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Abstract 

We assessed how synchronous speech listening and lip reading affects speech recognition in acoustic noise. In simple audiovisual 

perceptual tasks, inverse effectiveness is often observed, which holds that the weaker the unimodal stimuli, or the poorer their 

signal-to-noise ratio, the stronger the audiovisual benefit. So far, however, inverse effectiveness has not been demonstrated for 

complex audiovisual speech stimuli. Here we assess whether this multisensory integration effect can also be observed for the 

recognizability of spoken words. 

To that end, we presented audiovisual sentences to 18 native-Dutch normal-hearing participants, who had to identify the spoken 

words from a finite list. Speech-recognition performance was determined for auditory-only, visual-only (lipreading) and auditory-

visual conditions. To modulate acoustic task difficulty, we systematically varied the auditory signal-to-noise ratio. In line with a 

commonly-observed multisensory enhancement on speech recognition, audiovisual words were more easily recognized than 

auditory-only words (recognition thresholds of -15 dB and -12 dB, respectively). 

We here show that the difficulty of recognizing a particular word, either acoustically or visually, determines the occurrence of 

inverse effectiveness in audiovisual word integration. Thus, words that are better heard or recognized through lipreading, benefit 

less from bimodal presentation. 

Audiovisual performance at the lowest acoustic signal-to-noise ratios (45%) fell below the visual recognition rates (60%), 

reflecting an actual deterioration of lipreading in the presence of excessive acoustic noise. This suggests that the brain may adopt 

a strategy in which attention has to be divided between listening and lip reading. 
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Introduction 

Speech is a complex, dynamic multisensory stimulus, characterized by 

both an auditory and a visual information stream. Congruent 

information of the sensory modalities (i.e. spatial and temporal 

coincidence of the sensory streams, and their meanings) is integrated in 

the brain [1,2] to form a coherent, often enhanced, percept of the 

common underlying source [3]. Indeed, additional synchronous visual 

information (i.e. speech-reading/lipreading) has a positive impact on 

speech perception, and audiovisual speech recognition in acoustic noise 

is substantially better than for auditory speech alone [4–15]. 

Audiovisual integration in general, has been the topic of a variety of 

behavioral and electrophysiological studies, involving rapid eye-

orienting to simple peripheral stimuli [16,17], spatial and temporal 

discrimination of audiovisual objects [18–20], and the integrative 

responses of single neurons in cats and monkeys [21–23]. Three main 

principles have been shown to govern the mechanisms of multisensory 

integration: i. spatial alignment of the different sources, ii. temporal 

(near-)synchrony, and iii. inverse effectiveness. The latter holds that 

multisensory enhancement strongly increases for poorly perceptible uni-

sensory signals, for example in the presence of acoustic background 

noise or visual distracters [3]. Although these principles have mostly 

been demonstrated at the neurophysiological level of anesthetized 

experimental animals (for review, see [3]), several studies on 

audiovisual saccadic eye movements in humans or on manual reaction 

times in macaques and humans [24], have revealed systematic 

modulations of the effects of audiovisual congruency and inverse 

effectiveness that corroborate the neurophysiological data [16,25,26]. 

In this study, we focus on whether the phenomenon of inverse 

effectiveness can also be applied to speech perception. This is not a 

trivial extension of the classical audiovisual integration studies, as the 

underlying speech-related sensory signals are complex and dynamic 

signals, requiring advanced (top-down) neural processing within the 

auditory and visual systems. One way of studying the presence of 

inverse effectiveness in the perception of audiovisual speech stimuli is 

by adding background noise [11,15,27], which effectively changes the 

saliency of the auditory stimulus. By doing so, earlier studies have 

suggested an absence of inverse effectiveness, as at low unimodal 

performance scores, the audiovisual enhancement decreases. The 

principle of inverse effectiveness has also been studied by quantifying 

the differences in unimodal word-recognition performance scores across 

(groups of) subjects [7,15,28,29], however, outcomes were not 

consistent. To our knowledge, the effect of the visual or auditory 

recognizability of words (irrespective of background noise) on the 

presence or absence of inverse effectiveness has not been studied. For 

example, if certain words would be simply more salient than other 

words, these might be better heard or visually recognized over a large 

range of noise levels. If the principle of inverse effectiveness would 

hold at the word level, the highly-salient words should benefit less from 
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bimodal presentation than the less salient words. To study this 

possibility, we determined how well words can be recognized by 

listening and/or lipreading under noisy listening conditions in normal-

hearing subjects. 

 

Results 

Overview 

Eighteen normal-hearing subjects had to identify 50 words occurring in 

155 unique five-word sentences, by selecting the words they recognized 

(ten-alternative forced choice) on a screen. The speech material was 

based on the Dutch version of the speech-in-noise matrix test developed 

by Houben and colleagues [30] (see Methods on the construction of the 

speech material). The words were presented in acoustically-only (A-

only), visual-only (V-only) or bimodal (AV) blocks. An acoustic 

background noise was played in the A-only and AV conditions at five 

signal-to-noise ratios. 

Lip reading 

We will first describe the lipreading abilities (V-only). These were 

quantified for every subject (n=18) and every word (n=50) as the 

number of correct responses, z, divided by the number of presentations, 

N, i.e. the correct scores (Fig. 1A) in the V-only block. The correct 

scores varied both across words and subjects from perfect (i.e. 18 

correct responses to 18 presentations, e.g. for the word ‘vijf’ by subject 

S2), to around chance level (0.1, e.g. a score of 0 correct responses for 

18 word presentations for the word ‘telde’ presented to subject S8). 

Notably, some words were easily correctly identified by almost all 

subjects (e.g. 'Mark'), while others were near-never identified ('telde') 

by anyone. Similarly, some subjects were perfect lip-readers with 

correct scores for all words near 1.0 (e.g. subject S14), while subject 

S13, as an extreme case, could hardly identify any words via lipreading. 

As the realizations of the visual correct scores were quite noisy (as 

apparent in the jittery pattern in Fig. 1A), the estimates for the mean 

correct scores for each word and subject separately (not shown here) 

were quite uncertain. We therefore determined the visual lipreading 

recognition rates for words, ρV,w,, and for each subject, ρV,s by fitting 

the following function:  

 

F𝑉(ρ𝑉,𝑤 , ρ𝑉,𝑠) = ρ𝑉,𝑤 × ρ𝑉,𝑠 [1] 

 

to all correct and incorrect responses from all V-only trials (see 

Methods for details). This yields 18 visual recognition rates for subjects, 

V,s, and 50 visual recognition rates for words, V,w. Multiplication of 

these rates assumes that they were independent, and thus separable from 

each other. This assumption seems to hold, at least qualitatively, when 

looking at the correct scores for each word and subject (cf. Fig. 1A and 

Fig. 1B, see also Methods for a more quantitative approach). This 

procedure smoothened the recognition rate matrix (Fig. 1B), and 

decreased variability in the estimates (as expressed by the small 95%-

HDI in Fig. 1C/D). This function also reduced the number of variables 

from 900 (number of subjects multiplied by number of words) to 68 

(number of subjects plus number of words). These features enable a 

more practical comparison to the other, A-only and AV conditions, to 

be introduced later on. 

Moreover, the recognition estimates are in line with the correct-score 

data. Words were generally easily recognized though lipreading (Fig. 

