
The shift to life on land selected for planning

Ugurcan Mugan1,2 & Malcolm A. MacIver1,2,3,4

1The Neuroscience and Robotics Laboratory, Northwestern University, Evanston IL
2Department of Biomedical Engineering, Northwestern University, Evanston IL
3Department of Mechanical Engineering, Northwestern University, Evanston IL
4Department of Neurobiology, Northwestern University, Evanston IL

It is uncontroversial that land animals have developed more elaborated cognitive abilities than aquatic animals,

with the possible exception of formerly land-based mammals like whales and dolphins that have returned to

an aquatic existence. Yet there is no apparent a-priori reason for aquatic and land animals to have different

evolutionary capacities for the rise of cognition. One possibility is that investigators have been anthropocen-

tric in their definition of cognition, rather than attuned to cognitive phenomena as appropriate to the broader

ethological and ecological context of each species. However, this concern may not apply to the paradigmati-

cally cognitive faculty of being able to imagine multiple complete sequences of actions to accomplish a goal

and select one to enact, or planning. Although planning over space requires cognitive maps—which exist in

many species including fish—behavioral and neural evidence for planning is presently restricted to birds and

mammals. Here, we present evidence that a reason for the absence of planning in fish and many other aquatic

animals is that in a key driver of natural selection, predator-prey interactions, there is no benefit to planning

above habit-based action selection. In contrast, there is a significant benefit of planning under similar predator-

prey scenarios for terrestrial conditions. This effect is dependent on a combination of increased visual range

and the spatial complexity of terrestrial environments. The ability to plan in select terrestrial vertebrates may

therefore be an adaptive response to the massive increase in visual sensory range (100x) occurring with the

shift to life on land in combination with the complexity of terrestrial habitats and its affordance of strategic

behavior during predator-prey interactions.

Introduction
The emergence of vertebrates on to land over 350 million years ago was preceded by a massive

increase in visual range when their eyes moved to the top of the head to look over the water

surface and tripled in size1 (Fig. 1a). The consequent 100-fold increase in visual range (Fig. 1b)

arose from a dramatic decrease in the attenuation of light from water to air1,2, and was accompa-

nied by the opportunity to see elements of spatial complexity, such as topography and vegetation

(Fig. 1c). Animals looking through air were able to observe distant potential drivers of behavior,

such as predators and prey, in a more complex space (Fig. 1d). It is likely that mobile threats and

opportunities within a complex space increased the need for anticipating the consequences of ac-

tions based on either experience or imagination3,4. Here we address whether sensing the chang-

ing location of mobile threats and opportunities in the spatial environment, along with increased

afforded delay between stimulus and response5, would have advantaged mental evaluation of

action sequences in animals emerging onto land6.
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Figure 1: Implications of the shift to life on land on eye size, visual range, and the affordance of planning

versus reactive behavioral control. (a) Data from a phylogenetic comparative study1. The thick branches indicate

positions of selective shifts in eye size, with corresponding factor of increase in eye socket size compared with the

ancestral regime (terminated by green circle). (b) Through computational visual ecology estimates visual range can

be inferred from fossilized eye socket diameters1. Mean eye socket diameters are shown on left for ancestral fish,

transitional tetrapods, and terrestrial tetrapods. (c) Examples of aquatic and terrestrial visual scenes7. (d) The impact

of sensory ecology on affording reactive control versus planning. Aquatic schematic shows a prey’s immediate “motor

volume” (tan region, region being moved into in a short duration)6,8 almost completely overlapping a diminutive visual

“sensory volume” (blue region, where an animal detects objects). Short sensing range necessitates a high speed

response. Terrestrial schematic shows similar motor volume, but visual sensory volume (green region) has massively

increased. This affords more time for planning—here between multiple behavioral options (solid and dashed black

arrows)—to choose the option with higher expected fitness value (solid black arrow). (e–f) Examples of the quantized

environments used in computational experiments for this study; black squares represent occlusions. Examples of low,

medium, and high clutter are shown for the pseudo-terrestrial experiment.
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Much is now known about the neural circuitry underlying planning. The hippocampus and its

functional homologues9,10 in terrestrial animals has emerged as a key structure for evaluating

the consequences of actions in imagination prior to execution11. Previous work has shown that

mammals engage in hippocampal replay during sharp wave-ripple events to mentally represent

action sequences before execution during avoid-approach conflicts in dynamic environments12,13.

Studies that reconstruct mentally represented paths reveal that environmental topology and spatial

complexity are accurately captured by hippocampal replay14. Birds have a hippocampus with the

same developmental origin15 and similar anatomy10 as mammalian hippocampus, and there is

accumulating behavioral evidence that it plays a similar role in planning for this group of animals16.

These findings suggest that the planning abilities we see in mammals and birds may have evolved

from a common toolkit of neural circuits in a stem amniote, perhaps over the 35 million years

between the emergence of fully terrestrial forms (such as Pederpes, 355 million years ago (Mya);

Fig. 1a) and the last common ancestor of birds and mammals (320 Mya17). Supporting this

hypothesis, here we present evidence that after the shift to life on land, there was a higher selective

benefit for the brain circuitry subserving planning because of the great increase in visual range and

in-range spatial complexity this change in habitat afforded.

Results
We have selected the context of prey being pursued by a predator for this work, as it has both

the needed features of being dynamic as well as having obvious evolutionary importance. Prior

work has shown that hippocampal replay in spatial navigation tasks resembles model-based, se-

quential forward planning18–20, which creates a tree-like structure of possible movements over the

environment. The planning simulator developed for this study uses this same structure to evaluate

both its moves ahead, and its adversary. Variation in the amount of planning—how many different

possibilities for action are considered—was controlled by the number of forward states evaluated,

hereafter referred to as “planning acuity” for brevity.

Two computational experiments (Fig. 1e–f) were designed to study the effects of how much plan-

ning an animal can do on performance and behavioral complexity, as a function of visual range

and spatial complexity. For both of these computational experiments, the predator was designed

as a model-based reflex agent, while the prey was designed as a planning agent (see Discussion),

with a predetermined planning acuity and visual range.

In Computational Experiment 1 (pseudo-aquatic; Fig. 1e), the prey’s visual range was varied in

a simple (open) environment. In Computational Experiment 2 (pseudo-terrestrial; Fig. 1f), the

environmental topology was varied by adding randomly generated clutter into the environment

until a pre-determined level of environmental entropy was reached (see Methods). This caused

the prey and predator’s visual range to explicitly depend on the environment. Each experimental

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 22, 2019. ; https://doi.org/10.1101/585760doi: bioRxiv preprint 

https://doi.org/10.1101/585760


a b dc

1 10 100 1000 5000

Visual range

5

4

3

2

1

n.s.
*** ***

5

10

15

20

25

Prey survival rate (%)

Planning acuity
1 2 3 4 5

Visual range

+

+

+

+

+

0

2

4

6

8

10

***

***

n.s.

*

Incremental benefit of 

planning (%)

1

3

2

5

4

7

6

n.s.

