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Abstract

Establishing a quantitative understanding of tumor heterogeneity, a major feature arising from the
evolutionary processes taking place within the tumor microenvironment, is an important challenge for cancer
biologists. Recently established experimental techniques enabled summarizing the variety of tumor cell
phenotypes in proliferative or migratory. In the former, cells mostly proliferate and rarely migrate, while the
opposite happens with cells having the latter phenotype, a ”go-and-grow” description of heterogeneity. In
this manuscript we present a discrete time Markov chain to simulate the spatial evolution of a tumor which
heterogeneity is described by cells having those two phenotypes. The cell density curves have two
qualitatively distinct temporal regimes, as they recover the Gompertz curve widely used for tumor growth
description, and a bi-phasic growth which temporal shape resembles the tumor growth dynamics under
influence of immunoediting. We also show how our representation of heterogeneity gives rise to variable
spatial patterning even when the tumors have similar size and dynamics.

Author summary

We present a spatial stochastic model to represent the growth of a tumor as a structure having cells of two
phenotypes: one whose cells have division as their predominant transition, and another where cells are
mostly migrating. The migratory phenotype results from a transformation of the proliferative. Our
proposition is based on the assumption that a tumor grows initially within a limited region while its cells are
capable of acquire nutrients. During that phase, the cancer cells start changing their phenotype because of
stress in their microenvironment and exhaustion of nutrients that lead them to become more migratory and
capable of generating metastasis. Our model enables us to recover the usual dynamics observed in tumor
growth such as a logistic-like curve, called Gompertz model, widely observed, or the bi-phasic growth
observed characterized by equilibrium phase interspersed between two growth regimes. Our approach also
enable us to understand the internal spatial and temporal structure of the two sub-populations and can be
useful to investigate the phenomena underpinning heterogeneous tumor growth, a feature that helps on the
design of treatment strategies based on mitigating heterogeneity related drug resistance.
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Introduction 1

Despite recent advances on characterization of tumor heterogeneity the understanding of how such a 2

variability affects the tumoral spatial dynamics is still in its infancy [1–3]. Modifications of the tumoral 3

microenvironment exerts an evolutionary pressure that gives rise to new tumor cell phenotypes. At a 4

molecular level, the variety of cellular phenotypes observed in tumors [4] can be connected with the 5

unavoidable randomness of the inner cell environment in which biochemical reactants are present in low copy 6

numbers [5]. Indeed, in tumor cells gene expression levels are highly variable [6–8], and induce the 7

development of phenotypes distinctive by their signal response, a feature that reveals cancer treatment 8

resistance and later relapse [3]. The resisting phenotypes might result from either a cell type originally 9

non-sensitive to a given treatment or result from adaptation of sensitive cells that received an insufficient 10

dosage of antineoplastic agents [9–11]. Such a clinical consequence strengthens the necessity of understanding 11

the biology of tumor heterogeneity and its role in tumor development, a complex task to which effective 12

quantitative models [12] constitute an important additional toolbox. 13

The inherent randomness of intracellular processes leads to the unique dynamics of tumor development in 14

each tissue and individual. That unique dynamics, which we denote as tumor trajectory, is governed by a 15

probability distribution that results from a plethora of biochemical processes happening inside the cell. 16

Although overwhelming, the complexity of carcinogenesis can be resolved by a combined use of experimental 17

and theoretical techniques appropriate to the investigation of specific phenomena satisfying sufficiently 18

stringent criteria. For example, deterministic models have been employed to describe cancer related processes 19

when an average behavior is observed such as the logistic-like tumor growth dynamics [13–16], cancer 20

invasiveness [17–20], or evolutionary carcinogenesis [21–24], while statistics can be useful to quantify the 21

effects of random fluctuations in tumorigenesis [25,26]. However, those techniques are not sufficient to 22

describe the tumor trajectories, or their probabilities of occurrence, and alternative approaches based on the 23

theory of stochastic processes are essential to investigate that class of phenomena. 24

