tissues into cell types and states, and to investigate cellular heterogeneity2–5. 44 
Profiling cellular heterogeneity using thousands of cells and creating tissue level cellular maps 45 
require efficient and scalable scRNA-seq protocols. The development of microfluidic droplet-46 
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based approaches, such as Drop-seq, has enabled transcriptional profiling of thousands of  cells in 47 
parallel5,6. Drop-seq has been used to characterize the cellular composition of a wide variety of 48 
tissues and organisms, including the mouse retina5, malaria parasites7, and drosophila embryos8. 49 
However, Drop-seq requires suspensions of intact single cells for library preparation which cannot 50 
be obtained for many tissues and cell types because of extra-cellular matrix that may be hard to 51 
digest, fragile cell membranes, unusual cell morphology, or large cell-size. This challenge may be 52 
addressed by adapting Drop-seq to single nuclei RNA-seq (DroNc-seq9). DroNc-seq obtains gene 53 
expression profiles from isolated nuclei which are more amenable for direct dissociation from 54 
tissues while maintaining membrane integrity. Both approaches can be used to characterize cellular 55 
composition of complex tissues. Comparisons of low-throughput, high-coverage single cell and 56 
single nucleus approaches suggest that both methods capture the cellular composition of 57 
heterogeneous samples to a similar degree10,11. However, direct comparisons of Drop-seq and 58 
DroNc-seq on matched samples have been limited to cell lines9 and, more recently, samples from 59 
mouse kidneys12. To establish a firm understanding of the differences and similarities of Drop-seq 60 
and DroNc-seq, it is necessary to compare these technologies across a spectrum of different 61 
biological conditions. A crucial aspect of single cell RNA-seq approaches is to capture cellular 62 
heterogeneity associated with expression changes during dynamic processes, for example during 63 
differentiation. We performed a systematic comparison of Drop-seq and DroNc-seq using time-64 
course data from human iPSCs differentiating into cardiomyocytes (CMs). This allowed us to 65 
compare Drop-seq and DroNc-seq with respect to read depth, transcriptome composition, cell 66 
types detected, and cellular differentiation trajectories. These assessments are important for 67 
integrative analyses and interpretation of data produced using high-throughput single-cell and 68 
single-nucleus RNA-seq in general, and with Drop-seq and DroNc-seq in particular. In addition, 69 
we confirmed that inclusion of reads from intronic regions increases the sensitivity of DroNc-seq 70 
and improves resolution in identifying cell types. Next, we applied DroNc-seq to frozen 71 
postmortem human heart tissue to sample constituent cell types and compare them to CMs grown 72 
in vitro from human iPSC. This work was conceived as part of benchmarking experiments to 73 
establish the applicability of recent high-throughput single-nucleus RNA-seq for the Human Cell 74 
Atlas (HCA)1. By identifying differences and similarities between Drop-seq and DroNc-seq, this 75 
study will aid efforts such as the HCA that require the integration of single-cell and single-nucleus 76 
RNA-seq data from various tissues and laboratories into a common platform.  77 
 78 
Results 79 
 80 
To quantitatively assess the similarities and differences in transcription profiles from single-cell 81 
and single-nucleus RNA-seq, we performed Drop-seq and DroNc-seq, respectively, on cells 82 
undergoing iPSC to CM differentiation, following an established protocol13. To compare Drop-83 
seq and DroNc-seq across samples with different cellular characteristics and degrees of 84 
heterogeneity, we collected cells from multiple time-points throughout the differentiation process 85 
(days 0, 1, 3, 7, and 15) (Figure 1A). For each technique, we obtained samples from two cell lines 86 
per time-point, except for time-point day 15 which contains cells from a single cell line. DroNc-87 
seq also contains a single cell line for day 1. To approximate how many cell barcodes were 88 
accidentally associated with 2 cells in our experiment (doublet rate), we mixed iPSCs from chimp 89 
into the Drop-seq run from cell line 1 on day 7. These data confirmed a low doublet rate (<5%) 90 
(Figure S1). The distributions of number of genes for each day of differentiation are shown in 91 
Figure 1B. Overall, Drop-seq shows a higher number of genes and transcripts detected compared 92 
with DroNc-seq, reflecting the greater abundance of transcripts in the intact cell, compared with 93 
the nucleus alone. For our analyses, we selected cells and nuclei with at least 400 and 300 detected 94 
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genes (at least 1 UMI), respectively, and removed chimp cells from the day 7 sample. After 95 
filtering, the mean number of genes detected per cell and per nucleus are 962 and 553, and the 96 
mean number of UMI per cell, nucleus are 1474 and 721 for Drop-seq and DroNc-seq, respectively. 97 
Based on the above cut-offs, we detected a total of 25,475 cells and 17,229 nuclei across all cell 98 
lines and time-points for Drop-seq and DroNc-seq, respectively. Both cell lines were present at 99 
each time-point in the filtered datasets (Figure 1C). Using raw RNA-seq reads, we found that top 100 
expressed genes in Drop-seq comprised of mitochondrial and ribosomal genes, while the top gene 101 
in DroNc-seq was the non-coding RNA, MALAT1 (Figure 1D).  102 

 103 
Figure 1: Experimental design and preliminary data analyses. A) Two cell lines of iPSCs differentiating into CMs 104 
over a 15-day time period underwent mRNA sequencing with Drop-seq and DroNc-seq. B) Boxplots showing the 105 
distribution of number of genes in each day and cell line for Drop-seq (top) and DroNc-seq (bottom). C) Number of 106 
cells present after applying quality control cut-offs. D) Percentage of counts for the top 15 genes in Drop-seq (left) 107 
and DroNc-seq (right).  108 
 109 
In addition to the differences in the number of genes detected in Drop-seq and DroNc-seq, DroNc-110 
seq captures a significantly higher fraction of intronic reads compared with Drop-seq (Figure 2A). 111 
Up to 50% of the reads from DroNc-seq mapped to intronic regions, while for Drop-seq, only 7% 112 
of reads were intronic. This discrepancy between the two techniques is expected and likely caused 113 
by the sampling of unprocessed transcripts that are enriched in the nucleus. Intronic reads will be 114 
detected if the transcript was not fully processed before capture by the polydT primer. In addition, 115 
internal priming14 on polyA stretches might lead to further sampling of introns. In order to 116 
understand the sources of intronic reads in our dataset, we scanned the genome for polyA stretches 117 
that are at least 5 bp long, and counted their frequency within and around each read with 20 bp 118 
flanking regions. We found that approximately 40% of the intronic reads and their 20-bp flanking 119 
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regions contained at least one polyA stretches and that these polyA stretches were specifically 120 
enriched towards the 3’ end of reads (Figure S3). This suggests internal priming as a contributing 121 
mechanism for intronic read sampling. RNA-seq reads aligning to introns have been used to 122 
quantify gene expression levels previously11,12.  Indeed, incorporating intronic reads to quantify 123 
gene expression level improves the gene detection rate in DroNc-seq by ~2 times on average 124 
(Figure 2B). This increase in detection rate leads to recovery of gene expression for cells which 125 
would otherwise not be detected, as demonstrated by examples from mesoderm and cardiac genes 126 
(Figure 2C). These data suggest that inclusion of introns can be used to compensate for the smaller 127 
amount of nuclear RNA compared with whole cells. Accordingly, we incorporated intronic reads 128 
into our analysis pipeline to improve gene detection rates in DroNc-seq. After intron inclusion, we 129 
recovered 1.5 times more nuclei, bringing our total to 25,429 nuclei using a minimum of 300 genes 130 
detected per nucleus. In addition, the mean number of UMI per cell increased from 721 to 918, 131 
while the mean number of genes detected per cell increased from 553 to 672.  132 