+

+
+

S
u
rv
iv
a
l

D
e
a
th

+

S
u
rv
iv
a
l

D
e
a
th

S
u
rv
iv
a
l

D
e
a
th

Av. number of observations

1 3 5

Visual range

Correct choice

Av. num. of observations

1st observation distance

0.1 0.2 0.3 0.4 0.5

Relative importance

Feature importance

Figure 2: The effect of visual range and planning acuity on survival. (a) Prey survival rate in pseudo-aquatic

environments (Fig. 1e) as a function of prey visual range and planning acuity across random initial predator locations

(n = 20). The line plot shows the mean survival rate, and the surrounding fill indicates ± sem. (b) For each visual

range, the mean gain of survival rate over all the planning acuities shown in panel (a)—1, 10, 100, 1000, and 5000.

The outliers are indicated with a ‘+’. (c) The importance of the feature shown in C (average number of observations), as

well as the 1st observation distance (typically, the visual range), and whether the prey moves away from the predator

on its first action (“Correct choice”), in predicting survival. (d) The distribution of the average number of observations

grouped by termination condition (survival, death) for a prey with high planning acuity (5000) and across visual range

1, 3, and 5.

trial had a fixed predator start locationand prey planning acuity, but both of these parameters were

varied across trials.

In psuedo-aquatic conditions, the prey survival rate increases with respect to an increase in plan-

ning acuity, independent of visual range (Fig. 2a). However, survival rate quickly plateaus when

visual range is short, indicating that that there is limited added gain in survival rate from increasing

planning acuity (Fig. 2b; ***: P < 0.001, *: P = 0.046, One-way ANOVA P < 0.001). The two most

important determinants of survival in open environments are observation distance—proportional

to visual range—and the number of observations, which is the number of time steps when the

predator is in view of the prey (Fig. 2c). Due to the randomness in both speed and direction of the

predator, the prey is only certain about the predator location when it observes the predator. When

the predator is out of view, the prey samples from a probability distribution of predator locations

that is informed by knowledge of the predator’s speed and the predator’s desire to close the gap

to the assumed location of the prey (the number of predator locations the prey samples is equal

to the planning acuity; see Methods.)

A step increase in visual range results in an exponential increase in the amount of space moni-

tored, resulting in a decrease in the uncertainty about the predator location in subsequent time

steps. Frequent observations decrease the set of possible predator locations, making planned

trajectories tailored to a particular area, rather than the entire space outside of the visual cone,

thereby increasing the probability of survival (Fig. 2d). The proportional relationship between the

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 22, 2019. ; https://doi.org/10.1101/585760doi: bioRxiv preprint 

https://doi.org/10.1101/585760


prey’s visual range and the average number of time steps for the predator to reach the prey from

the time it is observed6 makes survival independent of the prey erroneously choosing to move

toward the predator (Fig. 2c; Correct choice). Long visual ranges—resulting in lower predator

location uncertainty—and increased predator-prey separation at observation, advantages higher

planning acuity in spatially simple environments. Due to the near one-body length visual range af-

forded by typical ancestral aquatic habitats1, regardless of the actual spatial complexity of their en-

vironment, animals within them would effectively reside in a similarly simple environment (Fig. 1c,

aquatic visual scene).

In open dynamic environments planning has marginal utility with sensing ranges of near one body

length (visual ranges 1 & 2) typical of the ancestral vertebrate aquatic visual range1,21. With

the emergence of eyes above the water column, there was an increase in both the total volume of

space monitored by vision (1-million fold)1, and in-range spatial complexity due to vegetation22 and

other terrestrial barriers. Thus to model the selective benefit of planning in terrestrial environments,

we varied the amount of clutter in the environment, and extended the visual range to span the

entire environment, except as blocked by elements of clutter.

In pseudo-terrestrial environments (Fig. 1e), prey survival rate increases until midrange levels of

environmental clutter (entropy 0.4–0.6), and then decreases in high clutter environments (entropy

> 0.6) (Fig. 3a). When the environment has very little clutter (low entropy), the predator speed

and pursuit strategy (see Methods) restricts the prey’s survival rate, limiting the gain in survival

rate from increases in planning acuity (Fig. 3b, Mann-Whitney U test with Bonferroni correction

Low–Mid: P < 0.001). In these relatively open environments the predator’s visual range is rarely

hampered, which results in longer periods of aggressive pursuit. When the environment has high

levels of clutter (high entropy), the overall space in which the prey can move decreases, causing

survival to be highly dependent on the predator’s initial location and the distribution of occlusions.

Interestingly, not only is planning of little benefit in this case, random action selection provides

survival rates similar to those that occur with planning (planning acuity=1 approximates random

action; Fig. 3a–b, Mann-Whitney U test with Bonferroni correction Mid–High: P < 0.001).

The amount of clutter along with the distribution of clutter in the environment changes how visible

each location is with respect to all other locations. This causes different action sequences to be fa-

vored in relation to the predator’s movement, changing behavioral variability with respect to clutter

amount and distribution. As a result, in environments that have midrange clutter (entropy 0.4–0.6),

the prey’s predator avoidance behaviors are highly variable, even within a given environment.

To analyze the spatial distribution of clutter, we used a network generated from these location

visibilities. This visibility network connects all the cells that do not have an occlusion along a

connecting line of sight between cell centers (see Methods). The complexity of these networks,
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Figure 3: The effect of clutter in the environment on survival and the emergence of multiple viable futures.

(a) Mean survival rate as a function of environment entropy for a given planning acuity, across different initial predator

locations (n = 5). Fill indicates ± sem across randomly generated environments (n = 20). (b) The incremental benefit

of planning—the mean difference in survival rate for each tested increase in planning acuity—grouped by environmental

entropy range. Low: Environments of 0.0–0.3 entropy; Mid 0.4–0.6; High 0.7–0.9. (c) Network complexity with respect

to entropy. The line plot shows the mean complexity and the interquartile range (n = 20). (d) The incremental benefit

of planning (see b) when environments are grouped based on spatial complexity. (e1–e4) Heatmaps of all prey survival

paths (from start to safety without being captured) that were taken by prey with high planning acuity (5000) with color

density proportional to frequency. Color bar action frequencies range from 1 for low, to 92 for the most saturated color,

dependent on entropy level. Black squares correspond to occlusions. (f) Path spread is defined as the variance of the

paths employed by a prey with high planning acuity (5000) that result in survival (examples in (e)) across different trials

within a fixed environment at a predetermined entropy level. High path spread indicates that the success paths are

highly dissimilar. Low, mid, and high entropy ranges as in (b). The outliers are indicated with a ‘+’. (g) Mean difference

in survival rate between prey with high planning acuity, and prey that rely on habit-based action selection (see Methods).