In this manuscript we present a cellular level stochastic model for tumor growth where phenotypic 25

heterogeneity is represented in terms of cells being proliferative or migratory. The representation of both 26

phenotypes is effective and has no explicit dependence on DNA sequence or other molecular markers. Our 27

approach enables considering either a ”go-or-grow” dynamics [27–29] or a non-exclusive behavior, that we 28

denote as ”go-and-grow”, where migratory cells show slow growth capacity, and proliferative cells can 29

migrate slowly [30,31]. Mathematical models approaching the go-or-grow dichotomy have been presented 30

previously with mutually exclusive cell phenotype being determined by the internal molecular 31

quantities [32–37]. In our model, we propose a ”go-and-grow” process by attributing a low probability of 32

migration to the proliferative cell, and vice-versa, which has the ”go-or-grow” regime as a particular case. To 33

give an effective representation of environmental cues, we propose the cell division rate to decay with tumor 34

size while the death and migration rates increase as sigmoidal functions. The spatial dynamics of our model 35

is simulated by means of a discrete-time Markov chain. Our approach recovers the Gompertz-like growth 36

curve for the tumor size and shows the occurrence of distinctive sub-population dynamics for tumors of 37

similar sizes. We also show the conditions for a two-phase tumor growth and characterize the distinct spatial 38

patterns of cellular sub-populations mixing in a tumor. 39

Models and Methods 40

A spatial stochastic model for tumor growth heterogeneity evolution 41

We propose an agent based spatial stochastic model for heterogeneity in tumor growth. The tumor 42

heterogeneity is represented by two sub-populations of cells which phenotypes are predominantly proliferative 43

or migratory. The parameters accounting for the proliferative (and migratory) phenotypes will have indices p 44

(and m). Our phenotypic classification indicates that during a given time interval a proliferative cell has a 45

higher probability of division than of migration while the opposite happens if we have a migratory phenotype. 46

We assume that the tumor starts with a proliferative cell that can become migratory with non-null 47

probability. For simplicity, in this manuscript we assume that the migratory cells do not transform into 48
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proliferative. Table 1 summarizes the symbols and their meaning in throughout this manuscript for our 49

approach and for the Gompertz model. 50

Parameters of the stochastic model for tumor heterogeneity
Symbol Interpretation

i index denoting the cell phenotype, i = p,m
N number of cells inside the grid at time t

αi(N), δi(αi), ρi(αi) cell division, migration, death rate of i-th phenotype
Ai, Di, Ri maximal cell division, migration, death rates of i-th phenotype

σi quiescence rate of the i-th phenotype

N population size for which αi(N) = Ai/2
α cell division rates at which δi/D = ρi/R = 1/2 when αi(N) = α
k slope of transition αi(N),δi(N),ρi(N) with increase in N
ν rate of transformation of proliferative phenotype into migratory

Gompertz model related parameters
x(t),K, γ cell density, carrying capacity, maximal cell division rate

Table 1. List of mathematical symbols. We assume an explicit dependence of cell division rate to the
population size, and a dependence of the migration and death rates to the division rate.

In our model, environmental cues are approached effectively by proposing the cell division rate as 51

inversely proportional to the population size. Conversely, the migration and death rates increase as the 52

division rate decreases. There are biological reasons for those assumptions: (1) in vivo and in vitro tumor 53

cells doubling time increase with tumor growth [13,38,39]; (2) the relative cell growth rates estimated from 54

experimental data decrease over time following both exponential and sigmoid shape [15];(3) migration is a 55

widely conserved evolutionary response of biological systems under environmental resource limitation [11]; (4) 56

there is experimental evidence showing the coexistence of a proliferative and a highly invasive subpopulations 57

with slow division rate in tumor [29]. 58

Our tumor growth model dynamics is constructed considering four transitions of the state of the i-th cell 59

phenotype (i = p,m). The i-th cell phenotype undergoes division, migration, death, and quiescence, 60

respectively, at rate αi, δi, ρi, and σi. Our assumption for tumor heterogeneity implies αp > αm and 61

