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Abstract  25	

Background   Wheat (Triticum aestivum) is one of the most important crops 26	

worldwide. Given a growing global population coupled with increasingly challenging climate 27	

and cultivation conditions, facilitating wheat breeding by fine-tuning important traits such as 28	

stress resistance, yield and plant architecture is of great importance. Since they are involved 29	

in virtually all aspects of plant development and stress responses, prime candidates for 30	

improving these traits are MIKC-type (type II) MADS-box genes. 31	

Results   We present a detailed overview of number, phylogeny, and expression 32	

of 201 wheat MIKC-type MADS-box genes, which can be assigned to 15 subfamilies. 33	

Homoeolog retention is significantly above the average genome-wide retention rate for wheat 34	

genes, indicating that many MIKC-type homoeologs are functionally important and not 35	

redundant. Gene expression is generally in agreement with the expected subfamily-specific 36	

expression pattern, indicating broad conservation of function of MIKC-type genes during 37	

wheat evolution.  38	

We find the extensive expansion of some MIKC-type subfamilies to be correlated with their 39	

chromosomal location and propose a link between MADS-box gene duplications and the 40	

adaptability of wheat. A number of MIKC-type genes encode for truncated proteins that lack 41	

either the DNA-binding or protein-protein interaction domain and occasionally show novel 42	

expression patterns, possibly pointing towards neofunctionalization.	43	

Conclusions  Conserved and neofunctionalized MIKC-type genes may have played 44	

an important role in the adaptation of wheat to a diversity of conditions, hence contributing to 45	

its importance as a global staple food. Therefore, we propose that MIKC-type MADS-box 46	

genes are especially well suited for targeted breeding approaches and phenotypic fine tuning. 47	

Keywords   MADS-box gene, MADS-domain, wheat, Triticum aestivum, 48	

transcription factors, IWGSC, gene duplication, neofunctionalization, crop breeding   49	
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Background 50	

Bread wheat (Triticum aestivum) is one of the most important crops worldwide, contributing 51	

a significant amount of calories and proteins to the global human diet [1, 2]. Bread wheat is 52	

hexaploid and was first domesticated some 8 - 25,000 years ago in the region that today is 53	

called the middle-east [3, 4]. Wheat originated from three diploid progenitor species: 54	

Triticum urartu (A-genome donor), an Aegilops speltoides-related grass (B-genome donor) 55	

and Aegilops tauschii (D-genome donor) [5]. Because of its hexaploidy and an abundance of 56	

repetitive and transposable elements, bread wheat has one of the largest crop plant genomes 57	

(approximately 16 Gbp), making it challenging to work with from a genetics, genomics and 58	

breeding perspective [6]. However, recent advances in sequencing technology have led to a 59	

high-quality genome assembly and annotation by the International Wheat Genome 60	

Sequencing Consortium (IWGSC) [7]. Further, large scale RNA-seq analyses provided 61	

insights into expression patterns of homoeologous genes in different development stages and 62	

under a variety of stress conditions; building a rich resource for more detailed analyses [8]. 63	

Transcription factors (TFs) are a major driver in evolution as well as in domestication and 64	

bear the potential for crop improvement and trait fine-tuning [9]. MADS-box genes constitute 65	

one of the largest families of plant TFs [10]. They can be divided into two phylogenetically 66	

distinct groups: type I and type II [11]. While the function of most type I MADS-box genes 67	

remains to be illuminated, several type II genes are key domestication genes in different 68	

eudicot and monocot crops (reviewed in [12]). Plant type II MADS-domain proteins possess 69	

a typical domain structure, which is composed of the MADS-, I-, K- and C-terminal domain 70	

[13]. The MADS-domain enables the DNA-binding, nuclear localization and dimerization of 71	

the TF [14, 15], while I- and K-domain facilitate dimerization and higher-order complex 72	

formation of two or more MADS-domain proteins [16, 17]. The C-terminal domain allows 73	

for transcriptional activation of some MADS-domain proteins [18]. Because of this 74	
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characteristic domain structure, type II genes are also referred to as MIKC-type MADS-box 75	

genes [13]. MIKC-type MADS-box genes are involved in virtually all aspects of plant 76	

development, including the root, flower, seed and embryo [19]. They have also been reported 77	

to be involved in different stress responses [20-22]. Thus, understanding MIKC-type MADS-78	

box genes is important for understanding plant development, which is in turn crucial for plant 79	

breeding and crop improvement [23].  80	

MIKC-type MADS-box genes have been phylogenetically and functionally characterized in a 81	

variety of model systems (Arabidopsis (Arabidopsis thaliana) and Brachypodium distachyon 82	

[24, 25]) as well as important crop plants (banana, rice, brassica, cotton [21, 26-28]). 83	

Individual wheat MIKC-type MADS-box genes have also been studied for almost two 84	

decades. The most prominent example is probably VERNALIZATION1 (VRN1), an 85	

APETALA1 (AP1)-like key regulator of flowering time as well as floral meristem 86	

determination [29-33] and one of the most important loci that distinguishes spring from 87	

winter wheat varieties [33]. Other wheat MADS-box genes have been implicated in the 88	

control of flowering time, ovule development and pistilloidy [34-37]. However, a detailed 89	

genome-wide phylogenetic and functional characterization of wheat MIKC-type MADS-box 90	

genes is still missing. 91	

To better understand the dynamics of MIKC-type gene evolution in wheat and to facilitate 92	

future research on this important TF family, we provide a detailed overview of the number, 93	

phylogeny and expression of MIKC-type MADS-box genes in the recently released genome 94	

of Triticum aestivum [7]. We find a number of wheat MIKC-type subfamilies to be 95	

significantly larger than expected and suggest that extensive sub- and neofunctionalization in 96	

those subfamilies contributed to the global distribution of wheat. 97	

98	
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Results 99	

 100	

The wheat genome contains 201 MIKC-type MADS-box genes 101	

A total of 439 coding sequences (including splice variants) were identified on the basis of the 102	

functional annotation (PFAM domains) in the recently released IWGSC wheat genome 103	

(Table S1) [7]. This dataset was simplified by keeping only one splice variant from each 104	

genomic locus for further analyses (Table S2). MIKC-type MADS-box genes were 105	

differentiated from type I MADS-box genes using a phylogenetic approach (Table S1 see 106	

Methods for details). An additional eight MIKC-type genes were identified using BLAST 107	

search. Altogether, we identified 201 MIKC-type (type II) MADS-box genes in wheat (Table 108	

1, Table S2). Because MIKC-type MADS-box gene nomenclature in wheat is currently not 109	

consistent, with several genes having several synonymous names, we renamed all genes 110	

according to their subfamily association (Table 1, Table S2, see Methods for details).  111	

The domain structure of MIKC-type MADS-domain proteins is crucial for their function, 112	

MADS- and K-domain being indispensable for DNA-binding and protein complex formation, 113	

respectively [13], although genes encoding truncated proteins may act as dominant negative 114	

versions [38, 39]. A total of 164 out of 201 MIKC-type genes encoded for both, a MADS- as 115	

well as a K-domain, while 29 genes lacked a K-box (14 %) and 7 lacked a MADS-box (3 %) 116	

(Table 1, Table S2, Figure 1). One gene encoded for a MADS- and an SRP54–domain 117	

(TaBS.8A, TraesCS4A01G044400LC) (Figure S3B, Table S2). 118	

For a number of genes, the predicted gene structures were very long (30 kb and above, Table 119	

S2). We confirmed mRNA transcripts spanning over especially long introns (ca. 29 kbp) for 120	

two selected genes from the FLC-clade using RT-PCR and Sanger sequencing (Figure S1). 121	