Fill indicates ± sem across the tested environments (n = 20). (h) Distribution of differences of survival rates between

prey with high planning acuity, and prey that relies on habit-based action selection (full data in (g)) when environments

are grouped based on spatial complexity.

defined in terms of equivalence and diversity of cell visibilities, has two boundary cases that are

simple23: fully connected environments (open, entropy = 0), and unconnected environments (fully

occluded). However, between these edge cases, complexity increase until midrange entropy val-

ues, and then decreases for high entropy values (Fig. 3c). It is in these midrange, spatially complex

environments that planning becomes significantly more advantageous, and results in larger gains
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in survival rate from increasing planning acuity (Fig. 3d, Mann-Whitney U test: P < 0.001) Inter-

estingly, fractal analyses that are commonly used to quantify the detail in complex patterns found

in natural environments24 (Fig. 5a) indicates that environments that have high spatial complexity

have terrestrial fractal geometries (Fig. 5c, Mann-Whitney U test with Bonferroni correction Open–

Land: P < 0.001). Our results show that only terrestrial environments (fractal dimension corre-

sponding to midrange entropy, 0.4–0.6, Fig. 5b) advantage higher degrees of planning (Fig. 5d,

Mann-Whitney U test with Bonferroni correction Open–Land: P < 0.001).

To analyze the behavioral ramifications of increased planning in environments with variable com-

plexity, we quantified prey behavior across episodes by counting the number of times an action

between linked cells was taken when the prey succeeded in reaching safety. While this varied

with the predator’s initial position, all such action sequences are termed “success paths.” The

success paths in low entropy, low complexity environments reveal that planning generates action

sequences that take the prey to the opposite wall from the believed predator location (Fig. 3e1–

e2). While this causes the overall spread of success paths to be low (Fig. 3f, Mann-Whitney U

test with Bonferroni correction Low–Mid: P < 0.001), it also shows that wall-following behavior—or

thigmotaxis, commonly observed in rodents in open-field tests25—increases survival rate. This

same behavior is seen in pseudo-aquatic environments independent of assigned visual range.

Therefore, in simple environments success paths are easily learned, and are determined by en-

vironmental properties rather than prey sensory capabilities. In these environments, there is no

statistically significant difference between survival rate with habit-based action selection6,26, which

uses previously employed success paths, and survival rate at high planning acuity (entropies 0.0–

0.3, Fig. 3g, One-way ANOVA P > 0.05).

The wall-following behavior exhibited by the prey, which results in a low spread of success paths,

suggests that the predator will follow a competing strategy that is similarly dependent on environ-

mental properties. Complementary to our previous analysis, we quantified success paths for the

predator by calculating the frequency of actions taken by the predator in episodes that resulted

in predator success (capturing the prey) (Fig. 4a). The predator’s trajectories are similar to those

observed in pursuit tasks in open environments with primates27, and seem to arise as a result of

easy access to predicted prey locations. These findings suggest that in simple environments, the

pursuer strategy is to go towards regions that are well connected (the middle of the environment),

while the prey strategy is to go towards regions that have limited access.

The connectedness of cells was quantified by eigenvector centrality (eigencentrality), which rep-

resents the weighted sum of direct connections (actions to and from a cell), as well as indirect

connections of every length28 (see Methods) (Fig. 4b). High eigencentrality implies that the cell is

connected to cells, which themselves are highly connected (have high eigencentrality values).
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Figure 4: Properties of the environment that influence behavioral strategy. (a) Heatmap of all predator success

paths (capturing the prey before the prey reaches safety), with color density proportional to frequency. Color bar:

low: 1, high: 90. (b) Eigencentrality of an open environment. Color density proportional to the eigencentrality of

each cell. Color bar: low: 0, high: 1. (c) Selected examples from swim paths of typical wildtype mice in a Morris

water maze29. (d) Correlation between environment eigencentrality and prey success-paths (e.g. Fig. 3a). Low

spread negative correlation indicates that the paths that led to success are similar and follow graph cells that have low

eigencentrality. The outliers are indicated with a ‘+’. (e) Spatial autocorrelation (global Moran’s I) of the environment

eigencentrality. Higher spatial autocorrelation indicates that the low and high values of environment eigencentrality

are more spatially clustered. The outliers are indicated with a ‘+’. (f) Multiple-T maze overlaid with eigencentrality.

Color density proportional to the eigencentrality of each cell of the quantized maze. Color bar: low: 0, high: 1. Red

box indicates the “choice” point where the rat pauses. Johnson and Redish18 showed that the neural representation

(reconstruction on the right) moved ahead of the animal while it paused at the choice point. A time stamped neural

representation of the part of the maze highlighted by the black box is depicted on the right hand side. The intensity of

the neural representation is shown in pseudocolor (red high probability; blue low probability). The actual position of the

animal is shown with a white circle.

The few success paths that are seen in open (low entropy) environments, employed by prey with

high planning acuity, are along cells of low eigencentrality (Fig. 4d, Spearman’s rank correlation

P < 0.001). Conversely, the predator success paths, independent of predator initial location, are

along cells of high eigencentrality, which allows easy transitions to neighboring regions (Fig. 4a,b).

Competitive sports analyses similarly point to the importance of reaching positions of higheigen-

centrality for rapid transitions to less connected regions30.

This relationship between maneuverability within the environment and eigencentrality also has

implications for exploration. It has previously been shown that anxiety in rodents (including in novel
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environments) decreases exploration25,31. In open environments exploration requires animals to

go towards regions of high eigencentrality, which results in high exposure to attack. As rodents

become more comfortable, thigmotactic behavior decreases, and occupancy of the middle of the

environment increases29 (Fig. 4c) signaling an increase in exploration towards the goal point.

Contrary to low complexity environments, which allow simple strategies to succeed, in high com-

plexity environments the prey’s survival strategy becomes less stereotyped as the number and

spread of viable paths increase (Fig. 3e3,f, Mann-Whitney U test with Bonferroni correction Low–

Mid: P = 0.003, Mid–High: P < 0.001). The spread of trajectories that lead to success in midrange

entropy environments—signaled by their diffuse occupancy frequency maps (Fig. 3e3)—suggests

that prey success is dependent on the ability to rapidly update planned action sequences based

on the predator’s location with respect to occlusions. This implies that planning in dynamic en-

vironments is only beneficial for animals that can accurately localize the threat or opportunity

within a limited region. Therefore, the sensory modality or combination of modalities used for

such localization has to have high spatial and temporal resolution for rapid and precise updates.

Vision through air is uniquely suited for this role (see Discussion). Consistent with the hypothe-

sis that planning is needed for dynamic environments and requires spatially and temporally pre-

cise location updates, with habit-based action selection—no evaluation of future actions based

on current observations—performance is much worse in spatially complex environments (Fig. 3h

Mann-Whitney U test: P < 0.001). Unlike habit-based selection, re-planning in spatially complex

environments generates complex behaviors that strategically deploy occlusions to escape from the

predator, such as through hiding, or by engaging in diversionary tactics not unlike the broken-wing

anti-predator tactic that is observed in birds32 (see Supplementary Video S1).

Complex behaviors, exhibited in spatially complex environments, are a consequence of the dis-

tribution of eigencentralities. Unlike simple environments (Fig. 4b), which have a region of high

eigencentrality that tapers in all directions away, spatially complex environments exhibit adjacent

clusters of highly and poorly connected regions (Fig. 4e, Mann-Whitney U test with Bonferroni cor-

rection Low–Mid: P < 0.001, ). Consequently, in such environments simple action sequences—

such as following cells with low eigencentralities—fail (Fig. 4d, Mann-Whitney U test with Bon-

ferroni correction Low–Mid: P < 0.001). Similarly, environments that fall within the terrestrial

fractal dimension range are spatially complex, and exhibit higher divergence between success

paths. This causes habit-based action selection to be unsuccessful (Fig. 5e, One-way ANOVA

P < 0.001).