δp < δm. We now set the division rate as a sigmoidal function of N , an ansatz based on αi being limited 62

above and below. The maximal rates of division, migration, and death of the i-th cell phenotype are, 63

respectively, Ai, Di, and Ri. Furthermore, we expect a smooth and nonlinear decrease on the rate of cells 64

proliferation as the tumor size increases [40], a condition that effectively indicates the reduction of the 65

resources availability. N denotes the size of the population at which αi(N) = Ai/2. The migration and death 66

rates are inversely proporional to α and reach half of their maximal value when αi = αi. The division, 67

migration, and death rates are written as: 68

αi(N) =
AiN

k

N
k

+Nk
, δi = Dif(αi), ρi = Rif(αi), where f(αi) =

αi
αi + αi

. (1)

k is the slope of the change from maximal to minimal values of αi(N). The tumor size is denoted by N , and 69

is measured by the total number of cells at a given time instant, namely N = Np +Nm, with Nm and Np 70

being the number of migratory and proliferative cells, respectively. In f(αi) the division rate has exponent 71

arbitrarily chosen to be one to avoid introducing more parameters to the model. Fig. 1(A) shows how the 72

cell division rate as function of the total population size. The migration and death rates may be written as 73

functions of N if we replace αi by αi(N) (see Eq. 1): 74

g(N) =
αi(N

k
+Nk)

AiN
k

+ αi(N
k

+Nk)
such that δi = Dig(N), ρi = Rig(N). (2)

Now, the transition rates of the model are all written as functions of the cell population size (see Fig. 1). In 75

our simulations, we set ρp = ρm and σp = σm, and assume that the tumor is in a two dimensional space 76
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represented as a square grid of size n× n – in our simulations we set n = 150. Fig. 1(B) shows how the cell 77

migration and death rates depend on the population size. 78

(A) (B)

Fig 1. Division, death and migration rates given as functions of the tumor size. NT is the maximal number
of cells accommodated in our grid, namely, NT = n× n. (A) The cell division rate as a function of the cell
population size (Eq. 1). (B) We plot the Eq. 2 which correspond to the normalized migration and death rates

as functions of the tumor size, namely, g(N) = δi(N)/D = ρi(N)/Ri. Here g1 = αi

Ai+αi
and g2 = 2αi

Ai+2αi
.

We denote the probability of a proliferative cell being transformed into a migratory one after division by 79

Pν , defined as 80

Pν = 1− exp

(
−Npν
αp

)
. (3)

We propose the transformation probability to depend on the division rate of the proliferative phenotype. 81

When the cell division rate decreases there is a higher probability for the phenotype transformation. The use 82

of Eq. 3 for predicting the rate of appearance of the migratory phenotype from the proliferative assumes that 83

a longer doubling-time relates with a reduction on the amounts of metabolic resources. Hence, one may 84

assume a higher probability for the appearance of a migratory phenotype as the value of α reduces (see Eq. 85

1). Since we are dealing with a pre-invasive regime, here we neglect the phenotypic transition from the 86

migratory to the proliferative state [29]. Note that our formula corresponds to assume an exponential 87

probability of transformation of the proliferative phenotype that is similar to that presumed on the 88

probability of a cancer cell to appear in a tissue after a given amount of cell cycles [41]. Such an ansatz is a 89

first approximation and further investigation on it, based on experimental data or new experimental designs, 90

should be encouraged. 91

Tumorigenesis dynamics simulation. 92

Fig 2 summarizes our algorithm for simulating emergence of heterogeneity during tumorigenesis. We propose
a dynamics based on a finite discrete time Markov chain. At each iteration we select one cell of the
population with a probability 1/N . Once a cell is selected we consider the transitions that it may perform
accordingly with its neighborhood: if the cell has one or more vacant first neighbors the possible transitions
are division, migration and death; if there is no vacant first neighbors the possible transitions are quiescence
or death. The migratory phenotype is generated with non-null probability during division of the proliferative
phenotype. We denote the probability of the i-th cell type to perform a transition that has rate ri(N) by
Pr(i), where the transitions are division, migration, death, quiescence, respectively, denoted by

r ∈ T ≡ {α, δ, ρ, σ}.