 133 
Figure 2: A) Distribution of reads across the genome in Drop-seq and DroNc-seq. B) Incorporating intronic reads in 134 
quantifying gene expression increases each cell’s gene detection rate by ~2X on average for DroNc-seq, enabling 135 
detection of more genes per cell, compared with using exon reads only. C) Mesoderm and cardiac genes with 136 
expression detected when incorporating intronic reads. D) Differential expression analysis between methods, days, 137 
and cell lines. Genes with adjusted p-value < 0.05 and log-fold-change > 4 were kept. E) Proportion of differentially 138 
expressed genes (DEGs) between Drop-seq and DroNc-seq associated with different gene categories.  139 
 140 
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To identify systematic differences in gene-specific detection rates between Drop-seq and DroNc-141 
seq, we obtained differentially expressed genes (DEGs) between the two techniques for matched 142 
time-points and cell lines. As a comparison, we also performed differential gene expression 143 
analyses between time-points and between cell lines within each technique. We detected 144 
substantially more genes with differential expression between the two techniques than we observed 145 
between different time-points or cell lines (Figure 2D). This phenomenon was most pronounced 146 
for highly significant genes and became less pronounced at more lenient thresholds of log fold-147 
change (Figure S11). The differentially detected genes directly reflect the sampling differences in 148 
cellular components for the two techniques. GO analysis on DEGs between Drop-seq and DroNc-149 
seq revealed functional annotations associated with the sampling of different cellular components 150 
of the two techniques (Figure S5). In particular, 5% of genes detected at higher levels in DroNc-151 
seq were lncRNAs (compared to 1% in Drop-seq), while 20% and 6% of genes detected at higher 152 
levels in Drop-seq were mitochondrial and ribosomal transcripts, respectively (Figure 2E). 153 
 154 
Next, we tested if the differences between Drop-seq and DroNc-seq in the number of detected UMI 155 
and enriched gene sets lead to inconsistent detection of cell types and variation in the inferred 156 
differentiation trajectory. To infer cell types found with Drop-seq and DroNc-seq data, we 157 
performed clustering of cells separately for each technique. We used the R package Seurat15 to 158 
perform normalization, dimensionality reduction, clustering, and visualization of individual cells, 159 
grouped by cell types (see Methods). Cell types were assigned to clusters based on comparison of 160 
genes that are significantly upregulated in the cluster to known marker genes. All genes were tested 161 
for differential expression using a negative binomial likelihood ratio test within the Seurat package 162 
and p-values were adjusted for multiple testing using Bonferroni correction. For each cluster, we 163 
ordered genes by their average log-fold-change (logFC) in descending order to identify marker 164 
genes, as genes associated with cell type have a large fold-change in expression. Note that p-values 165 
(raw and adjusted) for all marker genes are small (adjusted p < 10-5). We used the top marker genes 166 
for each cluster to identify cell type specific genes (Figures S6 and S7). We found that the clusters 167 
identified by Drop-seq and DroNc-seq captured the anticipated differentiation from iPSCs to CMs 168 
over the course of 7 days (Figure 3A and B, Supplemental Figure 4). The cluster formed by cells 169 
from early time-points day 0 and day 1 contained pluripotent stem cells (Figure 3A and B, ‘iPSC’, 170 
orange cluster), in agreement with the expression of characteristic markers such as DPPA4. Cells 171 
harvested on day 3 mostly formed a separate cluster (‘Cardiac progenitors’, green cluster) 172 
composed of cells expressing markers concordant with cardiac progenitors (e.g. expression of 173 
EOMES (logFC=1.08), a mesendoderm progenitor marker gene). For days 7 and 15 the clusters of 174 
cells profiled by Drop-seq and DroNc-seq showed slight differences and we detected four clusters 175 
in Drop-seq compared to three for DroNc-seq, indicating that Drop-seq might be more sensitive 176 
towards detection. Drop-seq and DroNc-seq identified three clusters of ostensibly similar cell types. 177 
Two of these clusters contained cells predominantly expressing markers of CMs, including MYH6, 178 
TNNT2, MYL, and MYBPC3 (Figure 3A, cyan cluster, ‘Cardiomyocyte 1’ and blue cluster, 179 
‘Cardiomyocyte 2’). We also detected a cell cluster that expressed cardiac markers alongside 180 
markers of other lineages (e.g. FOXA2 and TTR, pink cluster, ‘Alternative lineage 1’). Drop-seq 181 
revealed an additional smaller cluster (purple, ‘Alternative lineage 2’, expression of FLT1) for 182 
which we did not find an equivalent cell population in DroNc-seq. These ‘Alternative lineage’ 183 
clusters might represent cells at intermediate stages, failures of differentiation, or differentiation 184 
towards alternative lineages. This heterogeneity and the detection of mesendodermal and 185 
endodermal cell populations, including endothelial cells, is in agreement with previous scRNA-186 
seq data obtained during iPSC to cardiomyocyte differentiation16. 187 
 188 
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Table S1 shows the marker genes used to identify each cell type and its corresponding cellular 189 
prevalence. This comparison supported that both Drop-seq and DroNc-seq can identify the 190 
predominant cell types expected in a population. Importantly, the identified clusters showed 191 
expression of similar sets of genes in both techniques indicating that, despite differences in 192 
detection rate between the techniques and preferential detection of specific subsets of genes the 193 
identification of major cell types remained largely unaffected.  194 
 195 
To test how concordant the cluster assignment of Drop-seq and DroNc-seq are with bulk RNA-196 
seq of similar cell types, we aggregated clusters representing iPSCs and iPSCs-CMs into pseudo-197 
bulk samples. We compared these pseudo-bulk data to bulk RNA-seq data obtained from a 198 
previous study17. A total of 91 bulk RNA-seq samples composed of human iPSCs (n=18), iPSCs 199 
differentiating into CMs (n=51), and adult primary heart tissue (n=22) were used for a correlation 200 
analysis against pseudo-bulk iPSCs and CMs (Figure 3E). Drop-seq generally outperforms DroNc-201 
seq for all three sample types regardless of pseudo-bulk type by ~ 50%, which is expected as bulk 202 
RNA-seq and Drop-seq both capture mRNA from whole cells. The iPSC pseudo-bulk samples of 203 
both methods are best correlated with iPSCs, followed by iPSC-Cardiomyocytes and primary heart 204 
tissue, as expected. For CM pseudo-bulk, both methods are best correlated with iPSC-205 
cardiomyocytes, followed by primary heart tissue, and iPSCs.  206 
 207 
The time-series data allowed us to compare differentiation dynamics of iPSCs captured by Drop-208 
seq and DroNc-seq. We observed that several cell types were present in more than one time-point 209 
(Figures 3 F, G). In particular, iPSCs were observed in days 0 and 1, while CMs are observed in 210 
days 7 and 15 in both Drop-seq and DroNc-seq data. Detection of the same or similar cell types 211 
across time-points should therefore enable us to reconstruct continuous single-cell differentiation 212 
trajectories14,18,19 in an unsupervised manner to characterize the temporal relationship between 213 
different cell populations. Accordingly, we reconstructed differentiation trajectories of the cells 214 
from DroNc-seq and Drop-seq data using Monocle19. In order to reduce computational time, we 215 
selected the top 700 cells based on the number of genes detected at each time-point, for a total of 216 
3,500 cells and used them to reconstruct the single-cell trajectory during iPSC to CM 217 
differentiation.  218 
 219 
Inferred trajectories from DroNc-seq and Drop-seq data show one and two branching points, 220 
respectively. Coloring cells by cell type (Figures 3 H, I) and pseudo-time (Figure S9) confirms the 221 
temporal order of cell types in Figures 3 F, G. Monocle places iPSCs at the beginning of the 222 
trajectory, which has pseudo-time zero, followed by cardiac progenitors. Following cardiac 223 
progenitors along the trajectory, we find one branching point in DroNc-seq which broadly 224 
partitions CMs and the clusters associated with less well-defined cell types that might represent 225 
alternative lineage decisions or incomplete differentiation (Figure 3). In Drop-seq, these immature 226 
cells are on different branches and are both separated from the third branch containing CMs. These 227 
differences might reflect the higher gene expression fold differences observed for the genes we 228 
used to build the trajectories in Drop-seq compared to DroNc-seq. This might be a consequence of 229 