The clustered nature of eigencentralities in complex environments (Fig. 4e) forces the prey to move

between regions of high and low eigencentrality. Transitioning from a poorly connected region to

a highly connection region implies increased visibility and access from nearby cells. Planning at
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Figure 5: Performance in typical example environments. (a) Top-down view of example environments (black

squares correspond to occlusions) and corresponding prey sideways view (Unity 3D reconstruction, occlusions are

made into hills) from its start location. (b) Distribution of fractal dimensions of generated environments. The line

plot shows the mean fractal dimension and the interquartile range (n = 20). The blue fill shows the range of fractal

dimensions (0–0.8) that are observed in typical aquatic environments (see Methods), the green fill shows the range

of fractal dimensions (1.0–1.6) that are observed in typical terrestrial environments33,34, and the pink fill shows the

range of fractal dimensions (1.9–2.0) that are observed in typical coral reefs35,36. (c) Environment network complexity

(see Fig. 3c) of typical open water, terrestrial, coral reef environments. Dark green dot and band corresponds to

mean environment complexity ± std, in environments that have a fractal dimension of ≈1.3 (peak human navigational

performance34). (d) The incremental benefit of planning (see Fig. 3b) of typical open water, terrestrial, and coral reef

environments. Dark green dot and band as in (c). (e) The difference in survival rate between prey with high planning

acuity, and prey that rely on habit-based action selection (see Fig. 3g) within typical open water, terrestrial, and coral

reef environments. Dark green dot and band as in (c).

these transition points is imperative for the prey to account for predator trajectories, and thereby

safely navigate the exposed areas. Complex behaviors (detailed above) occur at these transition

points, and result in highly variable action sequences contingent on the most recent observation

of the predator and location of occlusions when transitioning to the highly connected regions.

Prior research in dynamic environments, where the threats and opportunities are always changing,

has shown that animals rely on model-based planning methods to correctly react to the changes

in the distribution of rewards12,26. Our results suggest that planning becomes more important, and

results in higher behavioral variability at these transition regions form either high to low (Fig. 4d),

or low to high eigencentrality dependent on the task. This framework provides a way to under-

stand empirical phenomena influenced by environment topology, such as the rapid sweeping of

hippocampal place cells to and from the maze junction that corresponds to a transition point from

high to low eigencentrality in a multiple-T maze task11,18.

Where environmental entropy is high and spatial complexity low, the amount of clutter in the en-

vironment constricts the profusion of success trajectories to one or two (Fig. 3e4, Fig. 3f, Mann-

Whitney U test with Bonferroni correction Mid–High: P < 0.001). In these environments, the

importance of planning is diminished (Fig. 3b, d, h), and we find no statistically significant differ-
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ence between survival rate with habit-based strategies and survival rate at high planning acuity

(Fig. 3g, One-way ANOVA P > 0.05). The high level of clutter causes a very local region of high

eigencentrality that decreases sharply in the surrounding regions. Due to the reduced state-

space, which causes there to be only a few routes to safety, the prey no longer needs a strategy

that uses environment-dependent variables for success, eliminating the necessity to plan.

Discussion
Our results indicate that the complexity of the terrestrial world that greeted our fish ancestors22,

along with their massively increased visual range, advantaged planning in predator-prey interac-

tions. The core basis for the apparent diminished elaboration of planning systems in most aquatic

animals may therefore be low spatial complexity relative to the short range of aquatic vision in

a behavior that is a key driver of evolutionary change. However, our open world (zero entropy)

and short visual range approximation of the aquatic life of fish, while appropriate for both coastal

fish21 and for the turbid-water dwelling transitional tetrapods leading to land vertebrates1, is less

applicable to daylit coral reefs in clear water, due to a much higher visual range (eye parameters

from a large set of diurnal reef fish; see Methods).

To examine the importance of planning in the coral reef environment, we used the fractal dimension

of coral reefs (1.9–2.035,36) to select from the range of environments we simulated. Our analysis

revealed that coral reef environments are similar to high entropy environments (0.8–0.9; Fig. 5b).

Thus coral reefs habitats plus their surrounding water can be thought of as a high entropy space

with multiple safety points37 surrounded by a zero entropy open space. In line with this idea, similar

to other high entropy environments, there is little benefit to increasing the amount of planning due

to the high level of clutter and few routes to multiple safety points (Fig. 5d). Moreover, based on

our results, there is unlikely to be any advantage to planning in such highly cluttered but spatially

simple environments (Fig. 5c). A simple habit-based action selection that relies on a cognitive

map, using previously successful trajectories, would perform just as well as high planning acuity

(Fig. 5e, One-way ANOVA P > 0.05).

Prior work on prospective coding in the hippocampus indicates that the forward sweeping of

spatial representations occurs at important decision points when the reward contingencies are

uncertain18. The predator-prey model we have used for this study is just a sub-category of this

broader phenomena where the animal has uncertainty about where the reward is located. In our

model, while the safety or goal position remains in the same location, the predator is an unpre-

dictable, sometimes unobserved aversive stimulus that has to be avoided. The randomness in

the predator model incentivizes the consideration of long action sequences, and therefore high

planning acuities. However, our results indicate that even in tasks where there is a dynamic aver-

sive stimulus, which causes the value function to change at each time step, after consolidating
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long successful action-sequences, selecting actions by using a habit-based system would enable

animals to succeed in getting to the goal position in spatially simple environments.

While the selective benefit of planning is dependent on habitat, we expect there is no dependence

of our results on our choice to only model planning in the simulated prey, versus allowing the

predator to plan. This choice was based on the high computational burden of having both the

prey and predator engaged in planning38. In addition, while most animals are prey (including

rodents, where the leading non-primate model of planning, vicarious trial and error11, occurs),

only a subset are predators, so this choice enables our results to have wider applicability. In the

edge cases of open or highly cluttered habitats, our findings suggest that the failure of planning to

provide advantage is unlikely to change as a result of our choice. We further chose to focus on

the role of planning to the exclusion of learning by pre-equipping both predator and prey with a

cognitive map of the boundaries, occlusions, and safety point of the habitats.

Despite our finding that there is no advantage to planning for most aquatic animals, it can still

be highly useful for such animals to have a cognitive map. This is because there are many uses

of a cognitive map that are independent of planning, such as present location on a map39 and

corrections to a dead reckoning system40, with none of the prospective counterfactual aspects

of checking multiple sequences of choices before enacting one as suggested by studies of plan-

ning in rodents40,41. Consistent with this hypothesis, it has been found that a likely homolog

of the mammalian hippocampus in fish, the dorsolateral pallium, is hypertrophied in squirrelfish,

a nocturnal reef fish42, and evidence for how the pallium generates a cognitive map has been

found in another animal that inhabits complex habitats with short sensing range, the electric fish43.

