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 2 

Abstract 21 

High-throughput sequencing (HTS) enables the generation of large amounts of genome 22 

sequence data at a reasonable cost. Organisms in mixed microbial communities can now 23 

be sequenced and identified in a culture-independent way, usually using amplicon 24 

sequencing of a DNA barcode. Bulk RNA-seq (metatranscriptomics) has several 25 

advantages over DNA-based amplicon sequencing: it is less susceptible to amplification 26 

biases, it captures only living organisms, and it enables a larger set of genes to be used for 27 

taxonomic identification. Using a defined mock community comprised of 17 fungal isolates, 28 

we evaluated whether metatranscriptomics can accurately identify fungal species and 29 

subspecies in mixed communities. Overall, 72.9% of the RNA transcripts were classified, 30 

from which the vast majority (99.5%) were correctly identified at the species-level. Of the 15 31 

species sequenced, 13 were retrieved and identified correctly. We also detected strain-level 32 

variation within the Cryptococcus species complexes: 99.3% of transcripts assigned to 33 

Cryptococcus were classified as one of the four strains used in the mock community. 34 

Laboratory contaminants and/or misclassifications were diverse but represented only 35 

0.44% of the transcripts. Hence, these results show that it is possible to obtain accurate 36 

species- and strain-level fungal identification from metatranscriptome data as long as taxa 37 

identified at low abundance are discarded to avoid false-positives derived from 38 

contamination or misclassifications. This study therefore establishes a base-line for the 39 

application of metatranscriptomics in clinical mycology and ecological studies.  40 
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Introduction 41 

Microscopic fungal species, such as yeasts and some filamentous fungi, do not live in 42 

isolation, they are most commonly found within mixed microbial communities inhabiting 43 

soil, water systems, plants and animal hosts. Assessing the diversity of fungi in mixed 44 

communities is important because different fungal taxa may exhibit distinctive phenotypes, 45 

and consequently may have different pathogenicity or functional roles. For example, in the 46 

rhizosphere, changes in fungal community composition have been associated with shifts in 47 

nutrient cycling (Hannula et al. 2017). Humans also harbor, or are exposed to, a diverse 48 

fungal community that provides a source of opportunistic pathogens (Bandara et al. 2019; 49 

Huffnagle & Noverr 2013; Seed 2014). Although it is typically assumed that invasive fungal 50 

infections are caused by a single strain, multiple Candida strains have been observed 51 

during the course of a single episode of infection (Soll et al. 1988). Furthermore, nearly 20% 52 

of patients with cryptococcosis are infected with multiple strains, with different phenotypes 53 

and virulence traits (Desnos-Ollivier et al. 2015; Desnos-Ollivier et al. 2010). Strain-level 54 

fungal diversity may influence therapeutic responsiveness and needs further investigation. 55 

Despite its importance, fungal taxonomic diversity is poorly characterized. From 56 

over two million fungal species estimated to exist, less than 8% have been described 57 

(Hawksworth & Lucking 2017). Even well-known fungal species are often overlooked during 58 

routine diagnostic procedures, surveillance and biodiversity surveys (Brown et al. 2012; 59 

Enaud et al. 2018; Yahr et al. 2016). This is in part due to challenges in the detection and 60 

classification of these organisms, especially microscopic and cryptic species, for example, 61 

the etiologic agents of cryptococcosis. Currently, two species complexes are recognized: 62 

Cryptococcus neoformans and Cryptococcus gattii (Kwon-Chung et al. 2002). Seven major 63 

haploid lineages are found within these two species complexes (C. neoformans species 64 

complex: VNI, VNII, VNIV, and C. gattii species complex: VGI, VGII, VGIII and VGIV) and 65 

their recognition as distinct biological species has been debated (Hagen et al. 2015; Kwon-66 

Chung et al. 2017; Ngamskulrungroj et al. 2009). Being able to distinguish closely-related 67 

lineages is important because their phenotype, virulence and ecophysiology can vary 68 

substantially. For example, the JEC21 and B-3501 strains of C. neoformans var. 69 

neoformans (VNIV) are 99.5% identical at the genomic sequence level but differ 70 

substantially in thermotolerance and virulence (Loftus et al. 2005). Likewise, different 71 

virulence and antifungal tolerance traits were observed within lineages of C. gattii VGIII 72 

(Firacative et al. 2016). 73 

The introduction of high-throughput sequencing (HTS) marked a new era in 74 

mycological research, where the vast diversity of fungi can be studied without the need for 75 
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culture (Nilsson et al. 2019). To date, amplicon sequencing of marker genes 76 