 122	

123	
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MIKC-type MADS-box genes belong to well-defined subfamilies 124	

A Maximum Likelihood phylogenetic tree of all MIKC-type MADS-box genes from 125	

Arabidopsis thaliana, rice (Oryza sativa) and wheat shows that the wheat genome retained all 126	

15 major grass MIKC-type MADS-box gene subfamilies: AP1 (SQUAMOSA (SQUA)), AP3 127	

(DEF (DEFICIENS)), PISTILLATA (PI; GLOBOSA (GLO)), AGAMOUS (AG) /SEEDSTICK 128	

(STK), AG-LIKE6 (AGL6), AGL12, AGL17, BSISTER (BS; GNETUM GNEMON MADS13, 129	

(GGM13)), SUPPRESSOR OF CONSTANS1 (SOC1), SHORT VEGETATIVE PHASE (SVP; 130	

StMADS11), MIKC*, OsMADS32, FLOWERING LOCUS C (FLC), SEPALLATA1(SEP1) 131	

and SEP3 (Figure 1, Figure S2) [40].  132	

In many subclades, the gene phylogeny roughly followed species phylogeny; with the 133	

Arabidopsis genes displaying a sister-group relationship to the grass genes; and one or more 134	

rice MADS-box genes closely related to a triad of three wheat homoeologs (e.g. the SVP-, 135	

AGL12-, OsMADS32-, MIKC*, AP1- and AG-subclades (Figure 1)). The topology in other 136	

subclades is more complex, suggesting multiple duplication events, before and/or after 137	

polyploidization of wheat (e.g. SOC1- and SEP1 subclades, Figure S3A). Especially Bsister-, 138	

AGL17- and FLC- subclades are significantly expanded in wheat compared to Arabidopsis 139	

and rice (Figure 1, Figure 2, Figure S3B-D). 140	

 141	

Wheat MIKC-type genes exhibit a high rate of homoeolog retention and gene 142	

duplication  143	

In many flowering plants, the number of MIKC-type MADS-box genes is between 40 and 70 144	

[41]. Rice and Arabidopsis for example, despite their phylogenetic distance, have a similar 145	

number of MIKC-type MADS-box genes (43 and 45, respectively) [24, 42, 43]. With 201 146	

genes, the total number of MIKC-type MADS-box genes in wheat is among the highest of 147	

hitherto characterized flowering plant species [27, 44, 45]. This is partly due to the hexaploid 148	
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nature of wheat. However, even when corrected for ploidy-level, the number of MIKC-type 149	

MADS-box genes in bread wheat was significantly higher than in rice (≈1.5 fold higher, χ2 150	

test p = 0.028, Figure 2A-D). Even when truncated genes lacking either a MADS-box or a K-151	

box were excluded, the gene number was still higher than in rice (164/3=54.7 > 42). This 152	

increase in number is mainly due to the gene count in four subfamilies (SEP1-, AGL17-, 153	

FLC- and Bsister-like genes) that are significantly larger than expected (χ2 test p = 0.002, 154	

p << 0.001, p << 0.001, p << 0.001, respectively; Figure 2A-D). The remaining subclades 155	

showed the expected 3:1 ratio of wheat-to-rice genes; and some were below the expected 156	

ratio (Figure 2D). In some of the latter cases, wheat orthologs of rice genes could not be 157	

identified, indicating gene loss in the lineage leading to Triticum (e.g. AP1- and AGL6-like 158	

genes, Figure 1, Figure 2A-D).  159	

To better understand why MIKC-type MADS-box genes are so abundant in the wheat 160	

genome, we analyzed homoeologous groups in detail (Table 2). Approximately one third of 161	

all wheat genes (i.e. all genes annotated in the current version of the wheat genome) are 162	

present in homoeologous groups of 3, also termed triads (1:1:1; 35.8 % of genes) [7]. In 163	

contrast, almost two thirds of the 201 MIKC-type genes identified are present in triads (62.7 164	

%, Table 2). If only ‘full-length’ MADS-box genes (defined here as containing a MADS- and 165	

K-box) are considered, this ratio is even higher (72.7 %, Table 2). Also, the percentage of 166	

MIKC-type genes with homoeolog-specific duplications is higher for MIKC-type genes as 167	

compared to all wheat genes (8.5 % vs. 5.7 % Table 2). Loss of one homoeolog, on the other 168	

hand, is less pronounced in MIKC-type genes (1 % vs. 13.2 %, Table 2). 38 genes were 169	

excluded from the analysis (18.9 %; 13 % for full-length only), because the relationship of 170	

the genes could not be reliably resolved. Thus, the high homoeolog retention rate can partly 171	

explain the high number of wheat MIKC-type genes.  172	

173	
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In addition to this, a variety of duplication patterns were observed in some subfamilies 174	

(Figure S3, Supplementary Text 1). For example, the rice SEP1-like genes OsMADS1 and 175	

OsMADS5 are sister to 10 and 7 wheat genes, respectively. In this case, the phylogenetic 176	

analysis suggests gene duplications in the lineage leading to Triticum but before the 177	

polyploidization of wheat (Figure S3A). The Bsister gene OsMADS30 from rice is sister to 27 178	

wheat genes, many of which lack a MADS- or K-box and are found in non-syntenic regions, 179	

indicating gene amplification occurred through transposable elements (Table 1, Figure S3B). 180	

For the AGL17- and FLC-subfamily from wheat, a number of triads can be assigned to a 181	

single rice gene (Figure S3C, D). Several genes from these two subfamilies are found in close 182	

vicinity to each other, pointing towards tandem duplications as a mechanism for subfamily 183	

expansion (Table 1, Figures 2E and S2C, S2D). 184	

 185	

Gene duplications and truncated genes are prevalent among MIKC-type genes in 186	

subtelomeric segments 187	

MIKC-type MADS-box genes were generally equally distributed among the chromosomes, 188	

the only exception being the three homoeologous chromosomes 7, which contained 189	

significantly more genes than expected from the chromosome lengths (χ2 test p << 0.001, 190	

Figure 2E). This is mainly due to AGL17-like genes; with the majority of them located in 191	

tandem locations on the distal subtelomeric ends of chromosomes 7 (Figure 2E, Table S2). 192	

Overall, MIKC-type genes were located equally likely in the more central segments of the 193	

chromosomes (R2a, R2b and C) and in the subtelomeric parts of the chromosomes (R1 and 194	

R3) (48 and 50 % of genes, respectively). However, gene location varied greatly among 195	

subfamilies (Figure 3). In general, genes belonging to smaller subfamilies tended to be 196	

located in more central segments of the chromosomes; whereas a larger percentage of genes 197	

belonging to more expanded subfamilies were located in subtelomeric segments (Figure 4, 198	
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Table S2). Further, full-length MIKC-type genes were about equally likely to be located 199	

within sub-telomeric versus central segments (45 % vs. 54 %, respectively), but truncated 200	

genes (MADS- or K-box only) were two times as prevalent in subtelomeric segments (61 % 201	

vs. 31 %; 8 % of genes were not assigned to a chromosome) (Figure 3A). Genes in 202	

subtelomeric segments were often found to be in close vicinity to each other, with over half 203	

of the genes in subtelomeric segment R1 being under 1000 kbp downstream of the closest 204	