With these animals and other fish that appear to need more spatial navigation abilities and have

enlarged dorsolateral pallia42, we may be observing an intermediate stage in evolution where cog-

nitive maps are needed, but without the “simulation in the imagination” step needed for planning, a

step that may require prefrontal cortex in mammals and its homolog in birds called the nidopallium

caudolaterale44.

Another potential constraint on the evolution of planning circuitry in vertebrates is its computational

cost, which is exponential with the number of steps ahead being planned over. As a coarse indi-

cator of this cost, in the worst case for our gridworlds where there are only four possible actions at

each cell, the number of states that need to be estimated for N steps ahead is 4N—4,096 states for

only six steps ahead (reached by planning acuity 5,000 when all the branches are fully explored).

This crude estimate does not take into account efficiencies related to various shortcuts such as

hierarchical decomposition45,46. Nonetheless, even with such shortcuts planning is recognized to

be demanding, and easily degrades into habit-based action selection under time pressure47. In

contrast, although there is some cost associated with accumulating the statistics for habit-based
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action selection, once learned the cost to select and release the action pattern is likely constant

and does not increase with the number of steps within the habitized sequence.

In mammals planning engages prefrontal cortex in addition to the hippocampus11. Both of these

forebrain structures approximately scale with overall brain size48. The evidence from brain devel-

opment is that the most likely brain alteration for selection of a particular brain-size-dependent trait

is a coordinated enlargement of the entire brain48. Brains of birds and mammals, where the exis-

tence of planning behaviors and its neuronal basis is most well documented, are greatly increased

in size relative to fish—a factor of 10x larger at body sizes of 1 kg and 40x at large body sizes49.

Interestingly, a third group of terrestrial animals, the reptiles, do not exhibit this increase in brain

size; theirs is similar that of fish, which like them are also ectotherms.

The cognitive ability of reptiles is poorly understood, and there is little evidence of planning50,51.

Yet, these animals have existed in the same complex terrestrial habitats, with aerial vision, as

mammals and birds. There are several possibilities: the first is that these animals are able to

plan and this is simply not known due to lack of study; the second is that the selective benefit of

planning, while applicable to these animals, is not high enough to overcome an additional con-

straint; the third is that the selective benefit of planning arises from several other factors, either

instead of or in addition to the ones we have uncovered, which apply to birds and mammals but

not to terrestrial ectotherms. There is certainly not enough evidence to settle this issue presently,

but there are a number of considerations in favor of the “additional constraint” hypothesis related

to the previous point on the computational cost of planning. Both mammals and birds are en-

dotherms. In mammals, endothermy appears to have come about due to selection for increased

aerobic capacity in Permian theriodont therapsids, many of which were active predators, resulting

in extended capacity for prey pursuit and predator avoidance52. A 10◦C increase in temperature

of muscle above ambient doubles the rate at which muscle can reach maximum power53.

Endothermy likely played an important role in greatly increasing the size and computational power

of the brain49, and in increasing the sensitivity and temporal resolution of vision54. The flicker

fusion frequency of the retina of swordfish, a highly active underwater predator that rapidly tran-

sitions between warmer surface waters and cold deep waters, rises from 5 Hz in 10◦C water to

over 40 Hz at 20◦C54. This is one explanation for why swordfish is one of only around 30 out

of 30,000 species of bony fish that has a heating mechanism, in this case for its eyes and brain

only. However, endothermy is rare even among active predators underwater, likely because heat

is dissipated 3,000 times faster within water than in air. In addition to this barrier to endothermy

underwater, any increase in aerobic capacity of animals that gill rather than breathe has to con-

tend with water having only 1/30th the oxygen of air, while being 800 times denser. Gill ventilation

therefore requires 800 x 30 = 24,000 times more mass flux assuming identical extraction efficien-
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cies; even with the doubled efficiency of gills the mass flux is four orders of magnitude higher

for respiration with water compared to air1,55,56. Given the disadvantageous energy load due to

rapid cooling and the difficulty of recouping this energetic cost through additional oxygen expendi-

ture, for most underwater animals the heightened velocity of movement, brain power, and sensory

performance of endothermy is out of reach. Yet these factors seem to be important for realizing

the selective benefit of planning, which also suggests that planning is either unlikely to occur in

underwater animals or occur in diminished form relative to birds and mammals.

Our work highlights an important role for one sensory modality above others for the aptly named

capability of foresight: vision. Other than echolocation, a relatively recent mammalian innovation57,

there is no other sensory modality that provides the high temporal and spatial resolution best able

to support planning over online dynamic scenes. In terms of our framework, one way to think of

planning using olfactory, auditory, electrosensory, magnetosensory, or other teleceptive senses is

that they reduce the entropy of the scene relative to what is obtained through high acuity vision.

So a terrestrial scene that—when sensed with a high acuity visual system—is at midrange entropy

where spatial complexity is maximized and the advantage of planning peaks, becomes a scene at

lower entropy with lower spatial complexity where planning loses its advantage. In addition, for a

modality like olfaction, the speed of update is much lower than with vision.

These considerations regarding the special importance of vision in the selective benefit of plan-

ning leads us to examine two invertebrates with exceptional visual acuity, one terrestrial and one

aquatic. While the average acuity of insects is 0.25 cycles per degree (cpd)58 (compared to 60

cpd for humans)—far below what we expect is needed for in-range spatial complexity to make

strategic maneuvers useful—there is an insect with truly exceptional acuity, the jumping spider

Portia fimbriata with acuity similar to cats and birds at 25 cpd59. These animals are known to

stalk their prey, and to perform route detours to reduce the risks associated with attacking their

quarry, which happen to be spiders that specialize on eating other spiders60,61. The octopus

also has an exceptional acuity of 46 cpd and shows evidence of cognitive abilities62,63. Octopus

researchers have noted that the best characterized species—due to simple considerations of ac-

cessibility to observation—inhabit shallow-water reef habitats, and further that the less accessible

species seem to have more limited behavioral diversity63, p. 286. These points suggest that a com-

parative study of related species of octopus in reef environments versus open and deep water

environments could be informative. Nonetheless, the prior points about planning in a reef environ-

ment apply here as well. The cleverness of the coleoid cephalopods may arise from a different

source64, such as predatory stress from animals that already have evolved planning circuits—

namely birds and aquatic mammals63—in the context of having no armor to battle these predators

with.
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These findings suggest that with terrestrialization, there would be reduced need for specialized

circuits in the vertebrate brain to generate habitual predator-avoidance maneuvers. The Mauthner

system, which reduces the delay time between detection of a predator and the generation of an

escape, is perhaps the best characterized of such circuits65, and is only known to be present

in vertebrates up through amphibians66. With the advent of vision on land and the planning it

advantages, there is greater selection pressure for those circuits that support strategic behavior

generation, such as the imagination of multiple futures prior to action selection. A key question for

future research into the mechanisms of planning is what constrains the temporal and spatial limits

of the futures we are able to imagine. Is it what was adaptive in the ancestral environment? Work

on these issues—towards a neuroscience of sustainability—may become increasingly important

as we face distant existential threats far beyond the range of our individual planning acuity.
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Methods
This study concerns planning and as such, for both Computational Experiment 1 and 2, we iso-

late the role of planning by assuming that the prey and the predator have previously learned the

environment (where the boundaries are, where the occlusions are, and the location of safety).