(metabarcoding) has been the most popular HTS method used to identify fungal species in 77 

mixed communities. Despite its indisputable utility, metabarcoding surveys are affected by 78 

PCR amplification biases, and even abundant species can go undetected due to primer 79 

mismatch (Marcelino & Verbruggen 2016; Nilsson et al. 2019; Tedersoo et al. 2015). In 80 

addition, DNA fragments from dead organisms inflate biodiversity estimates in 81 

metabarcoding surveys (Carini et al. 2016). Stool samples, for instance, naturally contain 82 

food-derived DNA, which cannot be distinguished from the genetic material of the resident 83 

gut microbiota when using DNA-based methods. These challenges can be circumvented by 84 

directly sequencing actively transcribed genes, via RNA-Seq, hence avoiding the 85 

amplification step, and obtaining an unbiased characterization of the living microbial 86 

community. Metatranscriptomics has been used to identify RNA viruses in a range of 87 

animal samples (Shi et al. 2016; Shi et al. 2017; Wille et al. 2018; Zhang et al. 2018) and to 88 

characterize the functional profile of microbial communities (Bashiardes et al. 2016; Kuske 89 

et al. 2015). Studies applying metatranscriptomics to mycorrhizal communities have 90 

provided valuable insights into the functional roles of fungi in these symbiotic systems 91 

(Gonzalez et al. 2018; Liao et al. 2014). However, links between functional and species-level 92 

taxonomy have been sought infrequently, likely because fungal identification from 93 

metatranscriptome data is considered unreliable below phylum level (Nilsson et al. 2019). 94 

Critically, it is currently unknown whether metatranscriptomics can accurately identify fungi 95 

at the species and subspecies level within a mixed community. This information is 96 

fundamental to the investigation of the potential and utility of metatranscriptomics in 97 

diagnostics and ecological studies. 98 

Herein, we evaluated the utility of metatranscriptomics as a tool for the 99 

simultaneous identification of fungal species, using a defined mock community containing 100 

15 fungal species. In addition, we investigated whether strains belonging to sister species, 101 

such as the C. neoformans and C. gattii species complexes could be identified correctly 102 

using metatranscriptomics. Rather than focusing on marker genes, we sought to classify 103 

fungal species using the information from all expressed genes, using the totality of NCBI’s 104 

nucleotide collection as a reference database. This study paves the way to apply state-of-105 

the art techniques in fungal biodiversity surveys and clinical diagnostics. 106 

 107 

Methods 108 

A defined fungal community was constructed from 17 isolates, including 15 fungal species 109 

and three strains of the C. neoformans species complex in addition to one strain of C. gattii 110 
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(Table 1). Fungal strains were obtained from the Westmead Mycology Culture Collection 111 

and cultured on Sabouraud agar at 27°C for 72 hours. A sweep of colonies was made with 112 

a disposable inoculating loop and dispersed in PBS. Fungal cells were quantified in a 113 

Neubauer chamber and their concentration adjusted such that the fungal mixture contained 114 

equal concentrations of each species (108 cells/mL). RNA was isolated with the RNeasy 115 

Plus kit (Qiagen), following the manufacture’s protocol, with an initial freeze-thaw step in 116 

liquid nitrogen to disrupt fungal cells. The quantity and quality of the RNA extract was 117 

determined with the Nanodrop Spectrophotometer (Thermo Scientific) and the Agilent 2200 118 

TapeStation. As some residual DNA was detected, the RNA extract was further treated with 119 

DNase I (Qiagen). Ribosomal depletion (Ribo-Zero Gold technology), library preparation and 120 

sequencing (Illumina HiSeq HT, 125bp Paired End) were performed by the Australian 121 

Genomics Research Facility. The raw sequence data were deposited in the NCBI Short 122 

Read Archive (accession PRJNA521097). 123 

Sequence reads containing more than five ambiguous positions or with average 124 

quality scores £ 25 were filtered from the dataset using prinseq-lite v.0.20.4 (Schmieder & 125 

Edwards 2011) with the options -ns_max_n 5 -min_qual_mean 25 -out_format 3. Assembly 126 

of sequence reads into contigs was performed with Trinity v.2.5.1 (Grabherr et al. 2011). 127 