1D, mean V,w = 0.77), but there was considerable variability in visual 

recognizability across words: many words were identified easily (e.g. 

mean V,boten = 0.99), while others were barely recognizable (e.g. mean 

V,telde = 0.03). Also the ability of subjects to lipread was relatively high 

on average (Fig. 1C, mean V,s = 0.78). However, there was a 

considerable range in lipreading ability. The best lip-readers could 

recognize ~100% of the easily-identified words (mean V,S14 = 1.00), 

while the worst performer could at best recognize ~15% correctly 

(mean V,S13 = 0.15). The large variability in visual recognition rates 

across words and subjects provides a potential way to determine how 

speech-reading performance affects speech-listening, when both 

auditory and visual speech-recognition cues are presented 

synchronously. 

Speech listening 

In the A-only block, subjects identified words by listening to the audio 

recordings of sentences (without visual feedback from the lips). A 

stationary masking noise was played at 65 dB SPL, while the sentences 

were played at an SNR of -21, -16, -13, -10 or -5 dB. The average word 

recognition rate was ~50% across all SNRs and subjects (Fig. 2A-E). 

Overall listening performance for SNRs lower than -10 dB was worse 

than lipreading performance (cf. amount of red in Fig. 1A vs. blue in 

Fig. 2A-E). In contrast to lipreading, listening performance was quite 

similar across subjects (Fig. 2A-E). This small variability across 

listeners might be expected, as all listeners were normal-hearing, and 

were therefore likely to understand the speech equally well. 

Fig. 1. Lip reading. A) Visual recognition scores. The correct score 

(number of correct responses divided by the number of presentations) 

is shown separately for every word and subject (900 entries) for the V-

only condition. The correct scores and rates have been ordered by the 

recognition rates of subjects on the abscissa, and of words on the 

ordinate from low-left to high-right. Color codes for correct score or 

rate, from dark blue = 0 to white = 0.5 to dark red = 1. B) Visual 

recognition rates (Eqn. 1). Same layout as in A. V-only speech 

recognition rates for C) subjects and D) words. Rates were ordered 

from low-left to high-right. Open circles indicate the mean of the 

estimated rate. Gray patch indicates the 95% Highest Density Interval 

(HDI).  
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Typically, SNR had a strong influence on the ability to recognize the 

words through listening (Fig. 2A to 2E, from low to high SNR, the 

correct scores improve from almost 0 to near perfect). To quantify this, 

we estimated the SNR for which the recognition rate was 50%, i.e. the 

auditory speech-recognition threshold, A, by fitting the parameters of a 

logistic psychometric function FA for every word (with a 

parametrization as mentioned in [31]): 

 

F𝐴(𝑆𝑁𝑅, 𝜃𝐴, 𝜔𝐴) = (1 +  𝑒
−

2 𝑙𝑛 9
𝜔𝐴

 (𝑆𝑁𝑅−𝜃𝐴)
)−1 

[2] 

 

with A the auditory recognition width from 10 to 90% performance (in 

dB). The width (conversely, the slope) of the psychometric curve, A, 

did not vary substantially across words or subjects. Therefore, only one 

value was estimated, which was on average 7.1 dB, 95% HDI: 6.8 - 7.4 

dB. As the correct scores did not vary appreciably across subjects, we 

pooled over subjects, to obtain 50 auditory recognition thresholds, one 

for each word (see also Methods). To exemplify this, we take a look at 

the word ‘Pieter’ (Fig. 2F). This word was easily recognized by all 

subjects at the SNR of -5 dB, leading to a 100% recognition score. In 

contrast, “Pieter” was almost impossible to identify at the lowest SNR 

of -21 dB, when subjects identified the word presented in 10% of the 

cases (chance-level). By fitting a psychometric curve through the data, 

we obtained a speech-listening threshold for this word at -11.5 dB (Fig. 

2F, vertical grey bold line). Auditory speech-recognition thresholds for 

each word (Fig. 2G) varied over a 10-dB range, from the best-

recognizable word (mean A,zware = -16.7 dB) to the hardest-to-recognize 

word (mean A,goede = -6.6 dB), with an average threshold of -12.1 dB. 

Audiovisual speech recognition 

In the AV-condition, subjects identified words by listening to and by 

lipreading the audiovisual recordings of sentences. The noise was 

played at 65 dB, while the sentences were played at an SNR of -21, -16, 

-13, -10, or -5 dB. The presentation of congruent visual feedback clearly 

aided recognition performance, as the correct scores (Fig. 3A-E) were 

higher than for the A-only condition (cf. Fig. 2A-E). Also, in contrast to 

the speech listening scores (cf. Fig. 2A-E) and more in line with 

lipreading performance (Fig. 1A-B), the AV scores not only varied over 

words, but also across subjects (which is visible in the pattern of correct 

scores in Fig. 3A). 

We quantified AV performance by a fitting a function FAV that 

combines the characteristics of the eqns. 1 and 2 for the unimodal 

performances: 

 
F𝐴𝑉(𝑆𝑁𝑅, 𝜃𝐴𝑉 , 𝜔𝐴𝑉, ρ𝐴𝑉,𝑤 , ρ𝐴𝑉,𝑠) = 

(1 − ρ𝐴𝑉,𝑤 × ρ𝐴𝑉,𝑠) × (1 + 𝑒
−

2 𝑙𝑛 9
𝜔𝐴𝑉

 (𝑆𝑁𝑅−𝜃𝐴𝑉)
)

−1

+ ρ𝐴𝑉,𝑤 × ρ𝐴𝑉,𝑠 

[3] 

  

with the audiovisual recognition threshold, AV describing the logistic 

SNR dependence, and two audiovisual recognition rates AV,w and 

AV,s , defining the minimum performance level in the AV condition 

(i.e. for SNR = −∞) for words and subjects, respectively. Like for the 

Fig. 2. Speech listening. Auditory word-recognition scores. A-E) The correct score (number of correct responses divided by the number of 
presentations) is shown separately for every word and subject (900 entries) for each of the SNRs of -21, -16, -13, -10 and -5 dB. The correct scores 
have been ordered by the average V-only scores of subjects on the abscissa, and A-only scores of words on the ordinate. Color codes for correct score, 
from blue = 0 to white = 0.5 to red = 1 (see color bar in Fig. 1). F) Correct scores and psychometric fit for the word ‘Pieter’ as a function of SNR, 
averaged across all subjects. Open squares indicate the measured correct scores. Blue shading denotes credible fits (see Methods). Vertical bold grey 
line indicates the average of likely recognition thresholds. G) A-only speech recognition thresholds, ordered from high-left to low-right. Note that a lower 
threshold indicates better performance. Open circles indicate means of the estimated thresholds, gray patch indicates the 95% HDI.  
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A-only condition, one value of the width was estimated for all subjects 

and words (this width was on average 10.5 dB, 95% HDI: 9.5 - 11.4 

dB). The audiovisual speech thresholds were determined for words 

alone (Fig. 3F), in line with the auditory speech thresholds. The 

thresholds varied over a ~21 dB range (from mean A, Tom = -27.6 dB to 

mean A,goede = -6.4 dB), with an average threshold of -14.7 dB. The 

subjects' AV recognition rates (Fig. 3G) varied from almost negligible 

(chance) to near-perfect (from mean AV,S13 = 0.07 to mean AV,S14 = 

0.99), with an average rate around 0.63. The AV recognition rates for 

words (Fig. 3H) varied over a similar range (from mean AV,tekent = 0.09 

to mean AV,Anneke = 0.98), with an average rate around 0.71. There was 

considerable uncertainty in the estimation of the word AV rates (e.g., 

the widest 95%-HDI = 0.02-0.95 for the word ‘Tom’), but in general the 

95% HDIs for all other parameters were narrow. 