MIKC-type gene (Table S3). In contrast, only 15 % of genes in the centromere segment have 205	

a distance under 1000 kb to the next downstream MIKC-type gene (Table S3). This might be 206	

due to more frequent tandem duplication events in subtelomeric segments. These findings are 207	

in line with the observation that subtelomeric segments are targets of recombination events 208	

and that many fast evolving genes lie within these segments [46]. 209	

 210	

Conserved and divergent patterns of MIKC-type MADS-box gene expression during 211	

wheat development 212	

To characterize the expression of wheat MIKC-type MADS-box genes, we analyzed RNA-213	

seq data of 193 wheat MADS-box genes [8, 47]. Out of the 159 full-length genes, 83 % were 214	

expressed in at least one developmental stage, with a wide expression range with a maximum 215	

count of 1 to 424 transcripts per million (tpmmax) (Figure 5, Table S2). The remaining 17 % 216	

of full-length genes showed a very low expression with a tpmmax below 1 (Figure 5A, Table 217	

S2). Of the 33 truncated genes, encoding only for either K or MADS-domain, 30 % were 218	

expressed (4 and 6 genes, respectively, tpmmax1 to 51; Figure 5A, Table S2). One gene, 219	

encoding for MADS- and an SRP54-domain was expressed ubiquitously in the plant, albeit at 220	

a low level (TaBS.8A; tpmmax3.12; Table S2, Figure S3). 221	

In general, MADS-box genes expression patterns are comparable with findings in rice [21, 222	

48, 49] (Figure 5, Figure S4). MIKC*-type genes are expressed in anthers (Figure 5A, Table 223	
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S7). Putative floral homeotic genes, such as PI/AP3-like and AG/STK-like genes, 224	

OsMADS29- and OsMADS31-like Bsister genes, AGL6-like genes as well as SEP1 and SEP3-225	

like genes are expressed specifically during flower and seed development (Figure 5). AGL17-226	

like genes are expressed in roots. AP1-like, SVP-like and some SEP1-like genes are 227	

expressed ubiquitously throughout the plant life cycle in different tissues. 228	

For further analysis, genes were hierarchically clustered according to expression similarities 229	

and then grouped into different expression modules (Figure 5B, Figure S4). This analysis 230	

showed that, genes from one subfamily could differ considerably in their expression pattern. 231	

For example, members of the SEP1-like gene subfamily are grouped into 6 different modules 232	

and Bsister genes are found in 5 different modules (Figure 5B). In contrast, SVP- and AP1-233	

like genes show relatively little variation in their expression pattern (Figure 5B). It is also 234	

noteworthy that 79 genes including representatives from almost all subclades showed no 235	

expression or only low expression under very specific conditions during the developmental 236	

time course (41 % of genes; module 9; grey, Figure 5B).  237	

 238	

AGL17-like and Bsister genes are expressed in response to stress conditions 239	

AGL17- and OsMADS30-like Bsister clades have been expanding during wheat evolution 240	

(Figure 1, Figure 2). Many of the genes from these clades are not expressed or expressed on a 241	

very low level during wheat development (Figure 5). However, some of these genes do show 242	

expression in response to distinct stress conditions (Figures 6, S4).  243	

Bsister genes form three distinct clades of OsMADS29- OsMADS30- and OsMADS31-like 244	

genes in grasses [50]. Most Bsister genes have been described to be important for ovule and 245	

seed development with a specific expression pattern limited to female reproductive organs 246	

[51-53]. While OsMADS29-like and OsMADS31-like wheat Bsister genes follow this 247	

conserved expression pattern (Figure 6A, TaBS.1 and TaBS.2), some OsMADS30-like wheat 248	
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genes are expressed ubiquitously during the plant life cycle (Figure 6A, TaBS.6B1 249	

TaBS.5A4). In contrast, five closely related OsMADS30-like genes showed low or no 250	

expression in any of the developmental stages. Instead, a specific upregulation in response to 251	

inoculation with the pathogen Fusarium graminearum was detected (Figure 6A, TaBS.4; 252	

Figure S5).  253	

AGL17-like genes are commonly expressed in roots and leaves [54]. They have also been 254	

described to be involved in osmotic and saline stress responses in rice [54]. Several wheat 255	

AGL17-like genes are not expressed at all during developmental stages (Figure 5, grey; 256	

Figure 6B). Two AGL17-like genes that are expressed in the root, but not in leaves under 257	

control conditions, show upregulation in leaf tissue after 1 hour of heat stress (Figure 6B, 258	

genes 2,3). However, gene expression is not detectable after 6 h and there is no specific 259	

response to drought stress (Figure 6B, genes 2,3). Another AGL17-like gene is upregulated 260	

after 6h of heat, but not drought stress (Figure 6B, gene 4). A fifth AGL17-like gene is 261	

expressed in the root, and additionally upregulated in leaves in response to infection with 262	

stripe rust 7 days after infection (Figure 6C).  263	

264	
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Discussion 265	

 266	

Many wheat MIKC-type MADS-box genes have evolutionarily conserved functions  267	

MIKC-type MADS-box genes play a central role in plant development. They are therefore 268	

promising targets for crop breeding and improvement [55].  269	

Here, we identified 201 wheat MIKC-type MADS-box genes, which we assigned to 15 270	

conserved subfamilies (Table 1, Figure 1). At least 70 % of wheat MIKC-type MADS-box 271	

genes could be assigned to homoeologous groups with genes in every subgenome (Table 2). 272	

This is considerably above the average homoeologous retention rate in wheat (42 %, Table 2 273	

[7]). Many MADS-domain proteins act in multi-protein complexes [56]. The composition of 274	

those protein complexes changes dynamically during development, with many proteins being 275	

part of more than one complex [57, 58]. Changes in the gene dosage may result in changes in 276	

the stoichiometry of the protein complexes which may in turn have detrimental phenotypic 277	

effects [59]. Thus, selection may act to retain homoeologs in all subgenomes.   278	

We also found that the expression pattern of many wheat MADS-box genes is similar to that 279	

of close homologs in rice and other model plants, indicating that gene functions are broadly 280	

conserved between wheat and rice.  281	

Together, the conservation of all major subclades, the high homoeolog retention rate and the 282	

conservation of expression patterns underline the high biological importance of the MIKC-283	

type MADS-box gene family in general and the distinct subclades in particular. Hence, the 284	

rich knowledge about the developmental role of MIKC-type MADS-box genes from model 285	

plants, combined with a complete picture of gene number, expression data and phylogenetic 286	

analyses in wheat will aid wheat breeding and improvement. 287	

 288	
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Subfamily-specific expansion of wheat MIKC-type MADS-box genes may contribute to 289	

the high adaptability of wheat 290	

The hexaploid nature of wheat and the large size of the MADS-box gene family provide an 291	

ideal opportunity to study the evolutionary fate of genes after gene duplication and 292	

polyploidization. 293	

With 201 genes, wheat has one of the largest MIKC-type MADS-box gene counts among 294	

flowering plants [27, 44, 45]. In total, wheat has about 3.1 times as many transcription factors 295	

as rice, which can generally be explained by its hexaploidy [60]. However, the number of 296	

MIKC-type MADS-box genes is more than 4.5 times higher in wheat than in rice (Figure 2A-297	

D). The strikingly high number of MIKC-type MADS-box genes observed in this study is 298	

mainly due to – leaving hexaploidy aside – the significant expansion of four subclades: SEP1, 299	

Bsister, AGL17 and FLC (Figure 2).  300	

The expansion of MIKC-type subfamilies has been reported before in different plant species, 301	

such as for SOC1-like genes in Eucalyptus as well as SVP-like and SOC1-like genes in cotton 302	

[27, 45]. Intriguingly, genes from FLC-, SVP- and SOC1- subfamilies are involved in the 303	

control of flowering time [12, 61, 62]. It has been hypothesized that the expansion (and 304	

contraction) of developmental control genes, more specifically eudicot FLC-like genes, 305	

facilitate the rapid adaptation to changes in environmental factors such as temperature [63]. 306	