the lower read depth observed for DroNc-seq. Both methods suggested the differentiation of iPSCs 230 
into an intermediate cell type (cardiac progenitors), and finally a population of clearly identifiable 231 
cardiomyocytes, based on the expression of TNNT2 and MYH6, and a divergent trajectory towards 232 
alternative cell populations. 233 
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 234 
Figure 3: Cell type and single-cell trajectory analysis. A, B) Clustering results visualized with UMAP and colored by 235 
inferred cell type for Drop-seq and DroNc-seq. C, D) Expression of marker genes overlaid on UMAP plots from A 236 
and B for Drop-seq and DroNc-seq. E) Pearson correlation of DroNc-seq and Drop-seq pseudo-bulk against bulk 237 
RNA-seq from iPSCs (n=18), iPSC-Cardiomyocytes (n=51), and primary heart tissue (n=22)17. F, G) Distribution of 238 
cell types per time-point in Drop-seq and DroNc-seq, respectively. H, I) Inferred trajectories using Monocle with color 239 
representing inferred cell types. A total of 3500 cells were used for the trajectory corresponding to 700 per time-point. 240 
 241 
The comparison of Drop-seq and DroNc-seq data was motivated by the fact that Drop-seq cannot 242 
be applied to generate single-cell RNA-seq data from adult primary heart tissue, but DroNc-seq 243 
potentially can. Having established that DroNc-seq provides data ostensibly similar to Drop-seq 244 
in our in vitro setup, we applied DroNc-seq to frozen human heart tissue to identify possible 245 
cardiac cell sub-types and non-cardiac cells within the tissue.  246 
 247 
We detected a total of 4,796 nuclei based on the presence of distinct cell barcodes using DroNc-248 
seq on tissue from an adult human male heart. We used both introns and exons to quantify number 249 
of reads per nucleus, with mean number of genes and UMIs as 361 and 823, respectively. To focus 250 
our analyses on good quality nuclei, our analyses used the top 30% (1,491) of cells based on the 251 
number of genes detected. We performed cell type analysis on the heart cells using the same 252 
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procedure as described for the in vitro samples. As expected, the majority of cells (~82%) were 253 
CMs and myofibroblasts (Fig. 4A). Figure 4B shows the distribution of marker genes for each cell 254 
type obtained using negative binomial likelihood ratio test. A cluster was identified as CMs (Figure 255 
4A, pink cluster) based on marker genes TNNT2 (logFC=0.71), MYH6 (logFC=0.87), and 256 
MYBPC3 (logFC=1.38). A second cluster was identified as likely myofibroblasts (Figure 4A, dark-257 
green cluster) expressing the collagen genes COL5A2 (logFC=1.95) and COL6A3 (logFC=1.92) 258 
and periostin (POSTN). Finally, a third cluster was identified as endothelial cells (Figure 4A, grey 259 
cluster) based on vascular endothelial growth factor receptor FLT1 (logFC=2.4) and blood clotting 260 
protein VWF (logFC=1.77). A fourth clusr expressing CPE (logFC=2.4) and ENPEP (logFC=2.5) 261 
was identified likely representing myofibroblasts (Figure 4A, black cluster). Additional marker 262 
genes are listed in Figure S10, which shows the top 10 upregulated genes in terms of logFC in 263 
each cluster.  264 
 265 
To better understand the cell type composition of the primary heart tissue, we first aggregated data 266 
from all nuclei into a pseudo-bulk heart sample and compared these to bulk data from iPSCs, iPSC-267 
CMs, and primary heart tissue as before. We found that the pseudo-bulk heart sample most closely 268 
correlated with bulk RNA-seq data obtained from primary hearts, followed by iPSC-CMs. No 269 
correlation was observed with bulk iPSCs (Figure 4C). Second, to compare the heart nuclei data 270 
with the in vitro model we compared single nuclei of the heart to the DroNc-seq on iPSC-CMs 271 
using correlation analysis. Figure 4D shows a bi-clustered heatmap of the Pearson correlation 272 
coefficients with columns representing primary heart nuclei, and rows representing iPSC-CMs 273 
nuclei. Interestingly, hierarchical clustering of each (heart) nuclei’s Pearson values (columns) 274 
confirms the clustering pattern found in Figure 4A, which demonstrates the presence of non-275 
cardiomyocytes within the single-nuclei primary heart sample. In particular, the cluster identified 276 
as CMs (Figure 4A, pink cluster) has stronger correlation values with the iPSC-CMs than the 277 
myofibroblasts and endothelial cells (Figure 4A, dark-green and grey clusters). Clustering the rows 278 
also revealed the relative correlation strengths of the two iPSC-CMs clusters with the primary heart 279 
nuclei. In particular, the ‘Cardiomyocyte 2’ cluster generally has stronger correlation with the 280 
primary heart nuclei than the ‘Cardiomyocyte 1’ cluster. This is could potentially reflect the 281 
observation that ‘Cardiomyocyte 2’ was associated with cells collected on day of our 282 
differentiation protocol and therefore to closer towards the mature state of CMs. We used iPSCs 283 
as an out-group for which we expect no correlation with primary heart nuclei, which is observed 284 
to be the case (Figure 4D).  285 
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 286 
Figure 4: Application of DroNc-seq on human heart tissue. A) Cell type analysis visualized with UMAP. B) 287 
Distribution of marker genes identified with differential expression analysis. All genes listed have p-values < 10-29. C) 288 
Pearson correlation of primary heart pseudo-bulk against bulk RNA-seq from iPSCs (n=18), iPSC-Cardiomyocytes 289 
(n=51), and primary heart tissue (n=22)17. D) Bi-clustering on Pearson correlation values of primary heart nuclei with 290 
nuclei from iPSCs and iPSC-derived cardiomyocytes. 291 
 292 
Discussion  293 
 294 
Building a cell atlas of the human body requires the expression profiling of all human tissues from 295 
a range of different samples, including tissues that are hard to dissociate, composed of fragile cells, 296 
and frozen specimens, all of which are incompatible with single-cell RNA sequencing. As an 297 
alternative, DroNc-seq, a high-throughput single-nucleus RNA sequencing protocol, has the 298 
potential to reveal tissue heterogeneity, at scale, based on nuclear RNA, and is being increasingly 299 
used to profile primary tissue at high throughput. However, it is unclear how DroNc-seq compares 300 
with earlier single-cell RNA-seq protocols like Drop-seq across a range of different cell types and 301 
tissues. Previous studies have performed cell type comparisons using nuclear vs. whole-cell RNA 302 
using full-length mRNA sequencing assays at low throughput10,11. Drop-seq and DroNc-seq have 303 
been compared using adult mouse kidneys cells12. We performed a direct comparison of high-304 
throughput, single-cell (Drop-seq) and single-nucleus (DroNc-seq) RNA-seq using iPSCs 305 
differentiating into CMs. Together with single-nucleus profiling of primary CMs from adult human 306 
heart tissue, this study enabled us to compare cell type detection, transcriptome profiling and infer 307 
cellular differentiation with two complementary high-throughput techniques, using an in vitro 308 
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model of CM differentiation, and compare them directly to human primary CMs obtained from a 309 
frozen heart sample (see Methods) using DroNc-seq.  310 
 311 
As expected, the number of UMIs per nucleus in DroNc-seq are lower than those for cells in Drop-312 
seq. Consequently, the gene detection rate in DroNc-seq was significantly lower than for Drop-313 
seq (Figure 1C). However, given the high number of reads in DroNc-seq that mapped to intronic 314 
regions we reasoned that inclusion of such reads might increase the gene detection rate. Indeed, 315 
intron inclusion significantly increased the sensitivity of DroNc-seq and improved cluster 316 
separation and cell type identification, in agreement with previous studies10–12. We also found that 317 
the inclusion of introns increased gene detection rate in single nuclei samples. Of note, a significant 318 
proportion of the intronic reads seems to originate not from transcripts primed at the 3’ end but 319 
from direct priming to polyA stretches in introns14 (Figure 2). While such reads still scale with the 320 
expression level of a transcript, the assumption that transcript levels are uniquely quantified by a 321 
single UMI may be violated in these cases. 322 
 323 
Given the difference in input material, i.e., cellular vs. nuclear RNA, it is not surprising that we 324 
found a significant proportion of genes that are differentially expressed between Drop-seq and 325 
DroNc-seq samples. Some of the most highly enriched sets of genes reflected the technical 326 
differences between the two technologies. Genes specifically enriched in Drop-seq are ribosomal 327 
and mitochondrial. DroNc-seq presumably loses these transcripts that are predominantly localized 328 