Audiovisual enhancement 

The audiovisual parameters from eqn. 3 are basic descriptors for the 

audiovisual performance, from which we can derive the audiovisual 

enhancement by comparing the results to the unimodal parameters from 

eqns. 1 and 2. For the audiovisual threshold, the comparison to the 

auditory threshold indicates how much the SNR can decrease when the 

visual modality is added, without affecting performance. The change in 

threshold, AV, relative to the auditory threshold, was thus estimated 

by rewriting AV in eqn. 3 as: 

 

𝜃𝐴𝑉 = 𝜃𝐴 + ∆𝜃𝐴𝑉 [4] 
 

Typically, the audiovisual recognition thresholds were lower (i.e. better) 

than the auditory recognition thresholds (Fig. 4A), by on average -1.3 

dB. This means that the threshold is typically reached at lower SNRs 

when people speech-read and listen at the same time. The threshold for 

35 words improved in the AV condition (95%-HDI lay below 0 dB), 

while for 15 words there was no difference (95%-HDI included 0 dB).  

Similarly, the minimum performance level in the AV condition is given 

by multiplying the recognition rates for words and subjects:𝐴𝑉,𝑤 ×

𝐴𝑉,𝑠. This measure quantifies the performance level in the absence of 

an auditory signal (i.e. when the SNR approaches −∞). In case there 

really is no auditory signal, one might expect that the minimum 

audiovisual performance level, given by the rates, would equal the 

visual performance rate. This, of course, only holds if the stimulus 

parameters fully determine the subject’s performance levels, and if non-

stimulus factors, such as task or block design, are irrelevant. We tested 

this prediction by determining the difference in audiovisual and visual 

rates for words and subjects: 

 

{
𝐴𝑉,𝑤 = 𝑉,𝑤 + ∆𝐴𝑉,𝑤

𝐴𝑉,𝑠 = 𝑉,𝑠 + ∆𝐴𝑉,𝑠

 
[5] 

 
On average, there was no difference in recognition rates for words (Fig. 

4B), as the difference values scattered around 0 for most words. In 

contrast, the subjects' ability to lipread in the AV condition (as reflected 

by the subjects’ recognition rate) was poorer than in the V-only 

condition (Fig. 4C). The rates for all subjects dropped (mean  = -0.2, 

all 95% HDI < 0). This indicates that, on average, audiovisual 

performance dropped below the V-only performance scores, when poor 

auditory SNRs caused speech-listening to deteriorate completely. 

As these last points are important, we will restate them. First, the AV 

threshold is lowered, making it easier to recognize words at a given 

Fig. 3. Audiovisual speech recognition. Audiovisual word-recognition scores. A-E) The correct score (number of correct responses divided by the 
number of presentations) is shown separately for every word and subject (900 entries) for each of the SNRs of -21, -16, -13, -10 and -5 dB. The correct 
scores have been ordered by the average V-only scores of subjects on the abscissa, and of words on the ordinate. Color codes for correct score, from 
blue = 0 to white = 0.5 to red = 1 (see color bar in Fig. 1). F) AV speech-recognition thresholds, G,H) AV recognition rates for words and subjects, 
ordered from low-left to high-right. Note that a lower threshold indicates better performance. Open circles indicate means of the estimated thresholds, 
gray patch indicates the 95% HDI.  
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SNR. This effectively yields an audiovisual enhancement to speech 

listening (Fig. 4A). Second, words are recognized through lipreading at 

equal levels in both V-only and AV conditions (Fig. 4B). Third, 

somewhat surprisingly, the lipreading ability of subjects is 

impoverished in the AV condition (Fig. 4C). This suggests that task 

constraints (i.e. being in an AV condition vs. in a V-only condition) 

have a significant influence on speech recognition performance, even 

when stimulus parameters are equivalent (i.e. only a visual, no auditory 

signal). 

Probability summation 

Next, we qualitatively compared the AV condition with a model in 

which audiovisual integration is merely a result of statistical summation 

rather than of true neural integration. Finding an improved performance 

(i.e. better speech recognition) in the AV condition is not automatic 

evidence that the brain integrates the auditory and visual inputs. Indeed, 

having both modalities available, rather than one, automatically 

increases the probability of stimulus recognition. In a model of 

probability summation, participants recognize a word from either the A-

only or the V-only condition, which are considered independent 

processing channels. The probability of word recognition in the 

presence of the two independent, non-interacting, modalities is given 

by: 

𝑃𝑠𝑢𝑚 =  1 − 𝑃𝑓𝑎𝑖𝑙 = 𝑃𝐴 + 𝑃𝑉 − 𝑃𝐴 × 𝑃𝑉  [6] 

 

where Psum is the probability to successfully recognize a word according 

to the summation model, PA is the probability to recognize a word in the 

A-only condition, and PV is the probability of recognizing a word in the 

V-only condition. Both 𝑃𝐴  and 𝑃𝑉  were estimated from eqns. 1 and 2, 

but were not free parameters of the probability summation model. In 

order to test how well this model performs for various unimodal 

stimulus strengths, we split the data in four groups (Fig. 5), as a first, 

simple approximation, consisting of poor or good lipreading abilities 

(recognition rate below or above the mean, V,w = 0.77, respectively) 

and poor or good auditory thresholds (threshold above or below the 

mean, A = -12.1dB, respectively). Note that there is a weak correlation 

between the speech-listening threshold and lipreading recognition rate  

Fig. 4. Audiovisual speech recognition. Audiovisual word-recognition scores. A-E) The correct score (number of correct responses divided by the 
number of presentations) is shown separately for every word and subject (900 entries) for each of the SNRs of -21, -16, -13, -10 and -5 dB. The correct 
scores have been ordered by the average V-only scores of subjects on the abscissa, and of words on the ordinate. Color codes for correct score, from 
blue = 0 to white = 0.5 to red = 1 (see color bar in Fig. 1). F) AV speech-recognition thresholds, G,H) AV recognition rates for words and subjects, 
ordered from low-left to high-right. Note that a lower threshold indicates better performance. Open circles indicate means of the estimated thresholds, 
gray patch indicates the 95% HDI.  
 
 

Fig. 5. Audiovisual speech recognition varies with unimodal 

saliency. Psychometric curves were determined (eqn. 1-3) from all data 

divided across 4 groups differing in unimodal performances: visual 

recognition rate A,B) larger than 0.77 and C,D) smaller than 0.77; and 

an auditory threshold A,C) larger than and B,D) smaller than -12.1dB. 

Blue – A-only; red – V-only; green – AV; grey – probability 

summation. Dashed lines depict the mean (A and V), patches denote 

the 95% HDI interval. N is the number of subject-word combinations 

for each group. 
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at the word level; r = -0.39, 95%-HDI = -0.63 to -0.15, so that each 

group contains a slightly different number of subject-word 

combinations. 