In a similar manner, duplications of wheat FLC-like genes might have enabled the adaptation 307	

of wheat to different climatic conditions, therefore contributing to its global distribution. It 308	

will be interesting to see whether copy number variations of FLC-like genes can be detected 309	

in different wheat varieties. 310	

The expansion of Bsister and AGL17-like genes may similarly be explained with an adaptive 311	

advantage. However, in those cases neofunctionalization might be involved. Bsister like 312	

genes form three subclades of OsMADS29-, OsMADS30- and OsMADS31-like genes in 313	
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grasses. Expression pattern and evolutionary analyses suggest that grass OsMADS29- and 314	

OsMADS31-like genes retain a conserved role in ovule and fruit development [48, 64], 315	

whereas OsMADS30-like genes may have functionally diverged [50]. For five wheat 316	

OsMADS30-like genes, upregulation was observed during infection with Fusarium head 317	

blight (Fusarium graminearum, Figure 6A). MIKC-type MADS-box genes are not typically 318	

associated with biotic stress responses and it remains speculative whether and how they 319	

might be involved in responding to a Fusarium infection. However, Fusarium head blight is a 320	

floral disease and Bsister genes are expressed in the flower. This may have facilitated a co-321	

option of theses genes into a pathogen response network. Interestingly, the lack of synteny 322	

between OsMADS30-like genes might point towards transposable elements as a possible 323	

duplication mechanism, underlining the evolutionary importance of transposable elements 324	

[65]. 325	

An upregulation in response to stresses was also observed for some AGL17-like genes, which 326	

form the largest wheat MIKC-type subfamily. While many wheat AGL17-like genes are not 327	

expressed (Figure 5), a number of them are upregulated in late stages of stripe rust infection 328	

and in response to heat stress (Figure 6B, C). Another three AGL17-like genes were found to 329	

be upregulated in some stages of anther and grain development, a pattern unusual for AGL17-330	

like genes (Figure 5A). This diversity of expression patterns and putative functions adds to 331	

the complex evolution of AGL17-like genes, as genes from this subfamily have been 332	

implicated in various different functions including root development, flowering time control, 333	

tillering, stomata development and stress response [54, 66-69]. 334	

OsMADS30- and AGL17-like genes might be involved in other stress responses as well and 335	

might be good candidates to investigate cultivar-specific resistance to biotic and abiotic 336	

stresses. 337	

 338	
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Dynamic evolution of MIKC-type MADS-box genes in subtelomeric regions 339	

The cause for the expansion of the FLC-, AGL17- SEP1- OsMADS30-like subfamilies might 340	

be the chromosomal position of their genes. Subtelomeric distal chromosome segments have 341	

been previously described as being targets of recombination events, and many fast evolving 342	

genes lie within these evolutionary hot spots [46, 70]. In wheat specifically, genes related to 343	

stress response and external stimuli, notably traits with a high requirement for adaptability, 344	

have been found to be located in distal chromosomal segments [7]. In contrast, genes related 345	

to photosynthesis, cell cycle or translation, e.g. genes with involved in highly conserved 346	

pathways are enriched in proximal chromosomal segments [7].  347	

This notion is supported by our findings: genes of the larger wheat MIKC-type subclades 348	

tend to be located in subtelomeric segments (Figure 4, Figure 3). Remarkably, many of these 349	

expanded clades do control traits that are important for adaptation to different environments. 350	

For example, AGL17-like genes, are involved in root development and stress response and 351	

FLC-like genes, determine flowering time. On the other hand, smaller MIKC-type subclades 352	

involved in highly conserved developmental functions, such as AP3/PI- or AG/STK-like 353	

genes, which control reproductive organ identity, tend to be located more in central 354	

chromosomal segments (Figure 3). The higher prevalence of duplication events in 355	

subtelomeric chromosomal segments might thus have caused the expansion of certain 356	

subclades, possibly facilitating rapid adaptation to different environmental conditions. On the 357	

other hand, there might be an evolutionary advantage for wheat MIKC-type subclades with 358	

highly conserved functions to be located in proximal chromosomal positions: this way e.g. 359	

developmentally detrimental gene dosage variations are minimized. 360	

 361	

The high prevalence of gene duplications in subtelomeric segments most likely also led to a 362	

higher proportion of truncated genes lacking either the MADS- or K-box (Figure 3A). This 363	
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might render the encoded protein functionally impaired, as suggested earlier for SEP1.2A 364	

(WLHS1A), which lacks a K-domain and shows no protein-protein interactions in vivo [71] 365	

(Figure 1, Table 1). However, MIKC-type MADS-domain proteins without a K-domain 366	

might theoretically still be able to bind DNA [13] and compete with full-length MIKC-type 367	

proteins for target sites, thus functioning as transcriptional inhibitors. On the other hand, 368	

genes lacking the MADS-box but encoding a K-domain might act in a dominant-negative 369	

manner by binding and sequestering other MADS-domain proteins [38, 39]. Evidence that 370	

dominant-negative versions of transcriptions factors can be evolutionary and developmentally 371	

important comes from basic helix-loop-helix proteins [72, 73]. We found OsMADS30-like 372	

wheat genes, encoding for only MADS, only K and an unusual combination of MADS and 373	

SRP54 domain expressed ubiquitously (Figures 5A, 6A), hence deviating from canonical 374	

Bsister expression in the flower and again hinting towards a possible neofunctionalization of 375	

OsMADS30-like genes during wheat evolution.  376	

 377	

Conclusions 378	

MIKC-type MADS-box genes are hugely important for wheat development and hence bear 379	

immense potential for the improvement of this economically highly relevant crop. Our data 380	

indicate that MADS-box gene duplications might have been crucial for increasing the 381	

adaptability of wheat to different environmental conditions as well as for fine-tuning 382	

quantitative traits by gene duplication. By thoroughly characterizing the entire complement of 383	

wheat MIKC-type MADS box genes, we provide the basis for the development of markers 384	

for future breeding efforts as well as for the identification of gene-editing targets to improve 385	

wheat performance. Further, we frequently observe possible neofunctionalization, a 386	

requirement for understanding the emergence of new traits during evolution. 387	

388	
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Methods 389	

 390	

Sequence search and annotation of MIKC-type MADS-box genes 391	

Wheat coding sequence (CDSs) predictions, refmap comparison between IWGSC and The 392	

Genome Analysis Centre (TGAC) and functional annotations of both, high and low 393	

confidence (HC and LC) wheat genes, were downloaded from the IWGSC archive v1.0 394	

(https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.0/) [7] and 395	

the CSS - TGAC comparison was downloaded from 396	

https://opendata.earlham.ac.uk/opendata/data/Triticum_aestivum/TGAC/v1/annotation/ [74]. 397	

Functional annotations were filtered for PFAM identifiers of the MADS- and K-domain 398	

(PF00319 and PF01486), respectively [75]. A total of 439 sequences were identified (see a 399	

list of all gene IDs in Table S1). Of these, 188 sequences had a MADS-box and a K-box (181 400	