in the cytoplasm. Conversely, as a class, lncRNAs are enriched in DroNc-seq which agrees with 329 
the nuclear localization of many of them.  330 
 331 
Expression profiles in Drop-seq and DroNc-seq confirmed the differentiation of iPSCs into CMs 332 
and revealed major cell types found within the in vitro differentiation model of iPSC-CMs. These 333 
data also confirmed heterogeneity observed during differentiation. Drop-seq and DroNc-seq 334 
detected a population of cardiac progenitors with cellular prevalence 23.3% and 18.2%, 335 
respectively. They also both detected two clusters representing CMs: cardiomyocyte 1 (16.1% and 336 
5.6% prevalence) and cardiomyocyte 2 (4.2% and 12.7% prevalence). Both methods also revealed 337 
a population of cells, ‘Alternative lineage 1’, that might represent alternative fate or that failed to 338 
reprogram fully, which accounted for 5.9% and 11.3% of all cells in Drop-seq and DroNc-seq, 339 
respectively. The presence of non-CMs during late-stage is expected for the in vitro differentiation 340 
model and has been observed previously16. Accordingly, the proportion of cells differentiating into 341 
CMs expressing TNNT2, assessed by FACS, varies widely between 20-80%13. Based on our cell 342 
type assignment in Drop-seq data, we obtained 28% and 29% cardiomyocytes on day 7 for the two 343 
cell lines and 70% CMs on day 15 for cell line 2, which fall within the expected range. 344 
 345 
Drop-seq revealed an additional smaller cluster (purple, ‘Alternative lineage 2’, expression of 346 
FLT1 and comprising 1.4% of the total population) for which we did not find an equivalent cell 347 
population in DroNc-seq. The reasons behind the failure of DroNc-seq to identify the small 348 
fraction of cells identified as ‘Alternative lineage 2’ in Drop-seq may be due to the lower capture 349 
rate of DroNc-seq (mean number of detected genes was 672) compared to Drop-Seq (mean number 350 
of detected genes was 962) (Figure S8) which might result failure of the clustering approach to 351 
resolve this sub-population in DroNc-seq, or due to the preferential loss of the particular cell type 352 
arising from DroNc-seq’s nuclei dissociation protocol. The mean number of genes detected in this 353 
subpopulation in Drop-seq was 1032, representing the cluster with the highest gene detection rate. 354 
It is possible that this facilitated the detection  of this cluster in Drop-seq while the lower detection 355 
rate in DroNc-seq combined with the small number of cells corresponding to this cluster in the 356 
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sample lead to the loss of this population during clustering. However, we cannot rule out specific 357 
loss or selection biases for of the cell type introduced during DroNc-seq sample preparation.  358 
 359 
We chose the iPSC-to-CM differentiation because in addition to cell type detection, the highly 360 
heterogenous but temporally coordinated process allowed us to compare cellular lineages inferred 361 
based on Drop-seq and DroNc-seq data, respectively. Indeed, we were able to infer similar 362 
trajectories for both Drop-seq and DroNc-seq (Figure 3H and I). Both trajectories show continuous 363 
differentiation of iPSCs into cardiac progenitors along a single path, which then branches into CM 364 
and non-cardiac cells (progenitor cells and alternative lineages).  This suggests that a substantial 365 
proportion of cells identified as CM progenitors in our cluster analysis are diverging from the 366 
differentiation trajectory relatively early on and ultimately are not becoming mature 367 
cardiomyocytes16. In the case of Drop-seq ‘Alternative lineage 1’ and ‘Cardiac progenitor’ cells 368 
are branching off on two separate points, while for DroNc-seq both populations are on one branch. 369 
The additional branching point might reflect the higher resolution achieved by Drop-seq. 370 
 371 
Compared with bulk samples, Drop-seq pseudo-bulk is closer to tissue-level expression than 372 
DroNc-seq. This is expected as the tissue data represents RNA-seq data generated using whole 373 
cells, rather than nuclei. However, this difference does not mask cell type specific differences in 374 
the degree of correlation with bulk samples from iPSCs, iPSC-CM, and heart. Both Drop-seq and 375 
DroNc-seq CM pseudo-bulk correlate the best with bulk iPSC-CMs samples followed by primary 376 
heart tissue and iPSCs. While the iPSCs correlate best with the bulk iPSCs for both methods. The 377 
comparison with bulk samples provides further evidence for the cell type labels that were assigned 378 
based on marker genes. 379 
 380 
Having demonstrated that Drop-seq and DroNc-seq performed similarly in detecting heart-like cell 381 
types, we applied DroNc-seq to primary heart tissue from adult human male. As expected, cell 382 
type analysis of the tissue revealed mostly CMs (43%) and (myo)fibroblasts (39%), as well as a 383 
smaller population of endothelial cells (12%). Interestingly, TNNT2 was detected in all the cell 384 
types but was significantly upregulated in the CM cluster. TNNT2 being a marker gene for CMs 385 
suggested the possibility that all nuclei are of the same broad category of cell type.  Correlating 386 
transcription profiles from primary heart nuclei with the iPSC-derived CM nuclei further supports 387 
the inferred cell types from the primary heart tissue. The transcriptome profiles of primary heart 388 
nuclei that were assigned to the ‘Cardiomyocyte’ cluster are more strongly correlated with the 389 
profile of iPSC-CMs compared with primary heart nuclei in other clusters. 390 
 391 
Sequencing of additional cells and increased read depth will help to increase the resolution and 392 
potentially lead to detection of additional cell types. However, it is important to keep in mind that 393 
tissue samples are not uniform mixtures of cell types. Thus, the creation of comprehensive cell 394 
maps likely requires sampling of a given tissue in multiple different locations, as seen from the 395 
relatively low cell type complexity in DroNc-seq data on the human heart tissue when sampled 396 
from only one anatomical region.  397 
 398 
This comparison of Drop-seq and DroNc-seq demonstrates the capability of DroNc-seq in 399 
dissecting the multicellular environment within complex tissue such as the heart, which would 400 
otherwise not be possible with Drop-seq. We expect that DroNc-seq will be used to perform high-401 
throughput transcriptomic profiling of tissues for which it is difficult to obtain suspensions of intact 402 
single cells and aid in initiatives such as the Human Cell Atlas and the Human Tumor Atlas. 403 
 404 
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Methods 405 
Cell Culture and Differentiation 406 
We used iPSCs from two individuals from a previously established panel of LCL-derived iPSCs20. 407 
iPSCs were seeded on 100 mm dishes 3-5 days prior to differentiation. At 70-100% confluency, 408 
growth media was replaced with heart media: RPMI (Thermo Fisher Scientific, 14-040-CM) 409 
supplemented with B-27 Supplement minus insulin (Thermo Fisher Scientific, A1895601), 2 mM 410 
GlutaMAX (Thermo Fisher Scientific, 35050-061), and 100 mg/mL Penicillin/Streptomycin 411 
(Corning, 30002Cl). A heart medium/Matrigel mix was made using this medium along with a 412 
1:100 dilution of Matrigel (Corning, 35427) and 12 uM of the GSK-3 inhibitor CHIR99021 413 
trihydrochloride (Tocris, 4953). This medium was changed to base heart media 24 hours later (Day 414 
1). On Day 3, the previously described medium was replaced with heart medium containing 2 μM 415 
Wnt-C59 (Tocris, 5148). On days 5, 7, 10, 12 and 14 of the differentiation, media was refreshed 416 
with base heart media. Heart medium changes occurred daily. Beating CMs cells were observed 417 
around Day 7. 418 
 419 
Cell Processing 420 
At each time-point, cells were harvested from 100 mm plates by treating with Accutase (BD 421 
Biosciences, #561527) to generate a single cell suspension; from Day 7 onward, a cell scraper was 422 
also employed to release adherent cells from plates. Cells were centrifuged at 300 xg for 5 minutes 423 
and supernatant was aspirated off. Cells were washed 3 times with 1X PBS, 0.01% BSA (NEB, 424 
#B9000S), henceforth called PBS-BSA). 10 μL of cells was combined with trypan blue for 425 
counting in an NI hemocytometer (InCyto, DHC-N01-2). Viability of cells at each time point was 426 
recorded (see Table 1). Cells were also labelled with a combination of 4′,6-diamidino-2-427 
phenylindole or DAPI (Sigma, Cat #D9542) and Wheat Germ Agglutinin (WGA; Thermo Fisher 428 
Scientific, W11262) to assess nucleus and cell membrane integrity under fluorescence imaging, as 429 
shown in Figure 5A. 400,000 cells were taken and suspended in 2 mL PBS-BSA (200,000 cells/mL) 430 
for Drop-seq, and the remaining cells were used for nuclei isolation for DroNc-seq. 431 
 432 
Table 1: Viability of harvested cells from each iPSC-CMs differentiation time-point 433 
 434 