Despite the differences in unimodal performance, the best-fit 

performance curves (according to eqn. 1-3) for each of those groups 

followed a similar pattern. Auditory performance (Fig. 5 – blue) 

degrades as the signal-to-noise ratio decreases; degradation is worse for 

the words with poor auditory thresholds (Fig. 5A,C). Visual 

performance (Fig. 5 – red) is better than auditory performance for a 

larger range of SNRs if the visual word recognition rate is better (Fig. 

5A,B). Notably, for all groups, audiovisual performance (Fig. 5 – green) 

is never worse than auditory performance; a clear audiovisual 

enhancement relative to auditory performance alone is present for a 

large range of SNRs. While audiovisual performance is typically also 

better than visual performance, at very low acoustic SNRs, the 

multisensory performance tends to be worse than lipreading 

performance (Fig. 5, the green curves drop below the red lines). 

Notably, the benchmark probability summation model can describe the 

audiovisual data quite well, at least qualitatively (Fig. 5 – grey). This 

model exhibits unimodal-like performance whenever either unimodal 

recognition abilities vastly outperforms the other, and shows maximum 

enhancement when the visual and auditory performances are equal. As 

the audiovisual performance was well described by probability 

summation, we did not attempt to fit other models exhibiting 

enhancements [27,29]. 

Inverse effectiveness – noise level 

To test whether the multisensory data adhered to the principle of inverse 

effectiveness, we first determined the influence of SNR, as a measure of 

auditory stimulus intensity, on the magnitude of the audiovisual 

enhancement. For this purpose, we determined the audiovisual 

enhancement as the difference between the average best-fit audiovisual 

and auditory curves (Fig. 5, green and blue). The shape of audiovisual 

enhancement is largely similar across the four groups. (Fig. 6, blue), 

and indicates 1) that auditory recognition performance improves by 

adding the visual information especially for low SNRs, and 2) the 

highest enhancement occurs at high to intermediate noise levels (SNR 

between -13 and -20 dB). For lower SNRs, enhancement decreases 

slightly, so in the strict sense, the principle of inverse effectiveness does 

not seem to hold for this data set [27]. 

We can also express the audiovisual enhancement relative to the 

benchmark model of statistical summation. For all 4 groups, the 

probability summation model resembles AV speech recognition quite 

well (Fig. 6; black lines close to 0). However, there is a slight 

enhancement over the model at intermediate SNRs (maximum 

enhancements of 0.03 to 0.06 at SNRs from -12.2 to -15.2 dB), and a 

slight deterioration at the lowest SNRs (maximum deterioration of -0.04 

to -0.10 at an SNR of -21 dB).  

Inverse effectiveness – word saliency and subject performance 

Finally, we tested whether multisensory enhancement correlates 

negatively with unisensory responsiveness (i.e. A-only thresholds, V-

only word and subject recognition rates; rather than stimulus intensity, 

i.e. SNR), as predicted by the principle of inverse effectiveness. To that 

end, we determined the multisensory enhancement as the difference in 

recognition probability between the audiovisual and either the auditory, 

Fig. 6. Audiovisual enhancement as a function of SNR. A-D) The 

average audiovisual enhancement, expressed as probability correct, as a 

function of SNR, compared to speech-listening only (blue) and the 

probability summation model (black). 

 

 

  
 

Fig. 7. Inverse effectiveness. The audiovisual enhancement over unisensory responses (as defined in the text) as a function of A) auditory threshold, 
B) visual word recognition rate, C) visual subject recognition rate. Note that the x-axis is inverted in A). Black lines indicate the best-fit multiple 
regression line for the independent variable of interest, with an intercept determined by the median of the other variables. Dashed lines indicate the 
maximum enhancement possible (1.0 - unisensory performance, for the given condition). Dot size and color in A) and B) denote the cross-sensory 
performance level as indicated by the color bars. 
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𝐸𝐴𝑉−𝐴, or visual, 𝐸𝐴𝑉−𝑉 , stimulus, averaged across SNR, for every word 

and subject. The slope of the relationship between multisensory 

enhancement and auditory thresholds or visual recognition rates, 

respectively, was determined through multiple linear regression 

analysis: 

{
𝐸𝐴𝑉−𝐴 = 𝛽0 − 𝛽1𝜃𝐴 + 𝛽2𝜌𝑉,𝑤 + 𝛽3𝜌𝑉,𝑠

𝐸𝐴𝑉−𝑉 = 𝛽5 − 𝛽6𝜃𝐴 + 𝛽7𝜌𝑉,𝑤 + 𝛽8𝜌𝑉,𝑠
 

[7] 

 

with 𝛽1  the parameter of interest to infer effectiveness of the 

auditory response, and 𝛽7  and 𝛽8  of the visual response for 

words and subjects. The other parameters are included to 

account for confounds such as the effect of the other modality 

(e.g. the audiovisual enhancement over the auditory response 

will be negligible if the visual response is minimal). These 

parameters are an offset to the intercept and reflect the type of 

integration as shown by the audiovisual data (i.e. super-additive, 

additive, sub-additive). Note that for the auditory thresholds, the 

signs are inverted. This ensures that a negative slope would 

actually indicate inverse effectiveness, even though higher 

thresholds indicate a worse response. 

The audiovisual enhancement over the auditory response (𝐸𝐴𝑉−𝐴, 

Fig. 7A) is larger for words with higher auditory thresholds, with 

an effectiveness slope 𝛽1 = −0.036  (95%-HDI: -0.038 to -

0.033). The negative slope suggests that the auditory response to 

each word is inversely effective in driving the multisensory 

response. The magnitude of the enhancement over the auditory 

response increases when a word can be more easily recognized 

through lip-reading (i.e. high visual word recognition rate, dark 

filled dots). This is in line with the observation that the 

multisensory data follow probability summation quite well, 

reflecting an additive type of integration (Fig. 5 and 6). 

Importantly, the observed inverse effectiveness is not an artefact 

due to a ceiling effect, as the auditory response allowed for a 

larger performance benefit (Fig. 7A, dotted line).  
Multisensory enhancement over the visual response follows the same 

principles. Words with a low visual recognition rate were more 

effective at improving the AV response (Fig. 7B), with an effectiveness 

slope 𝛽7 = −0.32  (95%-HDI: -0.34 to -0.29). Notably, even across 

subjects, the poorer lipreaders benefit more from audiovisual 

presentation than excellent lipreaders (Fig. 7C), with an effectiveness 

slope 𝛽8 = −0.41 (95%-HDI: -0.44 to -0.38).  

Discussion 

Overview 

This paper reports the occurrence of inverse effectiveness on the 

recognizability – visually or auditory - of individual words. We 

determined how well words presented in sentences can be recognized 

by normal-hearing subjects through listening and/or lipreading under 

noisy listening conditions. In line with previous research [4–7], we 

found that lipreading improves speech recognition by listening alone 

(Fig. 4A, Fig. 5). However, we also observed that audiovisual 

performance levels fall below lipreading performance for the lowest 

SNR (Fig. 4C, Fig. 5). Furthermore, we found that the largest 

improvements were typically found at intermediate SNRs, rather than at 

the lowest SNRs, which is line with previous research [27]. Although 

this discredits the principle of inverse effectiveness in audiovisual 

speech perception, we did observe inverse effectiveness across 

individual words and subjects (Fig. 7): the data show that the benefit of 

adding cross-modal information increased when a word was poorly 

heard (Fig. 7A), when a word was poorly seen (Fig. 7B), or when the 

subject was a poor lipreader (Fig. 7C). To our knowledge, this has not 

been shown so far.  