Contigs were mapped to the NCBI nucleotide collection using KMA (Clausen et al. 2018), a 128 

novel approach that has proven to be more accurate than other mapping software. Prior to 129 

mapping, NCBI’s taxonomic identifier codes (taxids) were appended to each sequence 130 

record in the nucleotide collection, and the reference database was indexed using KMA’s 131 

options -NI -Sparse TG. Contigs were then mapped to the indexed database with the 132 

options -mem_mode -and -apm f. Matches to the reference database with low support (i.e. 133 

coverage < 20 and depth < 0.05) were excluded from the analyses. The species-level 134 

taxonomic classifications were based on NCBI’s taxonomy identifiers (taxids) to minimize 135 

the issue of changing species nomenclature (Federhen 2012). Subspecies-level 136 

classifications within the Cryptococcus neoformans and C. gattii species complexes were 137 

examined manually. 138 

 Abundance was estimated at the level of sequence reads and transcripts. For read-139 

level abundances, sequence reads were mapped to transcripts using Bowtie2 (Langmead & 140 

Salzberg 2012) and quantified in Transcripts Per Million (TPM) with RSEM (Li & Dewey 141 

2011), using the Trinity pipeline. For transcript-level abundances, the depth values 142 

estimated within KMA were used, which is the total number of nucleotides (in each contig) 143 

covering the reference sequence divided by the length of the reference sequence. The 144 

number and length of assembled contigs for each taxon is likely a better proxy for species 145 
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abundance than read-level abundances (which are subject to gene expression), and 146 

therefore were used for graphic representation and analyses. For simplicity, we refer as 147 

‘abundance’ the transcript-level abundance, unless otherwise stated. 148 

It would be logical to expect that species with larger and gene-rich genomes would 149 

express a greater number of transcripts. To test for this potential correlation, genome sizes 150 

and the estimated number of proteins were obtained from the Fungal Genome Size 151 

Database (Kullman et al. 2005), Loftus et al. (2005), Muñoz et al. (2018) and NCBI’s Genome 152 

database (Supplementary table S1). The correlation coefficients between genome size, 153 

number of proteins and abundance of transcripts were estimated using Person’s correlation 154 

and visualized using the R package ggpubr (Kassambara 2017). 155 

 156 

 157 

Results 158 

RNA sequencing yielded a total of 26,558,491 paired end reads, of which 98.3% passed 159 

quality control. Overall, 277,404 contigs (transcripts) were obtained, from which 202,219 160 

(72.9%) were classified. The majority of the sequence reads (80.2%) mapped to a classified 161 

contig. Of the 15 fungal species sequenced, 13 were retrieved and correctly classified at 162 

the species level (Figure 1, Table 2, Supplementary table S2). The two false-negatives were 163 

Debaryomyces hansenii and Schizosaccharomyces pombe; these may have been 164 

misclassified as another fungus or were lost due to cell pooling inaccuracy and/or RNA 165 

extraction biases. A small proportion of bacterial transcripts (0.03%) and other eukaryotic 166 

microbes (0.4%, including 31 fungi that were not present in the mock community) was also 167 

observed (Table 2, Supplementary table S2), which likely represent laboratory contaminants 168 

and misclassifications (see discussion). However, these were present at a consistently 169 

lower frequency than true members of the mock community, with the most common – 170 

Candida glycerinogenes – only present in 0.08% of the transcripts. Some of the transcripts 171 

were assigned to entries in GenBank that do not have a species-level classification (e.g. 172 

Candida sp. and Pichia sp.). These assignments were considered misclassifications here, 173 

although it is possible that the species in our mock community are the correct species-level 174 

identity of these GenBank sequences. 175 

Overall, the commonest species detected was C. neoformans, which was to be 176 

expected as it comprised three strains in the mock community and therefore was three 177 

times more abundant than other fungal species. Transcripts belonging to Candida tropicalis 178 

and Pichia kudriavzevii (former Candida krusei) – were also common (19.2% and 18.8%, 179 

respectively), while C. albicans, C. orthopsilosis and C. glabrata (other causes of 180 
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candidaemia in humans) were detected at lower abundance (2.0 – 2.9%). There was no 181 

relationship evident between abundance of transcripts and phylogenetic relatedness. 182 

Genomes with low GC content can be overrepresented in metagenomic sequencing 183 

(Shakya et al. 2013). Conversely, some of the species detected here in high abundance 184 

(Cryptococcus neoformans and Clavispora lusitaniae) have a higher GC content than most 185 

other fungal species (Dujon 2010), suggesting that GC bias is unlikely to affect our results. 186 