Time Point Date Viability 
Time Course 1 Day 0 11/16/2017 70% 
Time Course 1 Day 1 11/15/2017 50% 

Time Course 1 Day 3 11/17/2017 80% 
Time Course 1 Day 7 11/21/2017 60% 
Time Course 2 Day 0 1/22/2018 60% 
Time Course 2 Day 1 1/23/2018 80% 
Time Course 2 Day 3 1/25/2018 80% 
Time Course 2 Day 7 1/29/2018 90% 
Time Course 2 Day 15 2/6/2018 55% 

 435 
Nuclei were isolated using the Nuclei EZ Prep isolation kit (Sigma, Cat #NUC-101). Briefly, cells 436 
were resuspended in 4 mL EZ Prep Lysis Buffer and incubated on ice for 10 minutes. After 437 
incubation, cells were agitated using a P1000 pipette and 10 μL of sample was imaged. DAPI 438 
(Sigma, Cat #D9542) and Wheat Germ Agglutinin (WGA; Thermo Fisher Scientific, W11262) 439 
were used to determine if the cellular membrane had properly lysed for each cell. If intact cells 440 
were still present, 2 mL of sample was moved to a glass dounce tissue grinder (Sigma, Cat #D8938) 441 
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and dounced 5 times. After douncing, another 10 μL sample was imaged under the microscope 442 
with DAPI and WGA staining as before to determine if high-quality, intact nuclei were obtained 443 
(see Figure 5B). We adjusted the number of dounces until only nuclei were found. As iPSCs 444 
differentiated further into CMs, the number of required dounces needed to be increased. For 445 
example, day 3 of differentiation required 5 dounces to obtain proper cell lysis and intact nuclei, 446 
while Day 7 required 12 dounces. Nuclei were spun down at 500 xg for 5 minutes at 4 ◦C. After 447 
centrifugation, the nuclei were washed with nuclei suspension buffer (NSB; 1X PBS, 0.01% BSA, 448 
and 0.1% RNAse inhibitor (Lucigen, #F83923)), resuspended in 2 mL NSB and filtered using a 449 
35 μm cell strainer (Corning, #352235). 10 μL of nuclei suspension was sampled using a NI 450 
hemocytometer and the concentration adjusted to a final loading concentration of 300,000 451 
nuclei/mL in NSB of which 2 mL was used for DroNc-seq. 452 
 453 
Microfluidic Co-encapsulation of Cells/Nuclei and Barcoded Beads 454 
For Drop-seq, 2 mL of cells at 200,000 cells/mL in PBS-BSA was loaded in a 3 mL syringe (BD, 455 
#309657). A custom-built 90 μm Drop-seq microfluidic device (CAD file supplied separately) was 456 
used for droplet generation, creating droplets smaller than the standard Drop-seq protocol.5 We 457 
chose to use the 90 µm droplets because the effective concentration of cellular RNA in the 90 um 458 
drops is doubled, leading to better RNA capture, compared to 125 µm droplets used in Drop-seq. 459 
Indeed, we see an increase in RNA capture for cells of smaller size, such as iPSC. We note that 460 
the increase in capture efficiency often fails to translate to larger sized cells (~15 μm), likely due 461 
to the higher concentrations of the lysed cell’s endogenous RNase and lysosomes, etc. in the drop. 462 
Cells at 200,000 cells/mL and ~2,600,000 droplets/mL (droplet volume is ~380 pL) amounts to a 463 
Poisson loading distribution with λ ≈ 0.076. DNA barcoded beads (ChemGenes, Macosko-2011-464 
10(V+)) were washed, filtered, and suspended in Drop-seq lysis buffer, also at 200,000 beads/mL 465 
and kept in suspension under constant stirring using a magnetic tumble stirrer and flea magnet 466 
(V&P Scientific, VP 710 Series, VP 782N-3-150). Beads and cells were co-flowed into the device, 467 
each at 3 mL/hr, along with a surfactant-oil mix (BioRad, #1864006) at 12 mL/hr that was loaded 468 
into a 10 mL syringe (BD, #302995) and used as the outer carrier oil phase. Reverse emulsions 469 
droplets were generated at ~3000 drops/sec and collected in two batches of 20 minutes each in 50 470 
mL tubes (Genesee Scientific, #28-106). After collection, the standard Drop-seq protocol for bead 471 
recovery, washing, and reverse transcription was followed.5 After washes and DNaseI treatment 472 
as per Drop-seq protocol5, cDNA amplification was performed on 75,000 RNA-DNA barcode 473 
bead conjugates in a 96-well plate (Genesee Scientific, #24-302) loaded at 5000 beads per well, 474 
for a total of 15 wells and amplified for 15 PCR cycles using template switching.5 Post-PCR 475 
cleanup was performed by removing the STAMPs (Single Transcriptome Attached to Micro-476 
Particles5) and pooling the supernatant from the wells together into a single 1.7 mL tube (Genesee 477 
Scientific, #22-281LR) along with 0.6X Ampure XP beads (Beckman Coulter, #A63880). After 478 
adding the Ampure beads to the PCR product, the tube was incubated at room temperature for 2 479 
minutes on a thermomixer (Eppendorf Thermomixer C, #5382000023) set to 1250 rpm, and for 480 
another 2 minutes on bench for stationary incubation. Next, the tube was placed on a magnet, and 481 
4X 80% ethanol washes were performed with 1 mL ethanol added in each wash. cDNA was eluted 482 
in 150 μL of water and the concentration and library size were measured using Qubit 3 fluorometer 483 
(Thermo Fisher) and BioAnalyzer High Sensitivity Chip (Agilent, #5067-4626). A BioAnalyzer 484 
trace is provided in Figure 5C as an example of the amplified transcriptome obtained from a Drop-485 
seq run. 450 pg of the cDNA library was used in Nextera Library prep, instead of 650 pg as 486 
suggested in the Drop-seq protocol5 to obtain Nextera libraries between 300 – 600 bp.  487 
 488 
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For DroNc-seq, a 75 μm microfluidic device9 was used. 2 mL of nuclei at 300,000 nuclei/mL were 489 
loaded into a 3 mL syringe and flowed at 1.5 mL/hr. Barcoded beads were filtered with a 40 μm 490 
filter to select for smaller beads to prevent clogging events in the relatively smaller microfluidic 491 
channels. 2 mL of beads were suspended at 350,000 beads/mL in Drop-seq lysis buffer, loaded in 492 
a 3 mL syringe, kept suspended through a magnetic tumble stirrer, and flowed at 1.5 mL/hr, along 493 
with carrier oil-surfactant mix loaded in 10 mL syringe and flowed at 12 mL/hr. Droplets were 494 
generated at ~4,500 drops/sec and collected in 50 mL tubes in two batches for 22 minutes each. 495 
After collection, the standard DroNc-seq protocol for bead recovery and reverse transcription was 496 
followed.9 cDNA amplification was performed on the STAMPs as above, for 15-20 wells at 5000 497 
beads per well, for 15 PCR cycles. Cleanup was performed after removing the STAMPs and adding 498 
0.6X Ampure XP beads (Beckman Coulter, #A63880) to the pooled supernatant followed by room 499 
temperature incubation for 2-minutes on an Eppendorf thermomixer set to 1250 rpm and another 500 
2-minute stationary incubation. Tubes were placed on a magnet and beads were allowed to migrate 501 
prior to 4X washes in 80% ethanol. cDNA was eluted in 10 μL of water per well and DNA 502 
concentration was measured using a Qubit 3 fluorometer (Thermo Fisher). 650 pg of DNA was 503 
used in each Nextera reaction for fragmenting, tagging, and amplifying to create Nextera library. 504 
Nextera library size and concentrations were determined using a BioAnalyzer DNA High 505 
Sensitivity Chip (Agilent, #5067-4626). 506 
 507 