Performance in lipreading 

Our data demonstrate considerable variability in lipreading performance 

(Fig. 1), which has been reported and discussed earlier in the literature 

[32]. The average performance levels from the current study are 

relatively high, especially considering that the normal-hearing subjects 

were not specifically trained to lipread. This is consistent with earlier 

findings on word and sentence recognition tasks [32], although more 

recent papers have reported lower values [11,27,29]. Bernstein et al. 

[32] questioned whether it was actually possible for normal-hearing 

subjects to have good lipreading abilities. One possible explanation for 

the high lipreading performance might be the use of the closed-set 

speech-recognition task (i.e. a limited set of words used in the 

behavioral task). However, one would then also expect to observe a 

familiarization or training effect over sessions, which did not occur 

(data not shown). 

Performance in speech listening 

The auditory scores varied mainly across words; subjects could all 

recognize words through listening at an almost equal performance level 

(Fig. 2). Since all participants had normal hearing, and could therefore 

be expected to understand speech equally well, the limited variability 

between subjects corroborated that expectation. The analysis of speech 

recognition performance in the auditory-only condition revealed speech 

reception thresholds of -12.1 dB, which is lower than the threshold of -

8.4 dB obtained from the original version of the Dutch Matrix test [30]. 

Models for audiovisual enhancement 

The behavioral improvement of audiovisual speech perception can be 

modeled in various ways. Typically, AV data are compared to the 

benchmark probability-summation model, in which the auditory and 

visual channels are considered independent, without true multisensory 

neural interactions. This model was the only model considered in this 

study (Eqn. 6, Figs. 5 and 6), as it matched the data closely (Figs. 5 and 

6).  

Rouger and colleagues [29] found that an alternative, optimal-

integration model could better describe their data. In their model, 

spectral-temporal audiovisual cues merge across modalities to optimize 

the amount of information required for word recognition. Our 

audiovisual data in poor lipreading conditions (i.e. visual recognition 

rate for a word is lower than 0.5) compares quite well to the speech-

recognition abilities of the normal-hearing subjects of Rouger et al. in 

the presence of a masking noise (cf. [29] - their Fig. 3D).  

A third model was proposed by Ma and colleagues, in which words 

were regarded as points in a multidimensional space, and word 

recognition becomes a probabilistic inference process [27]. This 

Bayesian model assumes that certain words occur more frequently than 

other words (and are more easily recognized), and it uses this pre-

knowledge (i.e. priors) to explain the recognition scores for all words.  

It is hard to reconcile any of the three models with our observation that 

in low-SNR conditions, multisensory speech recognition is actually 

degraded compared to unimodal lipreading without accounting for non-

stimulus factors affecting audiovisual speech recognition (Figs. 4C and 

5). The aforementioned models do not include a mechanism for divided 

attention between the two modalities [33,34]. In such a scheme, the two 

separate information streams could actually lead to impaired 

performance in conditions in which either of the two signals may be 
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ambiguous or weak. Thus, even though lipreading might provide 

sufficient information to recognize words, people are not able to divert 

their attention away from the auditory stream, despite the absence of a 

potential signal in that information stream. 

Inverse effectiveness 

We tested whether the principle of inverse effectiveness also holds in 

audiovisual speech recognition by: i) modulating the acoustic signals re 

background noise, ii) by investigating each subject’s lipreading ability, 

and iii) by comparing to auditory and/or visual recognizability of words. 

First, in line with several laboratory studies of multisensory integration 

using simple sensory stimuli (e.g. white noise bursts and LED flashes) 

[16–23,25,26], a lower auditory SNR typically induced stronger 

multisensory enhancement. However, here we report that for the lowest 

SNRs (-21 dB) the enhancement saturated, or even slightly dropped 

(Fig. 6). This differs quantitatively with the data from Ma et al. [27], 

who found a significant enhancement drop for low and high SNRs. 

Qualitatively, however, both studies provided evidence for the lack of 

inverse effectiveness when the acoustic cues were impoverished, due to 

reduced signal levels in the presence of noise. Notably, Bayesian 

modelling of audiovisual enhancement in the study by Ma et al. 

suggested that the largest enhancement shifted to lower SNRs with 

decreasing vocabulary size. As the vocabulary size in the current 

experiment was limited to only 50 words, the model by Ma et al. would 

also predict the largest enhancement at the lowest SNRs.  

Secondly, evidence for inverse effectiveness can be found for individual 

lipreading abilities; worse lipreaders benefitted more from the 

additional auditory information for the audiovisually presented 

sentences (Fig. 7C). Due to ceiling effects, this might appear trivial, as 

the best lipreaders cannot improve their performance further by similar 

amounts as the poorest lipreaders (see [35,36]).  

Finally, inverse effectiveness also plays a role at word-level 

performance, both for vision and for hearing: the hardest to-recognize 

words underwent the strongest audiovisual enhancements relative to the 

unimodal condition (Fig. 7). As such, sensory conditions and perceptual 

responses seemed to be more in line with basic multisensory integration 

results from earlier studies using simple noise bursts and LED flashes 

and even for studies using complex, spectro-temporally modulating 

stimuli [24]. 

Matrix test 

The audiovisual speech material is based on an existing auditory-only 

matrix sentence test for Dutch native speakers [30,37]. It is not 

immediately clear whether the observed results hold specifically for the 

Dutch language, or whether it is immaterial for which language this test 

has been developed. Numerous audiovisual speech recognition tests 

have been developed for the English language [4,9,11,13,27,38]. 

Exceptions are studies for native French [29,39] and Dutch speakers 

[40]. Detailed comparisons are difficult also because the stimuli 

(monosyllables vs words vs sentences) and the subject populations 

(normal-hearing vs hearing-impaired) differ. The use of a standardized 

test, such as the Matrix test, might facilitate comparisons, especially 

between normal-hearing and hearing-impaired listeners, since the 

Matrix test is also well-suited to test the hearing-impaired. Comparisons 

across languages might still be difficult, as, even though an auditory 

Matrix test is available in many languages [30,41–43], the words may 

vary in their spectro-temporal properties and thresholds between 

languages. 

Conclusion 

To conclude, lipreading enhances speech recognition (in line with 

earlier studies); this visual enhancement, however, is affected by the 

acoustic properties of the audiovisual scene. Visual enhancement for 

words that are easily recognized by vision alone is impoverished in high 

acoustic noise conditions. Audiovisual enhancements were highest for 

intermediate signal-to-noise ratios. Inverse effectiveness holds for 

words and subjects, for which the poorest visually/auditory-

recognizable words underwent the strongest cross-modal enhancements.  

 

Materials and Methods 

Participants 

Eighteen native Dutch-speaking adults (mean age = 26 years, range = 
21-40) participated in this study. All gave their informed consent. They 
were screened for normal-hearing (within 20 dB HL range 0.5 - 8 kHz), 
and had normal or corrected-to-normal vision. The experiments were 
carried out in accordance with the relevant institutional and national 
regulations and with the World Medical Association Helsinki Declaration 
as revised in March 2017 (Declaration1). The experiments were approved 
by the Ethics Committee of Arnhem-Nijmegen (project number 
NL24364.091.08, October 18, 2011). 