The prey has also learned how the predator moves, and with what speed it moves. Some of the

randomly generated worlds resulted in a situation where the prey and predator continued to move

but the episode did not terminate. If a trial did not terminate within 200 time steps, it was excluded

from further analysis. For Computational Experiment 1, the number of steps before termination

was 19 ± 6 (mean ± std). For Computational Experiment 2, the number of steps before termina-

tion across all topologies was 30 ± 17. The higher standard deviation arises because the number

of steps varies greatly with the degree of clutter.

Computational Experiment 1 (CE1): Pseudo-aquatic

A virtual prey and predator act in an empty 15 × 15 virtual discretized environment (gridworld)

(Fig. 1e). The aim of the prey, which starts at a fixed initial position at the middle of the bottom row

of cells, is to get to the fixed safety position while being pursued by a predator. The episode termi-

nates with positive reward if the prey is able to reach the safety position, and negative reward if the

predator “catches” the prey (meaning that the predator moves to the cell the prey is occupying).

The prey is designed as a planning agent (see CE1: Planning problem definition and evalu-

ation of future states for details) that forward simulates a specified number of states (termed

planning acuity hereafter) before executing an action. As noted above, the forward simulation of

states relies on an accurate environmental model (transitions between cells, and boundaries of

the environment), and an accurate predator model (how the predator will move in space). The

predator spawns at a random initial position exclusive of two cells: the cell occupied by the prey,

and the safety cell. A total of n = 20 random predator locations were used for CE1 per visual

range (1–5), and per planning acuity (1, 10, 100, 1000, 5000). Survival rate was calculated over

100 episodes at a given predator spawn location, prey visual range, and prey planning acuity (for a

total of 50,000 trials). The predator is designed as a model-based reflex agent that selects actions

based on the policy: aggressively pursue the prey with 75% probability, and act randomly with

25% probability. The predator is on average 1.5× faster than the prey, which falls within typical

terrestrial predator speeds relative to prey of 1.2–267,68.

The prey has a pre-specified visual cone that faces the direction of motion and extends outward

1–5 cells ahead (fixed at a single value per trial) (Fig. 1e). The prey always knows its own location

within the gridworld, but only knows the predator location if the predator is inside of the prey’s

visual cone. If the predator is outside of the prey’s visual cone, the prey samples a predator

location from its belief state (B(., ht)) proportionate to the belief state distribution (for example, if
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the predator is believed to be at cell (8,12) with 90% probability, then 9 out of 10 draws from the

distribution will be (8,12)). The number of samples (predator locations) the prey draws from its

belief state is equal to the prey’s planning acuity. For each of these samples, the prey constructs

a planning tree (see below) and evaluates to the termination condition.

Initially the prey’s belief state is that the predator is located at all possible locations outside of its

visual cone with equal probability. Until the first observation, the prey’s belief state is propagated

based on the prey’s model of the predator movement; if the predator is then expected to be within

the visual cone, but is not, then the set of belief states is correspondingly pruned and now the

distribution reflects the new set of belief states. In between two observations, the prey’s belief

state consists of all the possible places the predator might have moved given the location of the

predator at the time of observation and the prey’s model of the predator action-selection policy.

The predator can observe the entire gridworld, and therefore knows the location of the prey at all

time points. During aggressive pursuit, the predator chooses actions that minimizes the Euclidean

distance between itself and the prey (if there is more than one cell the same distance to the prey,

then the cell is randomly picked from this set). During random action selection, if the prey is within

the reach of the predator, the predator chooses actions that terminates the episode with predator

success. Otherwise, the predator chooses a random action that keeps it within the confines of the

gridworld.

One time step consists of: 1) The prey greedily choosing an action a ∈ A based on its forward

evaluation (see CE1:Planning problem definition and evaluation of future states). If that ac-

tion brings the prey to the safety point then the episode is terminated (survival); 2) The predator

choosing an action a ∈ A based on its pursuit policy (aggressive or random). If that action brings

the predator to the prey position, then the episode is terminated (death); 3) The prey receiving

an observation o ∈ O and reward r = R(s) from the environment; 4) The prey adding the action

it chose and the corresponding observation to its history h; 5) The prey updating its belief state

B(s, h) based on current history h; 6) The prey planning until a fixed planning acuity is reached.

Planning problem definition and evaluation of future states. We formulate planning as a

partially observable Markov decision process (POMDP) consisting of the following variables69: a

set of states S (prey and predator spatial location), a set of observations O (0 if the predator is

not observed, cell number corresponding to predator location if the predator is observed), a set

of actions A (cardinal directions), a list of action-observation pairs that constitutes the history h,

a belief state B(s, h) specifying the probability distribution of the prey being in a state s given

history h, a reward function R(s) defined as the expected immediate reward for a given state s,

and discount factor γ = 0.9770 that attenuates distal rewards.
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The prey selects an action based on its policy π(a|h), receives an observation, and collects re-

wards as it moves through states. Each state is associated with a value that denotes the ex-

pected total future reward starting from s ∈ S following a policy π(a|h) (Vπ(h)). The maximum

value that is achievable by any policy π(a|h) gives the optimal value for that state (V∗(h)). This

value can be explicitly represented in terms of the reward function (R(st)), and the belief state

(B(s, h) = P(st = s|ht = h)).

V∗(h) = max
π

(

Eπ

[

∞
∑

t=0

γtR(st)P(st = s|ht = h)

])

Here, the prey’s aim is to estimate V∗(h) by using its environmental model before taking an action

(further disscussed in CE1: Planning algorithm). The prey internally simulates its own actions,

the reactionary actions of the predator, and the corresponding observations and rewards. These

internal simulations are used to approximate the value function without explicitly calculating it. The

number of states ahead the prey evaluated was set by the planning acuity, which was one of [1,

10, 100, 1000, 5000].

Planning algorithm. Forward simulation of future states is implemented by a tree-like planning

system (Monte-Carlo tree search adapted for POMDPs (POMCP)69,70), which relies on a previ-

ously learned model of the environment (boundaries and predator model). After an observation

o ∈ O is received and a state sampled from the belief state B(., ht), the prey begins planning from

its current history ht to estimate the optimal value function V∗(h). Each node in the search tree,

denoted by T (h), has three elements associated with it: B(h) specifying a set of possible preda-

tor locations (which converges to a single state when the prey observes the predator), number

of times a specific history h has been visited (N(h)), and the expected value of an action and

corresponding observation (V(h)). Vinit(h), and Ninit(h) are initialized to 0 for new nodes .

Planning tree construction and node value estimation in POMCP is divided into two stages: a

tree-search policy that is on nodes with non-zero visit values (within-tree-search), and a rollout

policy for nodes that have not previously been visited. After the evaluation of a state (predator

and prey location), the node containing the first new history visited in the second stage is added

to the search tree . The planner uses partially observable UCT (PO-UCT) during the first stage

within-tree-search, which selects actions based on Upper Confidence Bound (UCB1)71; and a

uniform random rollout policy during the second stage. PO-UCT has been proven to converge to

the optimal value function70,

V(h) → V∗(h) ∀h as N(h) → ∞
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which implies that when the planning acuity is high, an action that is greedily selected based on

the search tree is the optimal action to perform.