 508 
Figure 5: Experimental quality control metrics. Images of Day 1 of differentiation of human iPSC derived 509 
cardiomyocyte (iPSC-CM) cells- A) and nuclei- B) stained with DAPI and WGA; C) BioAnalyzer traces of WTA 510 
product from Drop-seq on iPSC-CM Day 7, DroNc-seq on iPSC-CM Day 7, and DroNc-seq on archived adult male 511 
heart tissue.  512 
 513 
Nuclei Isolation from Adult Human Heart Tissue 514 
Post-mortem human heart tissue was provided by the National Disease Research Interchange 515 
(NDRI). The sample (m, 68 yrs) had been stored at -80oC for 11 years before it was processed for 516 
DroNc-seq. The frozen tissue sample was weighed and cut with a scalpel and 32.8 mg of sample 517 
was processed, by mincing with the scalpel. The sample was placed into a glass dounce tissue 518 
grinder (Sigma, Cat #D8938) with 2 mL of ice-cold EZ-Prep lysis buffer from the Nuclei EZ-prep 519 
Isolation Kit (Sigma, Cat #NUC-101). The tissue was dounced 25 times with Pestle A, transferred 520 
to a conical tube with an additional 2 mL lysis buffer, and incubated on ice for 5 minutes. Sample 521 
was then centrifuged at 500 xg for 5 minutes at 4 ◦C. Supernatant was aspirated off and replaced 522 
with 2 mL lysis buffer. Sample was transferred back to the tissue grinder and dounced 25 times 523 
with Pestle B. Sample was then put back into a conical tube with an additional 2 mL lysis buffer, 524 
centrifuged, and washed with 4 mL lysis buffer followed by 5-minute incubation on ice. 10 μL of 525 
sample was taken and combined with DAPI and Wheat Germ Agglutinin (WGA) and put into an 526 
NI hemocytometer (InCyto, DHC-N01-2) to check for nuclei quality. If whole cells were still 527 
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present, additional douncing with Pestle B was performed (additional 25-35 dounces expected) 528 
before checking again using DAPI and WGA. The resulting nuclei were centrifuged, lysis buffer 529 
was aspirated, and nuclei were washed and resuspended in Nuclei Suspension Buffer (NSB; 1x 530 
PBS, 0.01% BSA, and 0.1% RNAse inhibitor (Lucigen, #F83923)). Nuclei were filtered once with 531 
a 35 μm cell strainer (Corning, #352235), once with a 20 μm filter (pluriSelect, #43-50020-01), 532 
and twice with a 10 μm filter (pluriSelect, #43-50010-01) and stored on ice for processing. Nuclei 533 
were counted using an NI hemocytometer and brought to a final concentration of 300,000 534 
nuclei/mL in 2 mL NSB for DroNc-seq. To assess the quality of RNA from the archived heart 535 
tissue, we ran an independent experiment to extract total RNA using a Qiagen kit (Qiagen, #74004) 536 
and measured using a BioAnalyzer RNA 6000 Pico kit (Agilent, #5067-1513). A RIN score of ~5 537 
was obtained for this sample. 538 
 539 
DroNc-seq on Nuclei Harvested from Heart Tissue 540 
DroNc-seq was performed as previously described with a few exceptions: single 30-minute droplet 541 
collection was performed using a 75 μm microfluidic device and flow rates mentioned previously.  542 
During whole transcriptome amplification, 12 cycles of PCR were performed on 30 wells with 543 
5000 barcoded beads per well. Clean-up was performed as described above. cDNA from each well 544 
was eluted in 2 μL of water and pooled for quantification by BioAnalyzer (Figure 5C) and Qubit, 545 
followed by Nextera library preparation. 546 
 547 
Sequencing 548 
Drop-seq and DroNc-seq samples for each differentiation time-point were sequenced in a single 549 
run, with 150-200 million reads allocated per sample.  Sample libraries were loaded at ~1.5 pM 550 
concentration and sequenced on an Illumina NextSeq 500 using the NextSeq 75 cycle v3 kits for 551 
paired-end sequencing. 20 bp were sequenced for Read 1, 60 bp for Read 2 using Custom Read 1 552 
primer, GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC5, according to 553 
manufacturer’s instructions. Illumina PhiX Control v3 Library was added at 5% of the total loading 554 
concentration for all sequencing runs. 555 
 556 
RNA-Seq Data Processing and Analyses 557 
The differentiating iPSCs were sampled at specific timepoints during a 15-day period (days 0, 1, 558 
3, 7, 15) using both Drop-seq and DroNc-seq (Fig 1A). A total of 17 sequencing runs were 559 
performed over the course of the differentiation. Each sequencing run produced paired-end reads, 560 
with one pair representing the 12 bp cell barcode and 8 bp unique molecular identifier (UMI), and 561 
the second pair representing a 60 bp mRNA fragment. We developed a Snakemake21 protocol that 562 
takes a FASTQ file with such paired-end reads as input and produces an expression matrix 563 
corresponding to the UMI of each gene in each cell. The protocol initially performs FastQC22 to 564 
obtain a report of read quality. Next, it creates a whitelist of cell barcodes using umi_tools23 0.5.3, 565 
which is a list of cell barcodes with at least 30k reads. Next, each paired-end read is combined into 566 
a single read where the read name contains the cell barcode and UMI extracted from paired end 567 
read 1, and the sequence content corresponds to paired end read 2. This is done for every paired 568 
end read and placed into a single “tagged” FASTQ file. The tagged FASTQ file contains only the 569 
cell barcodes found in the whitelist. Finally, the protocol trims the ends of reads to remove polyA 570 
sequences and adaptors using cutadapt24 1.15. The tagged and trimmed FASTQ file is aligned to 571 
the human reference genome (version GRCh38) using the STAR25 aligner version 2.5.3, which 572 
returns a BAM file sorted by coordinate. Next, we use featureCounts26 version 1.6.0 to assign each 573 
aligned read to a feature on the genome. Finally, we use the count function from umi_tools to 574 
create a count matrix representing the frequency of each feature in the BAM file. The pipeline is 575 
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available at github.com/aselewa/dropseq_pipeline. A total of 17 count matrices 576 
were produced by this pipeline, 9 of which correspond to Drop-seq and 8 correspond to DroNc-577 
seq. In order to incorporate introns into the counting process, the UMI count of a gene was 578 
calculated as the sum of its exon and intron UMIs. This is particularly important for DroNc-seq as 579 
approximately half the reads obtained come from intronic regions of pre-spliced mRNA. 580 
GENCODE version 28 annotations contain exon features and gene features but do not contain 581 
intron features. To derive an intron annotation file, we used exon and gene features. Exon regions 582 
were subtracted from gene regions (on the same strand) and the remainder was counted as the 583 
intron region for said gene. Then the expression level of a gene is given by the sum of the number 584 
of intron and exons.  585 
 586 
From each sequencing run, approximately 5000 cells were obtained with an average read depth of 587 
30k – 40k per cell. Low quality cells were filtered based on the number of genes detected. A gene 588 
was considered detected in a cell if there was at least 1 UMI present. Cells with less than 400 genes 589 
and nuclei with less than 300 genes detected were removed. Low quality genes were also filtered 590 
if they were not detected in at least 10 cells, in order to reduce noise and computation cost. The 591 
total numbers of cells remaining were approximately 23,554 and 24,318 for Drop-seq and DroNc-592 
seq, respectively. After filtering, all expression matrices from Drop-seq experiments were merged 593 
into a single expression matrix. The merging was done by taking the union of all genes. If a 594 
particular dataset did not contain a gene that is expressed in another dataset, we set the expression 595 
level to zero in the first dataset. Similarly, all expression matrices corresponding to DroNc-seq 596 
were merged into a single expression matrix. Both merged matrices were processed and analyzed 597 
separately downstream. Seurat15 was used to perform normalization, clustering, and cell type 598 
analysis. R scripts used for the analyses in this paper are documented at 599 
github.com/aselewa/czi. 600 
 601 
Internal Priming 602 
We used the MEME27 suite to find all 5 bp stretches of adenines using the human genome build 603 
hg38. Next, we merged all 5 bp motifs in order to obtain all continuous polyA tracts. A total of ~2 604 
× 10$ motifs at least 5 bp long were identified genome-wide. BAM files from each time-point 605 
were merged and only intronic reads were kept. Intronic reads were extended by 20 bp on each 606 
side and intersected with the adenine motifs in a strand-specific way. The motifs were centered by 607 