Audiovisual material 

The speech material was based on the Dutch version of the speech-in-
noise matrix test developed by Houben and colleagues [30] in analogy to 
a Swedish test [41]. In general, a matrix test uses complete sentences 
that are composed from a fixed matrix of words (Table 1). All created 
sentences shared the same grammatical structure (name, verb, numeral, 
adjective, object), but were semantically unpredictable. In principle, a set 
of 105 different sentences could be created. Therefore, the test suffered 
little from potential training confounds when participants were tested 
multiple times. Houben et al. [30], ensured that the occurrence of 
phonemes in their test was similar to standard Dutch. For the audiovisual 
version of the test reported here, we selected a subset of 180 (155 
unique) sentences that were grouped into 9 lists of 20 sentences each. In 
every list, each of the 50 words from the matrix occurred twice, once in 
the first ten sentences and once in the second ten sentences.  

 

Table 1 Words of the Dutch matrix test 

Name Verb Numeral Adjective Object 

Anneke geeft twee dure bloemen 

Christien had drie goede boeken 

Heleen kiest vier groene boten 

Jan koopt vijf grote dozen 

Mark maakte zes kleine fietsen 

Monique tekent acht mooie messen 

Pieter telde negen nieuwe munten 

Sarah vond tien oranje ringen 

Tom vroeg twaalf vuile schoenen 

Willem wint achttien zware stenen 

Bold words indicate an example sentence: ‘Tom telde zes groene dozen’ 
(translation: ‘Tom counted six green boxes’, see Fig.8)  

 

The audio-video material was recorded in a sound-attenuated, semi-
anechoic room, using an Olympus LS-5 audio recorder (24-bit/44.1 kHz 
sampling rate), and a Canon 60D video camera (1280 x 720, 720p HD at 
50 frames per second), respectively. All sentences were spoken by a 
Dutch female speech therapist. If a sentence was not articulated clearly, 
or if there was a sudden movement of the face or eyes, the sentence was 

                                                                 
1  https://www.wma.net/policies-post/wma-declaration-of-

helsinki-ethical-principles-for-medical-research-involving-

human-subjects 
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re-recorded. The audio and video recordings were combined off-line 
using Final Cut Pro X (Mac App OS X Yosemite), and saved in MPEG-4 
format, in H.264 codec. 

We applied audiovisual sentence material that was created on the basis 
of the well-defined audiological Matrix test. With its potential application 
to a multitude of languages [30,41–43], our study facilitates the 
comparison of audiovisual speech-in-noise data across languages, as 
well as between normal-hearing and hearing-impaired listeners.  

Experimental setup 

Audiovisual testing was carried out in the same room in which the 
material had been recorded. Stimulus presentation was controlled by a 
Dell PC (Dell Inc., Round Rock, TX, USA) running Matlab version 2014b 
(The Mathworks, Natick, MA, USA). Participants were seated at a table, 
1.0 m in front of a PC screen (Dell LCD monitor, model: E2314Hf, Dell 
Inc., Texas, USA). Sounds were played through an external PC sound 
card (Babyface, RME, Germany) and presented over one speaker 
(Control Model Series, model number: Control One, JBL, California, USA) 
placed 1.0 m in front of the participant, immediately above the screen 
(30° above the interaural plane). Speaker output was calibrated with an 
ISO-TECH Sound Level Meter (type SLM 1352P) at the position of the 
listener’s head, on the basis of the stationary masking noise.  

Stimuli 

The stimuli contained digital video recordings of a female speaker 
reading aloud the sentences in Dutch (Fig. 8). In the auditory-only 
presentation (A-only), the voice was presented without visual input (i.e. 
black screen, Fig. 8A,C) with added background acoustic noise (Fig. 8B). 
In the visual-only presentation (V-only) the video fragments of the female 
speaker were shown on the screen without an auditory speech signal and 
noise (Fig. 8D). In the audiovisual presentation (AV), the video was 
presented with the corresponding auditory signal and the masking noise.  

The masking noise was created following the procedure reported by 
Wagener et al. [44]. To that end, the 180 sentences were overlaid by 
applying a random circular shift. Repeating that procedure five times 
resulted in a stationary masking noise with the same spectral 
characteristics as the original speech material. 

Paradigm 

All participants were tested in a closed-set speech-recognition test in A-
only, V-only and AV conditions. Prior to the experiment, all participants 
familiarized themselves with the matrix of 50 words (10 words for each of 
the 5 categories, Table 1) and by practicing the task on 10 randomly 
selected AV sentences. No improvement in speech recognition was 

observed during the experimental sessions, which indicates that there 
was no recognition effect of procedural learning. 

The masking noise started and ended 500 ms before and after the 
sentence presentation. The noise onset and offset included 250 ms (sin2, 
cos2) ramps. In the A-only and AV conditions, the masking noise was 
fixed at 65 dB SPL (A-weighted), with the speech sound presented at 44, 
49, 52, 55, or 60 dB SPL (A-weighted) to obtain signal-to-noise ratios 
(SNRs) of -21, -16, -13, -10, and -5 dB, respectively. After presentation of 
the sentence and the end of the noise, the matrix of 50 words was shown 
on the screen (Table 1). Participants were instructed to choose one word 
from each of the 5 categories (10-alternative forced-choice task). 
Participants initiated the next trial by pressing the mouse-button.  

For each of the sensory modalities (A-only, V-only, and AV), participants 
were tested in separate sessions on different days. In this way, fatigue 
and repetitive stimulus presentation were avoided. In each session, the 
nine lists of 20 sentences were presented. In the A-only and AV sessions, 
each sentence was assigned one of the five SNRs pseudo-randomly 
(each SNR was presented equally often as the others, i.e. 36 times in 
each session). 

Data analysis 

For every word (w=1:50), subject (s=1:18), SNR (n=1:5) and sensory 
modality (m=1:3), we determined the correct score, defined as the 
number of correct responses, z, divided by the number of presentations, 
N. The correct score is binomially distributed, in which the probability of a 
success given by: 

P(correct) = (1 − )  F() +  [8] 

where F() is a function (binomial distribution) that characterizes the 
recognition performance for the particular stimulus and subject 
parameters (subject parameters such as SNR and visual recognition 
rate), described by  ;  is the probability that the subject gives the 
correct answer, irrespective of the stimulus (the 'guess rate'). Here,  was 
set to 10% (0.1), as there were ten word alternatives per category. From 
the correct scores, we estimated the recognition rates,  (i.e. how often 
words were recognized correctly at a given SNR), and the recognition 
thresholds,  (i.e. the SNR at which words were recognized in 50% of the 
presentations), as described below. 

Statistical Analysis 

Parameter estimation of Eqns. 1-8 was performed using a Bayesian 
statistical analysis. This analysis requires the definition of priors over the 
parameters. As a prior for the auditory thresholds, we chose the 
Gaussian distribution with mean 0 and standard deviation 100, and for 
the visual recognition rates we took a positive-only beta distribution, for 
which both shape parameters were set to 1. The audiovisual rate 
differences (Eqn. 5) were modeled as Gaussian distributions with the 
rates transformed to probit scale (see e.g. [45] Chapter 9.3). For the 
multiple linear regression (eqn. 7; [46]), the data was modeled according 
to a t-distribution. For the priors on the parameters, Gaussian 
distributions with a mean of 0 and a standard deviation of 2 were chosen, 
after normalization of the data. 