After an action at is greedily selected (maximal expected reward) and an observation ot is re-

ceived from the environment, the planning agent’s history is updated to reflect the new sample

〈at, ot〉. The start node of the search tree and the associated belief state is updated to reflect the

current history. The rest of the tree is pruned, since all other simulated histories are no longer

representative of possible futures.

Statistics. Significance among groups were tested by using one-way ANOVA and Mann-Whitney

U test with Bonferroni correction were applicable. All significance indicators follow: n.s.: P ≥ 0.05,

*: 0.01 ≤ P < 0.05, **: 0.001 ≤ P < 0.01, ***: P < 0.001

In Fig. 2b, the incremental benefit of planning is defined as the average difference in survival rate

between tested planning acuities (1, 10, 100, 1000, 5000) (e.g. difference in survival rate between

planning acuity 1000 and planning acuity 100) for a given visual range. Due to a non-uniform

increase from planning acuity 1000 to planning acuity 5000 (difference is not 1 when converted to

log), a linear relationship was assumed, and the calculated difference was multiplied by 2.

In Fig. 2c relative feature importance on survival rate was calculated by using random forests.

Feature importance was calculated by comparing the value lost or gained from the inclusion or

exclusion of that particular feature. A total of 1000 random trees were created from a training set

that was randomly chosen from the data.

Computational Experiment 2 (CE2): Pseudo-terrestrial

A virtual prey and predator act in a 15×15 virtual descretized environment (gridworld) (Fig. 1f), that

features randomly added clutter with controlled density. A total of n = 20 random environments,

with 10 levels of clutter—quantified by environmental entropy (see CE2: Environment generation

with randomized clutter for details)—were generated. The predator and prey model used for this

experiment are the same as CE1. The aim of the prey and the predator are kept the same as in

CE1: Task definition. The predator spawns at a random initial position exclusive of prey start

location, safety position, and occlusions. A total of n = 5 random predator locations were used for

CE2 per environment randomization (20), per clutter level (10: entropy levels 0.0 through to 0.9 in

steps of 0.1), and per planning acuity (5: 1, 10, 100, 1000, 5000). Survival rate was calculated

over 50 episodes at a given predator spawn location, environment randomization, clutter level and

planning acuity (for a total of 250,000 trials). A trial terminated if the prey reached the safety point,

the predator moved the prey location, or if the episode reached cut-off point.

Unlike CE1, the prey can see the entire environment except where blocked by occlusions (Fig. 1f).

If an occlusion exists on the ray72 between the predator and the prey, the prey samples a state from
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its belief state (B(., ht)). Initially, if the predator is not observed by the prey (behind an occlusion),

the prey’s belief state is all possible locations that are unobservable from the given prey location.

Until the first observation, the prey’s belief state is propagated then pruned based on the prey’s

model of the predator movement and locations that are hidden from the prey’s position. In between

observations, the prey’s belief state constitutes all the possible places the predator might have

moved (based on the prey’s model of predator movement) given the location of the predator at the

time of observation and all the locations that are not visible from the prey’s position.

The existence of occlusions impedes both the prey’s and the predator’s line of sight. Therefore,

the predator knows the exact location of the prey if an occlusion is not present on the ray between

the predator and the prey. The predator keeps track of the prey location while the prey is in view.

When the prey is hidden, the predator propagates the prey’s last known location randomly within

the gridworld (exclusive of occlusions) to form a belief state. During aggressive pursuit, if the prey

is within view the predator uses the actual prey location to choose an action that minimizes the

Euclidean distance. If the prey is hidden, the predator aims to minimize its Euclidean distance

to a randomly sampled prey location from the belief state. During random action selection, the

predator chooses a random action that does not move the predator to an occlusion or outside of

the gridworld.

The sequences of computations that occur in one time step are the same as CE1: Task definition.

Environment generation with randomized clutter. The entropy of a general m× n descretized

environment can be calculated by treating the descretized environment as a binary matrix, where

1’s represent occlusions, and 0’s represent unoccupied cells. The entropy of such an environment

(Ent(g)) can be written as:

Ent(g) =−

∑m
i=1

∑n
j=1 I(gi,j = 0)

mn
log

(

∑m
i=1

∑n
j=1 I(gi,j = 0)

mn

)

−

∑m
i=1

∑n
j=1 I(gi,j = 1)

mn
log

(

∑m
i=1

∑n
j=1 I(gi,j = 1)

mn

)

where gi,j refers to the value at the ith row and the jth column.

In generating the occlusions for the environment we assume a random walk policy of a random

length that starts at an unoccupied random position. The number of random walks performed can

at least be 1 and at most be the number of occlusions for a given entropy, here denoted as k. The

total number of random walk lengths l must equal to k:
∑

1≤l≤k l = k. This process is repeated if a

path from the fixed prey position to the fixed safety position does not exist (via the A∗ algorithm73).

The algorithm for random environment generation with a fixed entropy level is described in the
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supplement .

Environment complexity analysis. If an occlusion exists on the ray between the predator and

the prey, both the prey and the predator are hidden from each other. By using the above principle

we created a visibility network Gv = (Vv, Ev) for all randomly generated environments. Vertices in

this visibility network represent individual cells. An edge ei,j exists between two vertices {vi, vj} if

an occlusion does not exist on the line between the two vertices. This can formally be written as:

Ev = {{vi, vj} |vi ∈ Vv, vj ∈ Vv, vi 6= vj and l(vi, vj) ∩O = ∅}

where l(vi, vj) determines the vertices that fall on the line between vi and vj , and O refers to the

set of occlusions specific to the environment.

Each vertex vi has a degree deg(vi) that specifies the number of vertices that are connected to

the vertex vi. With such a network transformation, an environment with Ent(g) = 0 is a complete

graph with vertex degree deg(vi) = N − 1, ∀vi ∈ Vv. On the other hand, an environment that

is only clutter is a disconnected graph with vertex degree deg(vi) = 0, ∀vi ∈ Vv. Therefore,

the complexity of a graph passes through a maximum and goes down to zero for complete and

disconnected graphs. An argument in support of this complexity definition arises from Shannon’s

information theory applied to random graphs23. Mathematically, the complexity of a network is

defined as:

α = {deg(vi)|vi ∈ Vv}

H(α) = −

|α|
∑

i=1

αi

|α|
log

(

αi

|α|

)

Environment fractal dimension analysis. The fractal dimension of the randomly generated

environments (see CE2: Environment generation with randomized clutter) was calculated by

using the box counting algorithm74. The basic procedure is to insert grids of decreasing box size

over the environment, and count the number of cells that include occlusions for each box size. The

fractal dimension of a gridworld is calculated by:

D =
log(Nr)

log(1/r)

where Nr is the number of boxes that cover the pattern and r is the magnification, or the inverse

of the box size. Therefore, the slope of the line when logNr is plotted on the y-axis and log(1/r) is

plotted on the x-axis equals the fractal dimension of the environment. A linear regression for this

log-log plot was fitted to calculate the fractal dimension of each environment.
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We used a similar approach on underwater images that ranged from murky to clear water to

estimate the observed fractal dimension in aquatic environments. The colored aquatic images (I)

of sizes M × M × 3 were converted to grayscale, and partioned into a grid with box sizes s × s,

where M/2 ≥ s > 1. Based on the differential box-counting approach75, Nr =
∑

i,j nr(i, j), where

nr(i, j) = max I(i, j)k − min I(i, j)k + 1 and k refers to the box number in the third dimension.