HC plus 7 LC), 240 sequences (159 HC plus 71 LC) had only a MADS-box; and 21 had only 401	

a K- -box (16 HC plus 5 LC) (Table S1). Splice variants were excluded and only the first 402	

variant was kept for further analysis, with three exceptions (see Table S2). 403	

All CDSs were translated into amino acid sequences and aligned with all MADS-domain 404	

protein sequences of rice (Oryza sativa, [21]) with MAFFT (L-INS-i algorithm) [76, 77] 405	

using only the MADS-domain of each sequence. Subsequently, a phylogeny was generated 406	

using IQTREE [78, 79]. This allowed distinguishing type I and type II (MIKC-type) MADS-407	

domain proteins (Table S1). All type I MADS-box CDSs were excluded from subsequent 408	

analyses. 409	

We evaluated the predicted gene structure of all genes, assuming a canonical M-I-K-C 410	

domain structure. In cases where either MADS- or K-box were absent from gene predictions, 411	

we compared the sequences with closely related rice and Arabidopsis genes, TGAC gene 412	

predictions and screened the surrounding genomic regions using the NCBI conserved domain 413	
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database [80-83]. In 17 cases gene prediction was repeated with FGENESH+ or 414	

FGENESH_C [84] using rice MADS-box genes of the same clade (Table S4). In one case 415	

(TaAGL17.2A1, TraesCSU01G209900), the TGAC CDS was used instead of IWGSC 416	

prediction, because it encoded for a canonical MIKC structure as compared to the IWGSC 417	

prediction, which comprised a MADS-box. This approach yielded 193 wheat MIKC-type 418	

MADS-box sequences. 419	

In parallel, a BLAST search was carried out by which we identified 8 additional MIKC-type 420	

genes (Table S3) (https://urgi.versailles.inra.fr/blast_iwgsc/) [7, 85]. 421	

Altogether, a total of 201 wheat MIKC-type MADS-box genes were identified (Table 1, 422	

Table S2). 423	

 424	

Maximum likelihood phylogeny of MIKC-type MADS-box genes 425	

Based on the first phylogeny, MIKC-type sequences were sorted into the major grass MIKC-426	

type subfamilies (Table S2) [40]. Afterwards, subfamily alignments of MIKC-type protein 427	

sequences were created using wheat, rice and Arabidopsis protein sequences [24, 42, 43] 428	

using MAFFT (E-INS-i algorithm) [76, 77]. Subfamily alignments were then merged using 429	

MAFFT (E-INS-i algorithm;) [76, 77]. The full-length alignment of all MIKC-type MADS-430	

domain proteins was analyzed with Homo (Version 1.3) [86] to confirm that the sequences 431	

met the phylogenetic assumption of reversible conditions. Individual residues were 432	

subsequently masked with Alistat (Version 1.3) [87], leaving only sites with a completeness 433	

score (Cc, defined as Cc = Number of unambiguous characters in the column / number of 434	

sequences) above 0.5 (a total of 207 sites) (alignment in Supplementary Text 2). 435	

Using the masked protein alignment, a phylogenetic tree was inferred under maximum 436	

likelihood with IQ-TREE [79]. The substitution model was calculated with ModelFinder 437	

(integrated in IQ-TREE; best-fit model: JTT+R5 chosen according to BIC) [78]. Consistency 438	
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of the phylogenetic estimate was evaluated with Ultra Fast bootstraps as well as SH-aLRT 439	

test (1000 replicates each) [88-90]. The resulting treefile was visualized with Geneious 440	

version 11.1 (https://www.geneious.com) (Figure 1) and FigTree version 1.4.4 441	

(http://tree.bio.ed.ac.uk/software/figtree/) (Figure S2). 442	

 443	

Naming of MIKC-type MADS-box genes 444	

We suggest a consistent naming pattern for all MIKC-type wheat MADS-box genes, taking 445	

into account their subfamily association, phylogenetic relationships as well as their 446	

subgenome location (A, B or D). Each gene name starts with an abbreviation for the species 447	

name Triticum aestivum (Ta), followed by the name of the respective Arabidopsis subfamily 448	

(e.g. “SEP1” for SEPALLATA1-like genes, “AGL6” for AGL6-like genes or “BS” for Bsister 449	

genes). The gene names include an A, B or D, indicating the subgenome they are located in, 450	

e.g. TaAGL6B. If more than one triad of homoeologs was found in one subfamily, these were 451	

distinguished by a “.” and consecutive numbers, then followed by the subgenome (e.g. 452	

TaAGL12.1A and TaAGL12.2A). If more than one copy of a gene was present in one 453	

subgenome (inparalogs, e.g. due to tandem duplications or transposition), a number was 454	

added after the letter that indicates the subgenome (prevalent in FLC, SEP1, AGL17 and 455	

Bsister subclades). Hence, the name of the gene with the ID TraesCS7B01G020900 is 456	

TaSEP1.5B1 since it is a SEP1-like gene, and more precisely one of two inparalogs of the B 457	

genome (Figure 1, Table 1, all gene names listed in Table S2).  458	

 459	

Identification of homoeologs 460	

Homoeologous genes were identified by phylogeny (Figure 1, Figure S3A-D). In some cases, 461	

where Ultra Fast bootstraps and SH-aLRT were not high enough to support a clade (above 90 462	

and 75, respectively), synteny and previous classifications were considered [8]. 38 genes 463	
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belonging to the FLC-, Bsister and AGL17-subclades were excluded from the analysis, 464	

because their homoeolog status could not definitely be determined (Table 1, Table 2, Figure 465	

S3). 466	

 467	

Plant cultivation, RNA isolation and RT-PCR  468	

Triticum turgidum cv. Kronos (tetraploid) was used for RT-PCR analysis. Plants were grown 469	

in a greenhouse with no additional lighting at an ambient temperature of 20 to 24 °C until 470	

heading stage. RNA was extracted from the frozen flag leaf tip using QIAGEN® RNeasy 471	

Mini Kit according to manufacturer’s instructions. cDNA was generated with Superscript IV® 472	

Reverse Transcriptase Kit using an oligo dT primer. RT-PCR was carried out with Thermo 473	

Scientific™ Phusion High-Fidelity DNA Polymerase. Primer sequences are listed in 474	

Table S5. 475	

 476	

Expression analysis of MIKC-type MADS-box genes using RNA-seq 477	

RNA-seq data of 193 wheat MADS-box genes was analyzed using 478	

www.wheatexpression.com and http://bar.utoronto.ca/efp_wheat/ [8]. For the remaining 8 479	

genes, which were identified by BLAST, no expression data was available. Developmental 480	

stages depicted in Figure 5 refer to 70 tissues/time points from spring wheat cv. Azhurnaya 481	

[8]. Expression levels were downloaded from www.wheatexpression.com as log2tpm and a 482	

heatmap was generated with heatmapper (heatmapper.ca/expression) [91]. Clustering was 483	

performed with heatmapper using centroid linkage with euclidean distance measure. All 484	

genes, modules and tissues are listed in Tables S6 and S7. 485	
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Figures  

 

Figure 1. Maximum likelihood phylogeny of MIKC-type MADS-domain proteins from 

bread wheat, rice and Arabidopsis. A phylogenetic tree of MADS-domain proteins from 

bread wheat, cultivated rice and Arabidopsis was inferred using IQ-TREE [78, 79]. Wheat 

genes are coloured, rice and Arabidopsis genes are in black. The Arabidopsis genes AGL15 

and AGL18 were included in the phylogeny; however, the AGL15-subfamily is lost in the 

grass lineage [40], therefore no rice or wheat gene clustered with them. OsMADS32-like 

genes are monocot specific [40], hence in this clade there is no Arabidopsis gene.  SH-aLRT 

and Ultrafast bootstrap values are indicated on the branches in %, values equal to 100 are 

designated by a -. Accession numbers of all wheat genes can be found in Table S2, a version 

of the tree with untransformed branches can be found in Figure S2. The tree is unrooted, the 

MIKC* subclade was set as the outgroup.  