The estimation procedure relied on Markov Chain Monte Carlo (MCMC) 
techniques. The estimation algorithms were implemented in JAGS [47] 
through matJAGS [48]. Three MCMC chains of 10,000 samples were 
generated. The first 10,000 samples were discarded as burn-in. 
Convergence of the chains was determined visually, by checking that the 
shrink factor Ȓ < 1.1 [49,50], and by checking that the effective sample 
size >1000 [51]. 

From these samples of the posterior distributions, we determined the 
mean and the 95% highest density interval (95%-HDI) as a centroid and 
uncertainty estimate of the parameters, respectively. 
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Fig. 8. Example stimulus. A) amplitude plot of the auditory speech 
signal. B) amplitude plot of the auditory noise. C) Spectrogram of the 
recorded sentence “Tom telde zes groene dozen” (translation: Tom 
counted six green boxes). Numbers 1-5 denote the occurrence of the 
video frames shown in D. D) Five video frames taken from the video-
recorded sentence 

 

 

 

  
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/585182doi: bioRxiv preprint 

https://doi.org/10.1101/585182
http://creativecommons.org/licenses/by/4.0/


Van de Rijt et al., 14 Mar 2019 – preprint copy - BioRxiv 

 

10 

Acknowledgments 

We thank Günther Windau, Ruurd Lof, Stijn Martens, and Chris-Jan 

Beerendonck for their valuable technical assistance, speech-therapist 

Jeanne van der Stappen for providing the audiovisual material, and 

Eefke Lemmen for editing. We are grateful to Ad Snik for providing 

valuable comments on earlier versions of this manuscript. This research 

was supported by EU FP7-PEOPLE-2013-ITN iCARE (grant 407139, 

AR), EU Horizon 2020 ERC Advanced Grant ORIENT (grant 693400, 

AJVO), Cochlear Benelux NV (LPHVDR, MMVW), the Radboud 

University Medical Center (LPHVDR, EAMM), and Radboud 

University (MMVW). 

References 

1.  van de Rijt LPH, van Opstal AJ, Mylanus EAM, Straatman LV, Hu 
HY, Snik AFM, van Wanrooij MM. Temporal Cortex Activation to 
Audiovisual Speech in Normal-Hearing and Cochlear Implant Users 
Measured with Functional Near-Infrared Spectroscopy. Front Hum 
Neurosci. 2016;10: 48. doi:10.3389/fnhum.2016.00048 

2.  Calvert GA, Campbell R, Brammer MJ. Evidence from functional 
magnetic resonance imaging of crossmodal binding in the human 
heteromodal cortex. Curr Biol. 2000;10: 649–57. doi:10.1016/S0960-
9822(00)00513-3 

3.  Stein BE, Meredith MA. The Merging of the Senses. Cambridge, 
MA, US: The MIT Press.; 1993.  

4.  Bernstein LE, Auer ET, Takayanagi S. Auditory speech detection in 
noise enhanced by lipreading. Speech Commun. 2004;44: 5–18. 
doi:10.1016/j.specom.2004.10.011 

5.  Grant KW, Seitz PF. The use of visible speech cues for improving 
auditory detection of spoken sentences. J Acoust Soc Am. 
2000;108: 1197–208. doi:10.1121/1.422512 

6.  Helfer KS. Auditory and auditory-visual perception of clear and 
conversational speech. J speech, Lang Hear Res. 1997;40: 432–43.  

7.  Winn MB, Rhone AE, Chatterjee M, Idsardi WJ. The use of auditory 
and visual context in speech perception by listeners with normal 
hearing and listeners with cochlear implants. Front Psychol. 
Frontiers; 2013;4: 824. doi:10.3389/fpsyg.2013.00824 

8.  MacLeod A, Summerfield Q. Quantifying the contribution of vision to 
speech perception in noise. Br J Audiol. 1987;21: 131–41.  

9.  MacLeod A, Summerfield Q. A procedure for measuring auditory 
and audio-visual speech-reception thresholds for sentences in 
noise: rationale, evaluation, and recommendations for use. Br J 
Audiol. 1990;24: 29–43. doi:10.3109/03005369009077840 

10.  O’Neill JJ. Contributions of the visual components of oral symbols to 
speech comprehension. J Speech Hear Disord. American Speech-
Language-Hearing Association; 1954;19: 429–439. 
doi:10.1044/jshd.1904.429 

11.  Ross LA, Saint-Amour D, Leavitt VM, Javitt DC, Foxe JJ. Do you 
see what I am saying? Exploring visual enhancement of speech 
comprehension in noisy environments. Cereb Cortex. 2007;17: 
1147–53. doi:10.1093/cercor/bhl024 

12.  Sommers MS, Tye-Murray N, Spehar B. Auditory-visual speech 
perception and auditory-visual enhancement in normal-hearing 
younger and older adults. Ear Hear. 2005;26: 263–75. 
doi:10.1097/00003446-200506000-00003 

13.  Sumby WH, Pollack I. Visual Contribution to Speech Intelligibility in 
Noise. J Acoust Soc Am. 1954;26: 212–215. doi:10.1121/1.1907309 

14.  Tye-Murray N, Sommers MS, Spehar B. Audiovisual integration and 
lipreading abilities of older adults with normal and impaired hearing. 
Ear Hear. 2007;28: 656–68. doi:10.1097/AUD.0b013e31812f7185 

15.  Tye-Murray N, Sommers M, Spehar B, Myerson J, Hale S. Aging, 
Audiovisual Integration, and the Principle of Inverse Effectiveness. 
Ear Hear. 2010;31: 1. doi:10.1097/AUD.0b013e3181ddf7ff 

16.  Corneil BD, van Wanrooij MM, Munoz DP, van Opstal AJ. Auditory-
visual interactions subserving goal-directed saccades in a complex 
scene. J Neurophysiol. 2002;88: 438–54. 
doi:10.1152/jn.2002.88.1.438 

17.  van Barneveld DCPBM, van Wanrooij MM. The influence of static 
eye and head position on the ventriloquist effect. Eur J Neurosci. 
2013;37: 1501–10. doi:10.1111/ejn.12176 

18.  Alais D, Burr D. No direction-specific bimodal facilitation for 
audiovisual motion detection. Brain Res Cogn Brain Res. 2004;19: 
185–94. doi:10.1016/j.cogbrainres.2003.11.011 

19.  Körding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams 
L. Causal inference in multisensory perception. Sporns O, editor. 
PLoS One. Public Library of Science; 2007;2: e943. 
doi:10.1371/journal.pone.0000943 

20.  Wallace MT, Roberson GE, Hairston WD, Stein BE, Vaughan JW, 
Schirillo JA. Unifying multisensory signals across time and space. 
Exp brain Res. 2004;158: 252–8. doi:10.1007/s00221-004-1899-9 

21.  Bell AH, Meredith MA, van Opstal AJ, Munoz DP. Crossmodal 
integration in the primate superior colliculus underlying the 
preparation and initiation of saccadic eye movements. J 
Neurophysiol. 2005;93: 3659–73. doi:10.1152/jn.01214.2004 

22.  Meredith MA, Stein BE. Spatial factors determine the activity of 
multisensory neurons in cat superior colliculus. Brain Res. 1986;365: 
350–4. doi:10.1016/0006-8993(86)91648-3 

23.  Wallace MT, Meredith MA, Stein BE. Multisensory integration in the 
superior colliculus of the alert cat. J Neurophysiol. 1998;80: 1006–
10. doi:10.1152/jn.1998.80.2.1006 