the coordinates of the reads they intersect with and a histogram motif of 3’ positions was obtained 608 
(Figure S3).  609 
 610 
Normalization and Scaling 611 
Following the analysis procedure recommended by Seurat, we first normalize the count data. Each 612 
cell’s gene-specific UMIs were divided by the total number of UMI in the cell scaled to 104, which 613 
yields TP10k (transcripts per 10k) values. Figure S2 shows the relationship between the mean 614 
expression (mean TP10k) and the length of the gene. The relationship is relatively weak, therefore 615 
normalizing by just the library size is sufficient. A pseudo-count of 1 was added to all scaled values 616 
followed by a natural log transformation. After the log-transformation, the values were 617 
standardized, i.e. mean-centered and scaled such that each gene has unit variance. These log-618 
normalized, and standardized data were used in downstream analyses to perform dimensionality 619 
reduction and reconstruction of differentiation trajectories.  620 
 621 
Dimensionality Reduction 622 
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The first step performed in dimensionality reduction is principal components analysis (PCA). Prior 623 
to PCA, Seurat calculates the gene dispersion vs. mean expression in order to obtain a subset of 624 
highly variable genes, which reduces the computational time of PCA compared with using the 625 
entire subset of genes identified in the experiment. Highly variable genes were selected based on 626 
a threshold of 1.5 for the dispersion level and a minimum expression level of 0.15 (on log scale) 627 
yielding 400 genes and 350 genes with Drop-seq and DroNc-seq, respectively. These highly 628 
variable genes were used to calculate principal components for Drop-seq and DroNc-seq data. The 629 
top 7 principal components, which explained 60% and 70% of variation for Drop-seq and DroNc-630 
seq, respectively, were used to perform clustering and the results were visualized with the Uniform 631 
Manifold Approximation and Projection (UMAP28), which produced a 2-dimensional visualization 632 
of the data (Figures S4 A, B left). We also performed tSNE on the same data (Figures S4 A, B 633 
right) using a perplexity of 50 and found that UMAP captures more of the global structure in the 634 
data, as previously reported29. A minimum distance of 0.5 and 0.6 were used in UMAP for Drop-635 
seq and DroNc-seq, respectively. 636 
 637 
Cell type Analysis 638 
The principal components were used for graphical clustering using the FindClusters command of 639 
Seurat. A resolution parameter of 0.13 is used to obtain 6 clusters in Drop-seq and 5 clusters in 640 
DroNc-seq. In order to determine cell types from the clusters, we performed differential expression 641 
analysis using the FindAllMarkers function and negbinom test in Seurat. This identifies 642 
differentially expressed genes between every two groups of cells using a likelihood ratio test of 643 
negative binomial generalized linear models. The Seurat’s negbinom test yields relatively low false 644 
positive rates for differential expression analyses, compared with other parametric methods30. The 645 
p-values were adjusted for multiple testing using the Bonferroni correction. Furthermore, as we 646 
were only interested in upregulated genes as these will define the cell type, we ordered genes in 647 
each cluster, by their average log-fold-change (logFC) in descending order. Marker genes were 648 
identified based on functional annotations as these genes associated with cell types have a large 649 
fold-change in expression. Figures S6 and S7 show the top 10 differentially expressed genes in 650 
each identified cluster for Drop-seq and DroNc-seq, respectively.  651 
 652 
Pseudo-bulk Analysis 653 
Raw RNA-seq counts were obtained from GEO accession GSE110471 and the human samples 654 
were extracted from the population. The raw counts were converted into log-TP10k's. After 655 
filtering low-quality cells, Drop-seq and DroNc-seq counts were aggregated (summed) for each 656 
gene, and the resulting counts were converted to log (TP10k + 1). The Pearson correlation between 657 
pseudo-bulk and each bulk RNA-seq sample was calculated using the cor function in R 3.5.1 across 658 
~6,000 genes.  659 
 660 
Single-cell Trajectory Analysis 661 
Monocle version 2.6.4 was used to construct single-cell differentiation trajectories. Computing the 662 
trajectory of approximately 20,000 cells is computationally expensive and slow with Monocle. To 663 
overcome this, we used the best 700 cells from each time-point. In particular, cells were ordered 664 
by their detection rate (number of genes detected) and 700 cells with the highest detection rate 665 
were chosen. The computation is also expensive and slow when the number of genes is high 666 
(>10,000 genes). Selection of genes for trajectory analysis, or feature selection, is critical for 667 
obtaining accurate trajectories. In our case, we used all of the differentially expressed genes in the 668 
cell type analysis. The data given to Monocle are log-transformed TP10k values. The 669 
reduceDimension function with the DDRTree method was used to obtain a 2-dimensional 670 
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representation of the developmental trajectories in each dataset. The cells were then ordered using 671 
the orderCells function, which infers the trajectory in reduced-dimension dataset using reserve 672 
graph embedding17. A total of 3,500 cells (700 per time-point, 5 time-points in total) were used to 673 
infer the trajectories in Drop-seq and DroNc-seq.  674 
 675 
Primary Heart Tissue Analysis 676 
A total of 4796 nuclei obtained from post-mortem adult human male heart tissue were profiled 677 
using DroNc-seq. Genes were quantified using both introns and exons, with mean number of genes 678 
and UMIs of 361 and 823, respectively. The top 30% of cells were chosen based on number of 679 
genes detected, which corresponds to 1,491 cells. Transformation of data and cell type analysis 680 
was performed in the manner described above. Next, we calculated the Pearson correlation 681 
coefficient using the 𝑐𝑜𝑟 function in R 3.5.1 between primary heart nuclei and the in vitro iPSC-682 
derived CMs profiled by DroNc-seq. We also used iPSCs profiled by DroNc-seq as an out-group. 683 
A total of 200 iPSC-derived CMs and 50 iPSCs were used for the correlation analysis. For each 684 
primary heart nuclei, a total of 250 correlation coefficients were calculated using ~2500 genes, 685 
which we call the correlation profile of a cell. The resulting matrix of correlation values were 686 
visualized and bi-clustered with the ℎ𝑒𝑎𝑡𝑚𝑎𝑝. 2 function in R 3.5.1.  687 
 688 
Data Availability 689 
All raw data are available through the Human Cell Atlas Portal 690 
(https://prod.data.humancellatlas.org/explore/projects/c765e3f9-7cfc-4501-8832-79e5f7abd321).  691 
All code used for analysis is available at github.com/aselewa/czi and github.com/aselewa/ 692 
dropseq_pipeline. 693 
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Supplementary Methods 704 
 705 
Species-mixing and single-cell specificity 706 
For the Drop-seq experiment on biological replicate #1, chimpanzee iPSCs20 were mixed with 707 
human iPSC-derived CMs from day 7 of the differentiation time-point, in order to assess the 708 
frequency of doublets during cell encapsulation. We used chimpanzee cells for the species mixing 709 
as these cells were grown using identical conditions as the human cells. The alignment protocol 710 
was adjusted so that each read was aligned to both the human genome (GRCh38) and the chimp 711 
genome (panTro5) separately. For each cell that passed quality control, we counted the number of 712 
reads that aligned exclusively or with a better score to the genome of one of the species (Figure 713 
S1). We then used the ratio of these counts as a ‘species-specificity’ score for each cell. We found 714 
only a small number of cells with scores that could suggest mixing of cells from human and chimp 715 
(< 5%), similar to previously reported estimates5. Cells with intermediate scores had typically 716 
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lower read counts and were thus removed by filtering based on read depth. We only kept cells with 717 
a specificity score above 0.6 yielding ~739 cells. In agreement with our assignment, > 99% of 718 
these cells were associated with clusters that we identified as CMs while none were associated 719 
with iPSC clusters. 720 