The probability for the transition of rate r to happen with the i-th cell type is 93

Pr(i) =
ri(N)∑

i=p,m

∑
r∈T ri(N)

, i = p,m and r ∈ T. (4)
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This equation indicates that the probability of a given transition to happen depends on the proportion of its 94

correspondent rate in comparison to the total rate of any transition to happen. 95

Although intracellular phenomena are occurring at continuous time our simulations use a discrete time 96

approach and demands the proposition of a correspondence rule between these two time scales. We start 97

assuming that each cell of the tumor is desynchronized from their companions. Thus, one may assume the cell 98

state transitions to be randomly distributed among all Ni cells of i-th phenotype of the population. During a 99

given time interval ∆t the expected amount of the i-th cell type undergoing division (denoted by Lα(i)), 100

migration (Lδ(i)), death (Lρ(i)), and quiescence (Lσ(i)) satisfies: Lr(i) ∝ riNi∆t, with r ∈ T . For example, 101

the amount of divisions of cell type p during the interval ∆t satisfies Lα(p) ∝ αpNp∆t. One may compute 102

the expected total amount of transitions occurring during an interval ∆t by Q ∝
∑
i=p,m

∑
r∈T Lr(i) such 103

that the time interval ∆t corresponding to one iteration in our Markov chain is estimated by 104

∆t ∝ 1∑
i=p,m

∑
r∈T riNi

. (5)

Therefore, at each iteration of our algorithm the time is incremented by the quantity ∆t above, and that 105

enable us to relate the discrete time of the simulations with the continuous time of the laboratory. 106

In our model, the cell density can be defined as the fraction of vertices of the domain occupied by a cell, 107

namely N/n2, Np/n
2, and Nm/n

2. Our simulations enable us to obtain the dynamics of the cell density 108

within the tumor domain and compare our results with the widely used Gompertz model [13,15]. In the 109

Gompertz model we the population density is denoted by x(t), the carrying capacity by K, and the cell 110

division rate by γ. The Gompertz function is written as 111

x(t) = K

(
x(0)

K

)exp(−γt)

(6)

where x(0) indicates the initial cell density. The Gompertz function belongs to the class of sigmoidal 112

functions and is bounded above (and below) at K (and x(0)). At earlier time instants (when t << γ) it 113

describes a population growing exponentially. For for t > − 1
γ−1 ln

[
− 1

ln (x(0)/K)

]
the population density 114

asymptotically approaches K, while the growth rate goes to zero. Some examples of the Gompertz curve are 115

shown in blue in Figs.3(A)-3(C). 116

Results 117

The simulations of our model are presented considering the dynamics of the total population density, the 118

density of the sub-populations, and the spatial dynamics. We show that our model allows a tumor growth 119

description by a Gompertz-like curve or as a two phases process. Then we show that the proportions of the 120

densities of the two cell phenotypes may differ even in two tumors of the same size at a given time stage. 121

Finally we show how a tumor of the same size can have different spatial distribution of its cell 122

sub-populations. In all simulations we use Ap = 4Am = 1, Dm = 10Dp = 1, Rm = Rp = 1/3, and 123

σp = σm = 1/100. For each set of parameters used we simulated multiple trajectories to capture stability of 124

our dynamics and its average behavior The time t has arbitrary units and frames of the simulation are taken 125

while t ≤ 700AU. That corresponds to the steady state of our model, when the population densities stop 126

changing with time. We assume the that the size of the boundaries of the spatial domain of our simulation 127

are fixed and that cells are forbidden to cross them. 128

The population density dynamics: Gompertz-like and two phases growth 129

Fig. 3 shows the population density dynamics obtained by computational simulations of our model for 130

different parameter regimes. We only show the total cell population density for ν = 10−7. The trajectories 131

for N equals to 1125, 2250, 4500, and 6750, are, respectively, indicated by circles, triangles, squares, and 132

stars, as shown in Fig. 3(A) legends. The trajectories at Fig. 3(A),3(B) and 3(C) are adjusted by a 133
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Read input parameter and initial condition

t ≤ 700STOP

1. Update N and grid state.

2. Select a cell of type i with probability (1/N)

3. Update rates

4. Check the number of nearest empty vertices (E)

E≥ 1?

1. Update Pαi, Pδi and Pρi

2. Generate r1 ∼ U(0, 1)

1. Update Pρi and Pσi

2. Generate r2 ∼ U(0, 1)

Transition? Transition?

Divide Migrate Die Quiesce t = t + ∆t

NO

YES

YES NO

C1

C2

C3

C5

C4

(A) Main program

Read input parameter: i,ν,αp(N),Np

i = p?