No correlation between abundance of transcripts and genome size or estimated number of 187 

proteins was observed (p > 0.05, Supplementary figure 1). 188 

Molecular type and strain-level variation within the Cryptococcus neoformans and C. 189 

gattii species complexes was also detected, with contigs matching to C. gattii VGI WM 276, 190 

C. neoformans var. grubii VNI H99 and C. neoformans var. neoformans VNIV strains B-191 

3501A and JEC21 (Figure 2, Supplementary table S3). A proportion of the transcripts (1.6%) 192 

matched with equal probability scores to both strains of C. neoformans var. neoformans (B-193 

3501A and JEC21, Supplementary tables S2 and S3). From the transcripts classified as 194 

Cryptococcus spp., 99.3% were classified as one of the four Cryptococcus strains (or both 195 

B-3501A and JEC21) used in the mock community. It is possible that misclassifications 196 

occurred within the strains analyzed. For example, transcripts originally from JEC21 might 197 

have been classified as B-3501A and vice versa. As it is not possible to know from which 198 

strain the transcripts originated, these possible misclassifications would be undetected.  199 

 200 

 201 

Discussion 202 

Our metatranscriptomics approach yielded taxonomic identification of fungi from a defined 203 

mock community with high success, while false-positives were detected at far lower 204 

abundance. These results indicate that it is possible to obtain accurate species- and strain-205 

level identifications for fungi from metatranscriptome data, as long as taxa identified at low 206 

abundance are removed from the analyses to avoid false-positives derived from 207 

contamination or misclassifications. 208 

Taxonomic classification at species and strain levels using metabarcoding and 209 

metagenomic data has been considered inaccurate (Nilsson et al. 2019; Sczyrba et al. 210 

2017; Yamamoto et al. 2014), raising the question of how our metatranscriptomics 211 

approach succeeded in identifying closely-related fungal strains. Metabarcoding relies on a 212 

single marker gene (Banchi et al. 2018; e.g. McGuire et al. 2013; Schmidt et al. 2013), which 213 

does not contain sufficient phylogenetic information to differentiate some closely related 214 

fungal lineages (Balasundaram et al. 2015; Nilsson et al. 2008). Metatranscriptomics, on the 215 
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 8 

other hand, yields data on all expressed coding sequences. Classifications derived from 216 

metagenomes are likely to be equally accurate as the ones obtained from 217 

metatranscriptomes, except that dead organisms might also be sequenced. Additionally, 218 

we used a new alignment method that is both highly accurate and fast (Clausen et al. 2018), 219 

allowing us to map sequences against the complete NCBI nucleotide collection. Complete 220 

genomes of all fungal isolates used here are available in NCBI, and it is likely that the 221 

accuracy of identifications is reduced for poorly-documented microorganisms. However, it 222 

is possible to extract informative genes from metatranscriptome data and subsequently 223 

perform phylogenomic analyses to identify rare and novel taxa (e.g. Shi et al. 2017; Wille et 224 

al. 2018; Zhang et al. 2018). Besides being highly accurate, metatranscriptomics is less 225 

susceptible to amplification bias, no information about the community members is required 226 

a priori, and it only detects functionally active members of a microbial community. These 227 

advantages make metatranscriptomics a promising tool in biodiversity surveys, functional 228 

assessments of microbial communities, pathogen detection and biosecurity surveillance 229 

(e.g. Kuske et al. 2015; Shi et al. 2016; Wille et al. 2018). 230 

 Even though false-positives were present at low abundance, they pose a challenge 231 

in the interpretation of metatranscriptomic and metagenomic data. False-positives generally 232 

result from spurious classifications and laboratory contaminants, which may be common in 233 

laboratory reagents (Salter et al. 2014). However, metatranscriptomics is less sensitive to 234 

laboratory contamination than DNA-based metagenomics or metabarcoding, as only living 235 

microorganisms are sequenced. Nevertheless, contamination can occur at all stages of the 236 

library preparation and is routinely observed in RNA-Seq studies (Quince et al. 2017; Strong 237 

et al. 2014). Misclassifications occur because some genome regions are very similar (or 238 

identical) across closely-related species and cannot be differentiated. Errors in reference 239 

databases can also result in misclassifications. Sequences attributed to incorrectly-240 

classified species are not uncommon in GenBank and result in downstream classification 241 

errors (Li et al. 2018). It is also not unusual to find bacterial regions misassembled into 242 

eukaryotic genomes (e.g. Koutsovoulos et al. 2016), which can result in sequences from 243 