 721 
Figure S1: Scatterplot of number of reads assigned to hg38 vs panTro5 for each cell in Drop-seq day 7, cell line #1 as 722 
part of a species-mixing experiment using human iPSC derived cardiomyocytes and chimpanzee iPSCs. 723 
 724 
 725 
 726 

 727 
Figure S2: Mean expression (log) vs. gene length for Drop-seq (left) and DroNc-seq (right).  728 
 729 
 730 
 731 
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 732 
Figure S3: Density curves of the position of polyA at the 3’ end. Green and red curves represent reads mapping to 733 
the forward and reserve direction, respectively. The dashed line represents the average read length.  734 
    735 

 736 

 737 
Figure S4: Dimensionality reduction for A) Drop-seq and B) DroNc-seq using tSNE (left) and UMAP (right). Color 738 
represents the differentiation time point. 739 
 740 

 741 
 742 
 743 
 744 
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 745 

 746 
Figure S5: Gene enrichment analysis on differentially expressed genes between Drop-seq and DroNc-seq.  747 

 748 
 749 
 750 
 751 

 752 
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Figure S6: Heatmap of expression values of top 10 differentially expressed genes in each cell type cluster for Drop-753 
seq. 754 
 755 
 756 

 757 
Figure S7: Heatmap of expression values of top 10 differentially expressed genes in each cell type cluster for DroNc-758 
seq. 759 
 760 
 761 
Table S1: Breakdown of cell types and associated genes discovered in Drop-seq and DroNc-seq 762 
Markers Cell type Prevalence 

(Drop-seq) 
Prevalence 
(DroNc-
seq) 

Drop-seq 
Only Genes 
(top 5) 

DroNc-seq 
Only 
Genes (top 5) 

DPPA4 iPSC 48.9% 52% SFRP2, 
AC025465.1, 
ESRG, 
CACNAD2D3, 
BDNF-AS 

RIMS2, RPL8, 
GOLGA4, 
EIF4A2, 
SET 

EOMES 
APLNR 

Cardiac 
Progenitor 

23.3% 18.2% CER1, LHX1, 
CYP26A1, 
IRX3, MT-
TS2 

GRIB2B, 
AL3365295.1, 
IL1RAPL2, 
KCNQ5, NRX3 

MYH6 
TNNT2 

Cardiomyocyte 1 16.1% 5.6% MYL3, NPPA-
AS1, NPPA, 

AC012574.1, 
AC105233.5, 
MYO1D, 
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ACTN2, 
TNNC1 

ARHGAP42, 
CDK14 

MYH6 
TNNT2 
AFP 
SERPINA1 

Cardiomyocyte 2 4.2% 12.7% AMBP, 
APOA2, 
SERPINF2, 
ITIH2, 
SERPINA5 

KCNH7, 
ERBB4, 
ZBTB20, 
NRG3, KCNQ5 

TTR 
FOXA2 

Alternative 
Lineage 1 

5.9% 11.3% GATA3, 
S100A14, 
HHEX, 
FLIRT3, 
EPSTIL1 

EWSR1, 
PTBP2, 
ZMYM2, 
LUC7L, 
LINC01876 

CD34 
SCARF1 
FLT1 

Alternative 
Lineage 2 

1.4% 0% CRHBP, 
GNG11, 
SOST, TFPI2, 
AC007319.1 

None 

 763 
 764 
 765 
 766 

 767 
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 768 
Figure S8: Violin plots representing the of number of genes in each cluster for Drop-seq (top) 769 
and DroNc-seq (bottom). 770 
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 771 
Figure S9: Cell differentiation trajectories constructed from Drop-seq (left), and DroNc-seq (right) using Monocle. 772 
Each differentiation time-point sampled is labelled by the same color in both techniques. A, B) uses the time-point as 773 
color, and C, D) shows the inferred pseudo-time as the color. 774 
 775 
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 776 
Figure S10: Top 10 upregulated genes identified in each cell type cluster using DroNc-seq on primary tissue from 777 
archived adult human heart. 778 

 779 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/585901doi: bioRxiv preprint 

https://doi.org/10.1101/585901
http://creativecommons.org/licenses/by/4.0/


 780 
Figure S11: Differential expression analysis across time-points, cell-lines (biological replicates), and across Drop-seq 781 
and DroNc-seq using different thresholds for log-fold-change. All genes shown have adjusted p-value < 0.05.  782 
 783 
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