Nr is counted for different values of box sizes s, which determines the scale r. By using the

above equation, we estimated D from the least squares linear fit of log(Nr) against log(1/r). This

analysis revealed that aquatic environments have fractal dimensions that range from 0–0.8.

Eigenvector centrality of environments. Environment quantization into a grid structure lends

itself to a network representation based on how the system is connected together internally. If we

again assume each cell is a vertex, in order to represent the environment dynamics, we can now

define the edges in terms of actions. In such a network Gw = (Vw, Ew), an edge ei,j between two

vertices vi, and vj exists if there is an action connecting the two vertices. Similar to before we can

formally write this as:

Ew =
{

{vi, vj} |vi ∈ Vw, vj ∈ Vw, vi 6= vj and p(vi)
a
−→ p(vj) ∀a ∈ A

}

where p(v) returns the cell for vertex v.

Eigenvector centrality (eigencentrality) depends both on the vertex degree deg(vi) and neighboring

vertex centralities. The centrality score x of a vertex vi is defined as76:

xvi =
1

λ

n
∑

j=1

Avi,vjxvj

where λ is the largest eigenvalue of the adjacency matrix Avi,vj .

Habit agent simulations implementing policy reuse. To model the consequences on perfor-

mance for prey that acts based on policy reuse rather than planning (Fig. 3g), we implemented

a variant of the PRQ-Learning algorithm77. A policy library L = {Π1, ...Πn}, specific to an en-

vironment, was created based on the prey success-paths (Fig. 3e) (prey going from start to

safety without being captured). A policy Πk ∈ L was chosen by a softmax decision maker:

P (Πk) = expτWk∑n
p=0

exp τWp
, where Wk is the reuse gain of implementing the chosen policy, and τ is

the temperature parameter. After the implementation of the chosen policy Πk, the reuse gain (Wk)

is weighted by the total discounted reward R, and the number of times the policy Πk has been

chosen (Nk): Wk = WkNk+R
Nk+1

.

The predator action-selection policy was the same as the one implemented in the planning task

(see CE2: Task definition). The full habit-based action selection algorithm is provided in the
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Statistics. For all environment groupings, environments with entropies below the 25th percentile

were categorized as “low”, and similarly environments with entropies above the 75th percentile

were categorized as “high”. Mid-level entropy was classified as entropies between “low” and “high”.

For environment groupings in Fig. 3d, h), environments with spatial complexities below the 25th

percentile were categorized as “low”, and similarly environments with spatial complexities above

the 75th percentile were categorized as “high”.

For environment groupings in Fig. 5c, d, e), environments were grouped based on their frac-

tal dimensions. Environments with fractal dimension below 0.8 were categorized as open water

aquatic, environments with fractal dimension between 1.0–1.6 were categorized as terrestrial,

and environments with fractal dimension between 1.9–2.0 were categorized as coral reef. En-

vironments within the range 1.25–1.35 were categorized as environments in which peak human

navigation performance occurs34.

Significance among groups were tested by using one-way ANOVA and Mann-Whitney U test with

Bonferroni correction were applicable. All significance indicators follow: n.s.: P ≥ 0.05, *: 0.01 ≤

P < 0.05, **: 0.001 ≤ P < 0.01, ***: P < 0.001

In Fig. 3b, d and Fig. 5d, the incremental benefit of planning is defined as described above for

Fig. 2b.

In Fig. 4e, the spatial autocorrelation of the environment eigencentrality was calculated by using

global Moran’s I. The weight matrix was set to be the inverse of the vertex distances (min. number

of actions to get from vi to vj). This creates a weight matrix with greater values for vertices that are

closer together. Global Moran’s I evaluates whether a set of given values and their locations are

clustered, dispersed, or random. For this statistic, the null hypothesis is that the spatial distribution

of feature values (eigencentrality score of a vertex) is random. .

Coral Reef Fish Visual Range Calculations. In order to calculate the visual range for a typical

coral reef fish we used a clear water model1. This water model has an attenuation length of

1.17 m at 575 nm and a Secchi depth of 5.92 m. Given the position of the eyes we simulated

visual range for horizontal viewing, using horizontal radiance (θ = 90◦ relative to nadir) with solar

photon travel path angle φ = 180◦. This causes the diffuse attenuation coefficent (Kd) to be 0

across all wavelengths and depths (for more detail see MacIver et al. supplementary materials:

Aquatic Firing Threshold1). For a more realistic underwater range, we used the contrast threshold

of goldfish (Carassius auratus) to account for object invisibility due to exponentially attenuated

contrast (for more details see MacIver et al. supplementary materials: Contrast Threshold for

Aquatic Vision1)
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We used a sample of 211 diurnal species of teleost reef fish in 43 families with a size range of

0.044–0.638 m across individual species (data obtained from Schmitz et al.78). Most species in

this sample were reef inhabitants living in clear marine environments, with only a few entering

murkier brackish and muddy coastal waters. For our simulations we did not differentiate between

the two, and used a water model representing the clarity of the deepest oceanic water. Based on

the data, pupil diameter increased with body mass. Therefore, we binned the body masses into 4

equal frequency bins and caluclated the average pupil diameter for each bin. This resulted in pupil

diameters of 2.13 mm, 3.08 mm, 4.08 mm, and 5.17 mm. For each of these pupil diameters we

calculated visual range using horizontal spectral radiance data for clear water at depths 5 m, 10 m,

and 15 m. The calculated visual ranges at these depths for a 30 cm black disk “mock preator”79

for fish with the above pupil diameters viewing the predator horizontally are: 5.02 m, 4.84 m, and

4.66 m for a fish with pupil diameter 2.13 mm; 5.04 m, 4.88 m, and 4.72 m for a fish with pupil

diameter 3.08 mm; 5.05 m, 4.89 m, and 4.77 m for a fish with pupil diameter 4.08 mm; 5.06 m,

4.91 m, and 4.80 m for a fish with pupil diameter 5.17 mm. Given the size range of these fish, this

causes the visual range to be ≈7–114 body lengths.

Computing Environment. The computational resources for this work were provided by the Quest

high performance computing facility at Northwestern University which is jointly supported by the

Office of the Provost, the Office for Research, and Northwestern University Information Technol-

ogy. The cluster is composed of 244 nodes of Intel Haswell E5-2680 processors with 128 GB

memory/node, 184 nodes of Intel Xeon E5-2680 processors with 128 GB memory/node, 72 nodes

of Intel Xeon Gold 6132 processors with 96 GB memory/node. Approximate runtimes: CE1 2,000

total compute hours (20 hours on 100 Quest nodes); CE2 300,000 total compute hours (3,000

hours on 100 Quest nodes).

Data availability.

Simulation data will be available for download upon the completion of the peer review process.
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