1. Update Pν

2. Generate r3 ∼ U(0, 1)

r3 < Pν

p becomes m

m becomes m

END

YES

NO

NO

YES

(B) Cell division function

Fig 2. Flowchart representing the algorithm to simulate the tumor growth dynamics. We start with t = 0
and at each iteration the time is incremented by ∆t as defined by Eq. 5. A single cell is chosen with uniform
probability among all cells in the domain. The occupancy of the vertices at one edge distance from the cell is
evaluated: i) if one or more vertices are empty the cell may duplicate, migrate or die accordingly with
probabilities defined by Eq. 4; ii) if all vertices are occupied, the cell may quiesce or die. If we chose a
proliferative cell that undergoes a division, then there is a probability, given by Eq. 3, that it is transformed
in a migratory cell. Let us consider the random numbers ri and the probabilities of Eq. 4, the probabilistic
conditions within the diamonds are given by: (C1) r1 < Pαi ; (C2) Pαi < r1 < Pαi + Pδi ; (C3)
r1 > Pαi

+ Pδi ; (C4) r2 < Pρi ; (C5) r2 < Pσi
. The expression r ∼ U(0, 1) indicates a pseudo random number

r obeying a uniform probability distribution in the interval [0, 1).
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Gompertz function (blue lines), and the fitting parameters given in Table 2 of supplementary material. The 134

curves of Fig. 3(D) show existence of two growth phases followed by a plateau and the black lines in 3(D) are 135

interpolations aiming to simplify the visualization of our results. 136

(A) (B)

(C) (D)

Fig 3. The population density growth accordingly with our simulations. A Gompertz-like growth
is shown in Figs. (A)–(C) while a two phase growth is shown in Fig. (D). All trajectories were obtained
using αi = Ai/23.64, for i = p,m, and ν = 10−7. The symbols related to the values of N in all trajectories
are shown in keys within Fig. (A). The values of ki’s in Fig. (A) are kp = km = 1, in Fig. (B) are
kp = km = 10, in Fig. (C) are kp = 1, km = 10 and in Fig. (D) are kp = 10, km = 1. The parameters for the
Gompertz model adjusting to the simulation curves are given in Table 2.

In our simulations all trajectories of total cell population density reach a saturation value. As expected, 137

Figs. 3(A), 3(B), 3(C) and 3(D) show that the saturation density increases with the value of N for a fixed 138

set of parameter values. Additionally, Figs. 3(A) and 3(B) indicate that for the same value of N the cell 139

density saturation value is smaller for a higher value of k’s. The strength of the regulation of the saturation 140

density can also be noticed on Figs. 3(C) and 3(D) where only one value of k is sufficient to induce higher 141

saturation values. Additionally, the smaller value of k for the proliferative phenotype is sufficient to ensure 142

this cell to keep dividing even when the population is greater (see Eq. 1) and enables the saturation densities 143

to be comparable to those shown in Fig. 3(A). However, when we have the inverse condition of the km being 144

the smaller, there are two growth phases, the former when the population is small and the division rate of 145

the proliferative phenotype is significant, and a second when the population has gone beyond N and only the 146

division rate of the migratory population still has a significant value. The Figs. 3(A),3(B) and 3(D) are all 147

adjusted by a Gompertz curve, as generally observed in culture experiments [13,15] while the curve of Fig. 148

3(D) have also being observed earlier in the context of bacterial growth and were called diauxies [42]. 149

Analysis of the sub-populations shows diverse dynamics and stationary 150

configurations 151

Fig. 4 shows the dynamics of the total cell density in black and the corresponding dynamics of the densities 152

of the sub-population of proliferative (in green), or migratory (in red), cells for N = 6750. The solid circles 153

(and triangles) are indicating values of the densities when we have ν = 10−5 (and ν = 10−7). The parameter 154
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values were chosen to demonstrate that at a sufficiently large time the cell density of the whole tumor will be 155

similar. However, Figs. 4(A) – 4(C) show that for the similar stationary cell density one may have different 156

densities of the sub-populations, accordingly with the value of ν. 157

(A) (B)

(C) (D)

Fig 4. Figures showing sub-populations dynamics underlying total densities growth curve.
These four figures brings a summary representing qualitatively different sub-populations evolution over time.
For these simulations we set N = 6750. For Figs. (A) and (C) we set αi = Ai/100, and for Figs. (B) and (D)
we set αi = Ai/23.64 . We consider two tumor trajectories, denoted by the solid squares and circles, having
ν = 10−7 and ν = 10−5. The remaining parameter values are: in Fig. (A) kp = km = 1; in Fig. (B)
kp = km = 10; in Fig. (C) kp = 1, km = 10; and in Fig. (D) kp = 10, km = 1.