common laboratory contaminants being classified as a eukaryote. Filtering out organisms 244 

found in low abundance is an option to reduce the incidence of false-positives in 245 

downstream analyses. In this study, filtering organisms for which the abundance of 246 

transcripts is lower than 0.1% would eliminate false-positives, at the cost of excluding one 247 

true-positive from the analyses (Table 2). The application of this abundance-filtering step 248 

might not be feasible when sequencing depth (per microbial species) is limited. Species 249 
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present in low abundances will be represented by a small number of transcripts and so are 250 

more likely to be misclassified or undetected. 251 

The abundance of transcripts and sequence reads can vary according to genome 252 

size, number of coding sequences and gene expression. Therefore, the abundance 253 

disparity across species observed here is unsurprising. Interestingly, we found no 254 

correlation between the abundance of transcripts and genome size or number of genes 255 

(Supplementary figure 1). Imprecise estimates of cell abundance and RNA extraction biases 256 

could also have influenced abundance estimates, and might be the reason why two species 257 

in the mock community (D. hansenii and S. pombe) were not detected in the analyses. 258 

Metabarcoding studies have suggested that performing DNA extraction in triplicate 259 

minimizes biases for bacteria, but it had no effect in fungal communities (Feinstein et al. 260 

2009). To our knowledge, the effect of RNA extraction bias in metatranscriptomics has yet 261 

to be studied. As metagenomics surveys are not affected by gene expression, they might 262 

be more appropriate for studies where it is important to quantify species abundance. 263 

Although fungal species and their genes can be confidently identified, it remains 264 

challenging to link some genes with particular species using metatranscriptomics. A large 265 

portion of fungal genomes are highly similar among species, making it difficult, if not 266 

impossible, to infer which species in the community are expressing which genes. Recently, 267 

a method was developed to perform species-level functional profiling of metagenome data 268 

(Franzosa et al. 2018). This method, however, relies on a reference database of complete 269 

genomes that currently contains few fungal representatives, limiting its application in fungal 270 

metagenomics. Contrary to metatranscriptomics, metagenomics yields coding and non-271 

coding sequences, which can facilitate linking genes to species if sequencing depth is large 272 

enough to assemble large parts of fungal genomes (e.g. Olm et al. 2019).  273 

In sum, we show that metatranscriptomics is a useful approach to identify fungal 274 

species and subspecies in mixed samples. The major advantages of metatranscriptomics 275 

over other HTS technologies include the selective sequencing of living organisms and the 276 

ability to detect a wide range of microorganisms in one step, which has multiple 277 

applications in biological research, surveillance and diagnosis. There is an increasing 278 

literature reporting that virulence and antimicrobial tolerance traits vary within species 279 

(Firacative et al. 2016; Rizzetto et al. 2013; Schauwvlieghe et al. 2017; Strope et al. 2015) 280 

and that multiple strains or species can co-infect a host (Desnos-Ollivier et al. 2010; Gupta 281 

et al. 2014; Seki et al. 2014; Soll et al. 1988; Tati et al. 2016). The high discriminatory power 282 

obtained for closely-related lineages of Cryptococcus provides a good example of where 283 

metatranscriptomics would be valuable in precision medicine, where therapy practices are 284 
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defined according to strain-specific pathogenicity and drug susceptibility traits. However, it 285 

must be acknowledged that metatranscriptomics also has limitations that are common to 286 

high-throughput sequencing methods, as it is susceptible to DNA/RNA extraction biases, 287 

contamination and misclassifications. These limitations can be significantly minimized if 288 

appropriate controls are in place (e.g. abundance filtering before statistical analyses). 289 

Besides its application to identify well-known fungal species, metatranscriptomics can help 290 

to identify novel functional roles of fungi (e.g. Gonzalez et al. 2018; Liao et al. 2014) and 291 

novel species when used within a phylogenomic framework. 292 

 293 
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Tables: 456 

 457 

Table 1. Species and strains used to construct a mock fungal community for 458 

metatranscriptome sequencing. 459 

Fungal species Strain number 
Candida albicans WM 229 
Candida auris WM 17.110 
Candida glabrata WM 13.101 
Candida dubliniensis WM 606 
Candida orthopsilosis WM 03.136 
Candida tropicalis WM 17.08 
Clavispora lusitaniae (former Candida lusitaniae) WM 14.04 
Cryptococcus gattii (VGI) WM 276 
Cryptococcus neoformans var. grubii (VNI) H99 GC (H99) 
Cryptococcus neoformans var. neoformans (VNIV) WM 01.133 (B-3501A) 
Cryptococcus neoformans var. neoformans (VNIV) WM 01.127 (JEC21) 
Debaryomyces hansenii WM 36 
Pichia kudriavzevii (former Candida krusei) WM 14 
Pichia membranifaciens  WM 46 
Saccharomyces cerevisiae WM 318 
Schizosaccharomyces pombe WM 72 
Yarrowia lipolytica WM 63 