 

Figure 2. Number and location of MIKC-type genes. The number of MADS-box genes 

identified per MIKC-type subfamily in Arabidopsis (A), rice (B) and wheat (C) [21, 24]. The 

ratio of MIKC-type gene numbers total and in all subfamilies is shown for wheat to rice 

(black) and wheat to Arabidopsis (grey) (D). In (D) the expected ratio (3:1) is indicated by a 

red line, asterisks mark significant deviation from expected value (χ2 test, p < 0.05).  

All MIKC-type MADS-box genes were mapped to their respective locus in the wheat 

genome in a circular diagram using shinyCircos [92] (E). Subgenomes are indicated by 

different shades of blue (outer track), chromosomal segments are indicated by shades of grey 

(inner track) [7]. Homoeologous genes were inferred by mainly by phylogeny (details see 

Methods) and linked with subfamily-specific colors (inside of circle).  
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Figure 3. Chromosomal distribution of wheat MIKC-type MADS-box genes. The 

proportion of truncated (black) and full-length (white) MIKC-type genes in every 

chromosome segment is shown in a bar diagram (A). A schematic overview of the 

chromosome indicates the different segments, R1 and R3 (dark grey), R2A and R2B (light 

grey) and C (white) (B). The location of all genes belonging to each MIKC-type subfamily is 

shown as percentage of chromosome length (C). Segments have been averaged over all 

chromosomes, segment lengths according to [7]. 

 

Figure 4. Distribution of MIKC-type genes to subtelomeric or central chromosome 

segments. The number of genes per MIKC-type subclade was plotted against the fraction of 

genes located in central chromosome segments (R2a, R2b and C) and subtelomeric segments 

(R1 and R3). Subclades are indicated next to data points. Data points for some subfamilies 

are identical (AGL6 and OsMADS32; SVP and AP1; PI, AP3 and AGL12; SEP3 and MIKC*).  

 

Figure 5. Expression of MIKC-type MADS-box genes during wheat development. 

Expression analysis was done for all subfamilies using RNA-seq data [8]. A heatmap shows 

expression level of all genes in different subfamilies (columns) and stages/tissues (rows) (A). 

Genes and tissues are listed in Tables S6 and S7, respectively.  

Genes were clustered into different modules according to their expression and mapped to 

subfamilies. Colors indicate different modules: shades of brown indicate ubiquitous 

expression, shades of green indicate expression in the root, shades of blue indicate expression 

in reproductive organs and grey indicates low or no expression during development (B). The 

digits inside the circles indicate the number of genes in the respective module. The clustering 

heatmap with all modules can be found in Figure S4. A schematic representation of a wheat 

plant depicts colors indicating different expression modules (C).  
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Figure 6. Expression of Bsister and AGL17-like genes in response to stress conditions. 

RNA-seq data was analyzed using wheatexpression.com [47]. Bsister gene expression in 

different tissues [8] and in response to infection with Fusarium head blight [93] (A). 

Expression of wheat OsMADS31-like genes (TaBS.2) OsMADS29-like genes (TaBS.1) and 

OsMADS30-like genes (TaBS.4, TaBS.5A4, TaBS.6B1) in root, stem and grain [8] as well as 

spikelets during mock inoculation and infection with Fusarium graminearum after different 

time points is shown as a heatmap.  

AGL17-like gene (1-4) expression in roots and seedling leaves under control conditions (c) 

and after 1 and 6 hours of drought (d), heat (h) and combined drought and heat stress (dh) 

[94] (B).  

Expression of TaAGL17.3D within different root tissues [8] and in leaves under control 

conditions and after infection with stripe rust (Puccinia striiformis) [95] is shown as a bar 

diagram. SEM is indicated as error bars. Data is shown as log2tpm (A, B) or as tpm (C). 

 

Tables 

Table 1. Subfamilies, names and numbers of wheat MIKC-type MADS-box genes.  

A complete list of all wheat MIKC-type genes can be found in Table S2. 

1 asterisk indicates that the number of homeologs could not be determined due to insufficient 

phylogenetic resolution, genes were not included into homoeolog count (Table 2). Details see 

Figure S3. 

2 gene encodes for MADS but not K domain  

3 gene encodes for K but not MADS domain 
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4 number in parentheses indicates a different chromosome for one of the genes; x, genes 

located on more than two different chromosomes  

5 parentheses indicate truncated genes, encoding for either MADS or K domain 

 

Table 2. Groups of homoeologous MIKC-type MADS-box genes in wheat. 

1 according to [7] 

2 % calculated with 201 genes  

3 % calculated with 164 genes  

4 either n:1:n or 0:1:n 

5 see Table 1 and Figure S3 

 

Supplementary Material 

Supplementary Figures 

Figure S1. RT-PCR of two FLC-like wheat genes. Schematic representation of two FLC 

genes and primer binding sites (red arrowheads) (A). Intron size is indicated by dotted line, 

boxes indicate exons, lines indicates introns. Gel images of PCR products and expected 

fragment sizes (B). The sequence of the PCR products was verified using Sanger Sequencing. 

 

Figure S2. Maximum likelihood phylogeny of MIKC-type MADS-domain proteins from 

bread wheat, rice and Arabidopsis, branches not transformed. SH-aLRT and Ultrafast 

bootstrap values are indicated on the branches in %, values equal to 100 are designated by a -. 

The tree is unrooted, the MIKC* subclade was set as the outgroup.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 26, 2019. ; https://doi.org/10.1101/585232doi: bioRxiv preprint 

https://doi.org/10.1101/585232


 

26	
	

  

Figure S3. Maximum likelihood phylogenies of four different MIKC-type subfamilies. 

Subphylogenies of SEPALLATA- (A), Bsister- (B), AGL17- (C) and FLC- (D) like genes 

from Arabidopsis, rice and wheat were generated using protein alignments and IQ-TREE [78, 

79]. AGL6- (A), AP3/PI-(B) and OsMADS32- (C, D)-like genes were used as an outgroup. 

Red and blue triangles indicate truncated genes encoding only for MADS- and K-domain, 

respectively. Black circle indicates gene encoding for a MADS- and SRP54-domain 

(PF00448). Groups excluded from homoeolog analysis are indicated by asterisks.  

 

Figure S4. Cluster expression analysis of wheat MIKC-type MADS-box genes during 

developmental stages. Expression analysis was done for all wheat MIKC-type genes and 

tissue using RNA-seq data from wheatexpression.com [8, 47]. A heatmap shows expression 

levels of all genes in different subfamilies (rows) and stages/tissues (columns). Genes and 

tissues are listed in Tables S6 and S7, respectively. Heatmap and clustering was done with 

heatmapper.com and a cladogram showing the result of the clustering is shown on the left. 

Modules 1 to 17 were assigned and borders indicated by red lines (right). Values represent 

log2tpm.  

 

Figure S5. Expression of wheat Bsister genes during Fusarium head blight infection. 

RNA-seq data was analyzed using wheatexpression.com [8, 47]. Bsister gene expression in 

the donor plant and 4 near-isogenic lines (NIL) under control conditions (c) and Fusarium 

graminearum inoculation (s) (30 and 50 h) is shown as a heatmap [96]. Values represent 

log2tpm. 
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Supplementary Tables 

Table S1. List of all sequences identified by PFAM domain (type I and type II).  

Table S2. List of all MIKC-type MADS-box genes in wheat.   

1 (+) indicates FLC-specific K-box (not PFAM PF01486); (-) TGAC version of this gene 

does have PF01486, IWGSC does not have PF01486 

2 Protein length and molecular weight were determined with the protein molecular weight 

function on bioinformatics.org using conceptually translated CDS.  