24.  Bremen P, Massoudi R, van Wanrooij MM, van Opstal AJ. Audio-
Visual Integration in a Redundant Target Paradigm: A Comparison 
between Rhesus Macaque and Man. Front Syst Neurosci. Frontiers; 
2017;11: 89. doi:10.3389/fnsys.2017.00089 

25.  Frens MA, van Opstal AJ, van der Willigen RF. Spatial and temporal 
factors determine auditory-visual interactions in human saccadic eye 
movements. Percept Psychophys. 1995;57: 802–16. 
doi:10.3758/BF03206796 

26.  van Wanrooij MM, Bell AH, Munoz DP, van Opstal AJ. The effect of 
spatial-temporal audiovisual disparities on saccades in a complex 
scene. Exp brain Res. Springer-Verlag; 2009;198: 425–437. 
doi:10.1007/s00221-009-1815-4 

27.  Ma WJ, Zhou X, Ross LA, Foxe JJ, Parra LC. Lip-reading aids word 
recognition most in moderate noise: a Bayesian explanation using 
high-dimensional feature space. PLoS One. 2009;4: e4638. 
doi:10.1371/journal.pone.0004638 

28.  Tye-Mmurray N, Spehar B, Myerson J, Hale S, Sommers M. 
Lipreading and audiovisual speech recognition across the adult 
lifespan: Implications for audiovisual integration. Psychol Aging. 
2016;31: 380–389. doi:10.1037/pag0000094 

29.  Rouger J, Lagleyre S, Fraysse B, Deneve S, Deguine O, Barone P. 
Evidence that cochlear-implanted deaf patients are better 
multisensory integrators. Proc Natl Acad Sci U S A. 2007;104: 
7295–300. doi:10.1073/pnas.0609419104 

30.  Houben R, Koopman J, Luts H, Wagener KC, van Wieringen A, 
Verschuure H, et al. Development of a Dutch matrix sentence test to 
assess speech intelligibility in noise. Int J Audiol. Taylor & Francis; 
2014;53: 760–3. doi:10.3109/14992027.2014.920111 

31.  Kuss M, Jäkel F, Wichmann FA. Bayesian inference for 
psychometric functions. J Vis. 2005;5: 478–92. doi:10.1167/5.5.8 

32.  Bernstein LE, Demorest ME, Tucker PE. Speech perception without 
hearing. Percept Psychophys. 2000;62: 233–52. 
doi:10.3758/BF03205546 

33.  Alsius A, Navarra J, Campbell R, Soto-Faraco S. Audiovisual 
Integration of Speech Falters under High Attention Demands. Curr 
Biol. Elsevier; 2005;15: 839–843. doi:10.1016/j.cub.2005.03.046 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/585182doi: bioRxiv preprint 

https://doi.org/10.1101/585182
http://creativecommons.org/licenses/by/4.0/


Van de Rijt et al., 14 Mar 2019 – preprint copy - BioRxiv 

11 

34.  Bonnel AM, Hafter ER. Divided attention between simultaneous 
auditory and visual signals. Percept Psychophys. Springer-Verlag; 
1998;60: 179–90. doi:10.3758/BF03206027 

35.  Stein BE, Stanford TR, Ramachandran R, Perrault TJ, Rowland BA. 
Challenges in quantifying multisensory integration: alternative 
criteria, models, and inverse effectiveness. Exp Brain Res. 
2009;198: 113–126. doi:10.1007/s00221-009-1880-8 

36.  Holmes NP. The principle of inverse effectiveness in multisensory 
integration: Some statistical considerations. Brain Topography. 
Springer US; 2009. pp. 168–176. doi:10.1007/s10548-009-0097-2 

37.  Houben R, Dreschler WA. Optimization of the Dutch matrix test by 
random selection of sentences from a preselected subset. Trends 
Hear. 2015;19: 233121651558313. doi:10.1177/2331216515583138 

38.  Stevenson RA, Nelms CE, Baum SH, Zurkovsky L, Barense MD, 
Newhouse PA, et al. Deficits in audiovisual speech perception in 
normal aging emerge at the level of whole-word recognition. 
Neurobiol Aging. Elsevier Ltd; 2015;36: 283–91. 
doi:10.1016/j.neurobiolaging.2014.08.003 

39.  Anderson Gosselin P, Gagné J. Older adults expend more listening 
effort than young adults recognizing speech in noise. J Speech Lang 
Hear Res. 2011;54: 944–58. doi:10.1044/1092-4388(2010/10-0069) 

40.  Middelweerd MJ, Plomp R. The effect of speechreading on the 
speech-reception threshold of sentences in noise. J Acoust Soc Am. 
1987;82: 2145–7. doi:10.1121/1.395659 

41.  Hagerman B. Sentences for testing speech intelligibility in noise. 
Scand Audiol. Taylor & Francis; 1982;11: 79–87. 
doi:10.3109/01050398209076203 

42.  Hochmuth S, Brand T, Zokoll MA, Castro FZ, Wardenga N, 
Kollmeier B. A Spanish matrix sentence test for assessing speech 
reception thresholds in noise. Int J Audiol. 2012;51: 536–44. 
doi:10.3109/14992027.2012.670731 

43.  Ozimek E, Warzybok A, Kutzner D. Polish sentence matrix test for 
speech intelligibility measurement in noise. Int J Audiol. 2010;49: 
444–454. doi:10.3109/14992021003681030 

44.  Wagener K, Josvassen JL, Ardenkjaer R. Design, optimization and 
evaluation of a Danish sentence test in noise. Int J Audiol. Taylor & 
Francis; 2003;42: 10–7. doi:10.3109/14992020309056080 

45.  Lee MD, Wagenmakers E-J. Bayesian cognitive modeling: A 
practical course. Cambridge University Press, 2014. Cambridge 
University Press, New York; 2014.  

46.  Kruschke JK. Doing Bayesian Data Analysis. 2nd ed. Elsevier; 2015. 
doi:10.1016/C2012-0-00477-2 

47.  Plummer M. JAGS: A program for analysis of Bayesian graphical 
models using Gibbs sampling. Hornik K, Leisch F, Zeileis A, editors. 
Proceedings of the 3rd Internaitional Workshop on Disbtributed 
Statistical Computing. Vienna, Austria; 2003. Available: http://mcmc-
jags.sourceforge.net 

48.  Turner BM, Forstmann BU, Wagenmakers E-J, Brown SD, 
Sederberg PB, Steyvers M. A Bayesian framework for 
simultaneously modeling neural and behavioral data. Neuroimage. 
Elsevier Inc.; 2013;72: 193–206. 
doi:10.1016/j.neuroimage.2013.01.048 

49.  Brooks SP, Gelman A. General Methods for Monitoring 
Convergence of Iterative Simulations. J Comput Graph Stat. Taylor 
& Francis; 1998;7: 434–455. doi:10.1080/10618600.1998.10474787 

50.  Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis, 
Third Edition (Texts in Statistical Science). Book. Chapman and 
Hall/CRC; 2013.  

51.  Kass RE, Carlin BP, Gelman A, Neal RM. Markov Chain Monte 
Carlo in Practice: A Roundtable Discussion. Am Stat. 1998;52: 93. 
doi:10.2307/2685466 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/585182doi: bioRxiv preprint 

https://doi.org/10.1101/585182
http://creativecommons.org/licenses/by/4.0/