 460 

 461 

 462 

 463 

Table 2. Abundance of reads (TPM) and abundance of transcripts (Depth) per fungal 464 

species detected with metatranscriptomics. True members of the mock community – at 465 

species level – are shown in bold. 466 

Species* TPM 
(read-level) 

Depth 
(transcript-level) 

Relative abundance 
(transcript-level %) 

Cryptococcus neoformans   149692.28 11049.04 22.464 
Candida tropicalis 142496.47 9424.30 19.161 
Pichia kudriavzevii 62133.74 9234.05 18.774 
Clavispora lusitaniae 57317.81 7107.80 14.451 
Candida auris 13402.41 3354.39 6.820 
Candida dubliniensis 52027.94 1706.41 3.469 
Pichia membranifaciens 10860.75 1498.26 3.046 
Candida albicans 42948.69 1441.56 2.931 
Yarrowia lipolytica 52376.03 1384.29 2.814 
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Candida orthopsilosis 44531.25 1308.09 2.660 
Candida glabrata 50404.11 992.55 2.018 
Cryptococcus gattii VGI   9350.81 463.71 0.943 
Candida glycerinogenes 2345.13 41.51 0.084 
Nakaseomyces delphensis 12821.76 35.45 0.072 
Candida parapsilosis 15989.78 31.11 0.063 
Candida nivariensis 1411.36 12.72 0.026 
Kluyveromyces marxianus 47.70 8.90 0.018 
Torulaspora delbrueckii 15.01 6.00 0.012 
Kluyveromyces lactis 9.24 3.93 0.008 
Saccharomyces cerevisiae 22.84 3.77 0.008 
Eremothecium sinecaudum 25.93 3.67 0.008 
Pichia cecembensis 751.23 3.60 0.007 
Lodderomyces elongisporus 34.30 3.59 0.007 
Uncultured Candida 885.35 3.13 0.006 
Eremothecium gossypii 10.13 3.04 0.006 
Naumovozyma dairenensis 17.37 2.80 0.006 
Suhomyces tanzawaensis 30.87 2.25 0.005 
Dipodascaceae sp. LM136 24286.11 2.16 0.004 
Cyberlindnera jadinii 12.32 2.04 0.004 
Metschnikowia bicuspidata 16.02 1.29 0.003 
Brettanomyces naardenensis 96.13 1.19 0.002 
Pichia norvegensis 783.06 1.11 0.002 
Debaryomyces fabryi 22.87 0.92 0.002 
Candida neerlandica 487.65 0.69 0.001 
Melanotaenium endogenum 262.12 0.59 0.001 
Pichia kluyveri 51814.00 0.55 0.001 
Candida pseudohaemulonis 560.14 0.49 0.001 
Candida sp. (in: Saccharomycetales) 330.15 0.49 0.001 
Pichia sp. 2 TMS-2011 0.00 0.45 0.001 
Cryptococcus neoformans AD hybrid 0.00 0.44 0.001 
Saccharomycetales sp. LM594 2.60 0.30 0.001 
Naumovozyma castellii 4.56 0.29 0.001 
Saccharomyces pastorianus 0.81 0.26 0.001 
Cryptococcus gattii VGIII 0.48 0.21 0.000 
Other Eukaryotes 936.75 18.83 0.038 
Bacteria 423.36 15.79 0.032 
Unclassified 198000.57 8.00 0.016 

TOTAL 1000000 49186 100 
* Species defined according to the NCBI taxonomy database. Strain numbers may indicate vouchers 467 
rather than genetically different lineages. 468 
 469 
 470 
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Figures 471 

 472 

 473 

Figure 1. Relative abundance of transcripts assigned to microbial species recovered in the 474 

metatranscriptome of a mock community. See Table 2 for a full list of species and more 475 

details about their abundance. 476 

 477 
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 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

Figure 2. Strain-level classifications of taxa within the Cryptococcus neoformans and C. 490 

gattii species complexes.  491 
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