3 According to [97] 

4 According to [8] 

5 TGAC identifiers were inferred from refmap comparison between IWGSC and TGAC [7] 

(details see Methods) 

6 identifiers were inferred from refmap comparison between CSS - TGAC [74] (details see 

Methods) 

Table S3. Average distance to the nearest downstream MIKC-type gene in kbp in 

different chromosomal segments. Distances between start points of neighboring MIKC-type 

genes have been calculated and averaged over chromosomal segments. 

Table S4. List of all MIKC-type MADS-box genes predicted during this study. Table 

includes gene name, IWGSC identifier (if available) and chromosome location, PFAM 

domain(s), predicted coding sequence and prediction algorithm and guiding sequence 

FGENESH+ and FGENESH_C predictions are guided by homolog protein or cDNA 

sequences, respectively. 

Table S5. Primer sequences for RT-PCR. 

Table S6. Expression modules and gene numbers for Figure 5A and S3. 

Table S7. Tissues for expression analysis for Figure 5A and S3. 
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Figure 2. Number and location of MIKC-type genes. The number of MADS-box genes identified 
per MIKC-type subfamily in Arabidopsis (A), rice (B) and wheat (C) [21, 24]. The ratio of MIKC-type 
gene numbers total and in all subfamilies is shown for wheat to rice (black) and wheat to Arabidopsis 
(grey) (D). In (D) the expected ratio (3:1) is indicated by a red line, asterisks mark significant 
deviation from expected value (χ2 test, p < 0.05). 	
All MIKC-type MADS-box genes were mapped to their respective locus in the wheat genome in a 
circular diagram using shinyCircos [92] (E). Subgenomes are indicated by different shades of blue 
(outer track), chromosomal segments are indicated by shades of grey (inner track) [7]. Homoeologous 
genes were inferred by mainly by phylogeny (details see Methods) and linked with subfamily-specific 
colors (inside of circle). 	
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Figure 3. Chromosomal distribution of wheat MIKC-type MADS-box genes. The proportion of 
truncated (black) and full-length (white) MIKC-type genes in every chromosome segment is shown 
in a bar diagram (A). A schematic overview of the chromosome indicates the different segments, R1 
and R3 (dark grey), R2A and R2B (light grey) and C (white) (B). The location of all genes 
belonging to each MIKC-type subfamily is shown as percentage of chromosome length (C). 
Segments have been averaged over all chromosomes, segment lengths according to [7].	
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X2_.leaves.shoots_.flag.leaf.sheath_.flag.leaf.sheath_3_reproductive_.5_milk.grain.stage
X2_.leaves.shoots_.Internode..2_.internode_3_reproductive_.5_milk.grain.stage

X2_.leaves.shoots_.peduncle_.peduncle_3_reproductive_.5_milk.grain.stage
X2_.leaves.shoots_.shoot.axis_.shoot.axis_3_reproductive_.5_milk.grain.stage

X2_.leaves.shoots_.flag.leaf.blade..senescence._.flag.leaf.blade_3_reproductive_.7_Ripening
X2_.leaves.shoots_.flag.leaf.blade..senescence._.flag.leaf.blade_3_reproductive_.Dough

X3_.spike_.spike_.spike_3_reproductive_.1_30..spike
X3_.spike_.spikelets_.spikelets_3_reproductive_.1_30..spike
X3_.spike_.awns_.awns_3_reproductive_.2_Ear.emergence

X3_.spike_.glumes_.glumes_3_reproductive_.2_Ear.emergence
X3_.spike_.lemma_.glumes_3_reproductive_.2_Ear.emergence

X3_.spike_.spike_.spike_3_reproductive_.3_Full.boot
X3_.spike_.anther_.anther_3_reproductive_.4_anthesis

X3_.spike_.stigma...ovary_.stigma...ovary_3_reproductive_.4_anthesis
X3_.spike_.awns_.awns_3_reproductive_.5_milk.grain.stage

X3_.spike_.glumes_.glumes_3_reproductive_.5_milk.grain.stage
X3_.spike_.lemma_.glumes_3_reproductive_.5_milk.grain.stage

X4_grain_.grain_.grain.milk.and.soft.dough_3_reproductive_.5_milk.grain.stage
X4_grain_.grain_.grain.milk.and.soft.dough_3_reproductive_.6_Soft.dough

X4_grain_.grain_.grain.hard.dough.and.ripening_3_reproductive_.7_Ripening
X4_grain_.grain_.grain.hard.dough.and.ripening_3_reproductive_.8_Hard.dough

X4_grain_.embryo.proper_.embryo_3_reproductive_.Dough
X4_grain_.endosperm_.endosperm_3_reproductive_.Dough
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Figure 5. Expression of MIKC-type MADS-box genes during wheat development. Expression 
analysis was done for all subfamilies using RNA-seq data [8]. A heatmap shows expression level of 
all genes in different subfamilies (columns) and stages/tissues (rows) (A). Genes and tissues are listed 
in Tables S6 and S7, respectively. 	
Genes were clustered into different modules according to their expression and mapped to subfamilies. 
Colors indicate different modules: shades of brown indicate ubiquitous expression, shades of green 
indicate expression in the root, shades of blue indicate expression in reproductive organs and grey 
indicates low or no expression during development (B). The digits inside the circles indicate the 
number of genes in the respective module. The clustering heatmap with all modules can be found in 
Figure S4. A schematic representation of a wheat plant depicts colors indicating different expression 
modules (C).	
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Figure 6. Expression of Bsister and AGL17-like genes in response to stress conditions. RNA-seq 
data was analyzed using wheatexpression.com [47]. Bsister gene expression in different tissues [8] 
and in response to infection with Fusarium head blight [93] (A). Expression of wheat OsMADS31-
like genes (TaBS.2) OsMADS29-like genes (TaBS.1) and OsMADS30-like genes (TaBS.4, TaBS.5A4, 
TaBS.6B1) in root, stem and grain [8] as well as spikelets during mock inoculation and infection with 
Fusarium graminearum after different time points is shown as a heatmap.  
AGL17-like gene (1-4) expression in roots and seedling leaves under control conditions (c) and after 
1 and 6 hours of drought (d), heat (h) and combined drought and heat stress (dh) [94] (B).  
Expression of TaAGL17.3D within different root tissues [8] and in leaves under control conditions 
and after infection with stripe rust (Puccinia striiformis) [95] is shown as a bar diagram. SEM is 
indicated as error bars. Data is shown as log2tpm (A, B) or as tpm (C). 
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Named by

x1 total full length M2 K3 Chr4 Genomes5

TaMIKC*1 OsMADS68 3 3 0 0 4 ABD this study  -  -

TaMIKC*2 OsMADS63/OsMADS62 3 3 0 0 4 ABD this study  -  -
OsMADS32 TaMADS32 OsMADS32 3 3 0 0 3 ABD this study TaWM16 Paolacci et al. 2007

TaAGL12.1 OsMADS26 3 3 0 0 7 ABD Paolacci et al. 2007 TaAGL32 Zhao T et al. 2006

TaAGL12.2 OsMADS33 3 3 0 0 2 ABD this study  -  -

TaAP1.1 OsMADS14 3 3 0 0 5 ABD Paolacci et al. 2007 VRN1; TaVRT-1 Yan et al. 2003, Fu et al. 2005; Danyluk 2003

TaAP1.2 OsMADS18/OsMADS20 3 3 0 0 2 ABD Paolacci et al. 2007  -  -

TaAP1.3 OsMADS15 3 3 0 0 2 ABD Paolacci et al. 2007 FUL2 Li et al. 2019

TaSVP.1 OsMADS22 3 3 0 0 6 ABD Paolacci et al. 2007  -  -

TaSVP.2 OsMADS55 3 3 0 0 7 ABD Paolacci et al. 2007 TaVRT-2 Kane et al. 2005

TaSVP.3 OsMADS47 3 2 0 1 4 (A)BD Paolacci et al. 2007  -  -

TaSEP1.1 3 2 0 1 4 (A)BD this study TaSEP-1 Paolacci et al. 2007

TaSEP1.2 3 2 1 0 4 (A)BD this study WLHS1; TaSEP-2 Shitsukawa et al. 2007; Paolacci et al. 2007

TaSEP1.3 4 4 0 0 4 AABD this study  -  -

TaSEP1.4 3 3 0 0 7 ABD this study TaSEP-6 Paolacci et al. 2007

TaSEP1.5 4 4 0 0 7 ABBD this study  -  -

TaSEP1.6 OsMADS34 3 3 0 0 5 ABD this study TaSEP-5 Paolacci et al. 2007

TaSEP3.1 OsMADS7/45 3 3 0 0 7 ABD this study WSEP; TaSEP-4 Shitsukawa et al. 2007; Paolacci et al. 2007

TaSEP3.2 OsMADS8/24 3 3 0 0 5 ABD this study TaMADS1; TaSEP-3 Zhao XY et al. 2006; Paolacci et al. 2007
AGL6 TaAGL6 OsMADS6/OsMADS17 3 3 0 0 6 ABD this study TaMADS#12 Murai et al. 1998

TaAG.1 OsMADS58/OsMADS66 3 3 0 0 1 ABD Paolacci et al. 2007 WAG-1 Hirabayashi and Murai 2009

TaAG.2 OsMADS3 3 3 0 0 3 ABD Paolacci et al. 2007 WAG-2 Hirabayashi and Murai 2009

TaSTK.1 OsMADS13 3 3 0 0 5 ABD this study TaAG-3; WSTK Paolacci et al. 2007; Yamada et al. 2009

TaSTK.2 OsMADS21 3 3 0 0 1 ABD this study TaAG-4 Paolacci et al. 2007

TaSOC1.1 3 3 0 0 1 ABD Paolacci et al. 2007  -  -

TaSOC1.5 3 3 0 0 1 ABD this study  -  -

TaSOC1.3 3 3 0 0 4(5) ABD Paolacci et al. 2007 WSOC1 Shitsukawa et al. 2007

TaSOC1.4 3 1 2 0 7(4) A(BD) this study  -  -

TaSOC1.2  - 3 3 0 0 6 ABD Paolacci et al. 2007  -  -

TaAP3.1 3 3 0 0 7 ABD this study WAP3 Hama 2004

TaAP3.2 3 3 0 0 6 ABD this study  -  -

TaPI.1 OsMADS4 3 3 0 0 1 ABD this study WPI-1 Hama 2004

TaPI.2 OsMADS2 3 3 0 0 3 ABD this study WPI-2 Hama 2004

TaBS.1 OsMADS29 3 3 0 0 6 ABD this study TaGGM13; WBSIS Paolacci et al. 2007; Yamada et al. 2009

TaBS.2 OsMADS31 3 3 0 0 2 ABD this study  -  -

TaBS.3 3 3 0 0 7 ABD this study  -  -

TaBS.4 5 5 0 0 3 AABDD this study  -  -

TaBS.5 * 6 2 0 4 x A(AAAA)D this study  -  -

TaBS.6 * 4 0 4 0 2(6) (AABB) this study  -  -

TaBS.7 * 3 2 1 0 1 (B)DD this study  -  -

TaBS.8 * 3 0 3 0 x (ADD) this study  -  -

TaBS.9 * 3 1 2 0 7(3) (AB)D this study  -  -

TaAGL17.1 OsMADS27/OsMADS61 3 3 0 0 2 ABD Paolacci et al. 2007  -  -

TaAGL17.2 5 2 2 1 5 (AA)BD(U) Paolacci et al. 2007  -  -

TaAGL17.4 3 3 0 0 7 ABD this study  -  -

TaAGL17.5 5 5 0 0 7 AABDD this study  -  -

TaAGL17.3 OsMADS57/OsMADS23 3 3 0 0 6 ABD Paolacci et al. 2007  -  -

TaAGL17.6 * 6 3 3 0 7 (B)BBU(UU) this study  -  -

TaAGL17.7 3 2 1 0 1 (B)BD this study  -  -

TaAGL17.8 3 3 0 0 1 ABD this study  -  -

TaAGL17.9 3 3 0 0 1 ABD this study  -  -

TaAGL17.10 3 2 1 0 5 (B)DU this study  -  -

TaAGL17.11 * 10 4 6 0 7(5) (AA)AAB(B)D(DDD) this study  -  -

TaFLC.1 OsMADS37 5 3 2 0 7(3) ABD(DD) this study TaAGL12 Ruelens et al. 2012

TaFLC.2 3 3 0 0 4(5) ABD this study  -  -

TaFLC.3 3 3 0 0 3 ABD this study  -  -

TaFLC.4 4 3 1 0 3 (A)ABD(D) this study TaAGL22, TaAGL33 Appels et al., 2018; Sharma et al. 2017

TaFLC.5 2 2 0 0 3 AD this study  -  -
TaFLC.6 * 3 2 1 0 3 A(B)D this study  -  -

total count 201 164 30 7

1 asterisk indicates that the number of homeologs could not be determined due to unclear phylogenetic resolution, genes were not included into homoeolog count (Table 2). Details see Figure S2.
2 gene encodes for MADS but not K domain 
3 gene encodes for K but not MADS domain
4 number in parentheses indicates a different chromosome for one of the genes; x, genes located on more than two different chromosomes 
5 parentheses indicate truncated genes, encoding for either MADS or K domain

MIKC-type 
subclade

homoeolog 
names rice homolog

SVP 
(StMADS11)

OsMADS1

OsMADS5

OsMADS51
FLC

OsMADS30

ABS    
(GGM13)

 SEP1

 SEP3

SOC1         
(TM3)

OsMADS56

OsMADS50

Table 1. Subfamilies, names and numbers of wheat MIKC-type MADS-box genes. 
A complete list of all wheat MIKC-type genes can be found in Table S2.

AGL17

PI              
(GLO)

OsMADS25

OsMADS59

 -

Alternative gene 
names from 

previous 

publications6

Reference Alt Name
gene location

AG/STK

MIKC*

gene number

AP3            
(DEF)

OsMADS16

AGL12

AP1         
(SQUA)
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homoeologous group (A:B:D) all wheat genes1 # of groups # of genes % genes2 # of groups # of genes % of genes3

1:1:1 35.8% 42 126 62.7% 40 120 73.2%

n:1:1/1:n:1/1:1:n 5.7% 4 17 8.5% 2 8 4.9%

1:1:0/1:0:1/0:1:1 13.2% 1 2 1.0% 6 12 7.3%

other ratios4 8.0% 4 18 9.0% 3 10 6.1%

orphans/singletons 37.1% 0 0 0.0% 1 1 0.6%

excluded5  -  - 38 18.9%  - 13 7.9%
99.8% 201 100.0% 164 100.0%

2 % calculated with 201 genes 
3 % calculated with 164 genes 
4 either n:1:n or 0:1:n

wheat MIKC MADS (all) wheat MIKC MADS (full-length only)

Table 2. Groups of homoeologous MIKC-type MADS-box genes in wheat.

1 according to Appels et al., 2018

5 see Table 1, Figure S2 and Methods
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