This is a useful strategy to demonstrate how heterogeneity might develop in a tumor. Fig. 4(A), with 158

km = kp = 1, shows that the speed at which the system reaches the total cell density depends on ν. On the 159

other hand, the system reaches steady state at similar speeds in Fig. 4(B) (km = kp = 10). When the values 160

of km and kp are different the dynamics of the total cell density has a stronger relation with ν. Fig. 4(C) 161

shows a principle of a diauxie for ν = 10−7 while there is a clear diauxie for ν = 10−5 in Fig. 4(D). The 162

sub-populations dynamics also follow different patterns accordingly with the value of ν. The growth of the 163

migratory sub-population is faster for ν = 10−5. During initial instants the proliferative sub-population 164

growth is similar for both values of ν but there is always a plateau when ν = 10−5. Note that the 165

proliferative sub-population is extinguished in Fig. 4(D), and the existence of two non-simultaneous diauxie 166

curves in Fig. 4(C) when ν = 10−5. Furthermore, in Fig. 4(B) we see that the proliferative sub-population 167

reaches a maximum before reducing towards its steady state density. 168

Multiple spatial patterning dynamics gives insights on heterogeneity 169

Fig 5 presents qualitatively different spatial dynamics obtained with simulations of our model for N = 6750, 170

ν = 10−5. Each row refers to the dynamics obtained with one set of parameters with earlier configurations 171

presented on leftest graphs. All initial conditions are the same: there is one proliferative cell. For 1st row we 172

set kp = km = 1, and α = Ai/100 and for 2nd row we set α = Ai/2.02. 173

The heatmaps of the first row, Figs. 5(A),5(B),5(C),5(D),5(E) and 5(F) show that the two 174

sub-populations coexist as two separated phases (approximately), with the migratory population moving to 175
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(A) t = 18.41 (B) t = 34.22 (C) t = 125.45 (D) t = 163.26 (E) t = 251.47 (F) t = 550.28

(G) t = 18.43 (H) t = 34.47 (I) t = 126.84 (J) t = 165.62 (K) t = 271.63 (L) t = 585.61

Fig 5. Heatmaps showing spatial configurations of our population dynamics at different time
instants. We consider two different qualitative patterns of spatial occupation of the domain. For simulation
results shown in both rows we set kp = km = 1, N = 6750, ν = 10−5 where the results shown at first and
second row were, respectively, obtained with αi = Ai/100 and αi = Ai/2.02.

the surroundings and the proliferative remaining at the inner parts of the domain. The second row, Figs. 176

5(G),5(H),5(I),5(J),5(K) and 5(L) shows a strong mixing between the cells of both sub-populations. In both 177

rows, the population growth has an approximately radial symmetry. The mixing of the sub-populations is 178

understood by means of the higher diffusion rates of the cells in the second row, as we may infer from the 179

values of α and Eq. 1. 180

Discussion 181

In this manuscript we present a spatial stochastic model for simulating heterogeneity in tumor growth 182

dynamics. We propose an effective approach for describing the cell growth kinetics that recovers the 183

sigmoidal-like dynamics of cell densities. The sigmoidal growth has been widely observed in culture 184

experiments with data being adjusted, for example, by the Gompertz model [15,16,43,44]. The sigmoidal 185

behavior relates with exhaustion of resources in culture experiments which, in our model, is represented 186

effectively by the division rate being dependent of tumor size. Additionally, we also propose that the 187

migration and death rates are inversely proportional to the division rate, to indicate the higher potential of 188

cells to start migrating or dying when resources are scarce. The heterogeneity in our model is represented by 189

means of two cell phenotypes, one being predominantly migratory and the other proliferative. That enables 190

us to investigate how the diverse cellular phenotypes coexisting in a tumor affects its growth. Additionally, it 191

helps us to characterize the variability of spatial distribution of the sub-populations of cells of two tumors of 192

the same size, a potential refinement of cancer staging. 193

The dichotomic characterization of cancer cells as proliferative or migratory originated in observations 194

made with central nervous system tumor cells line [45], and lead to the formulation of the ”go or grow” 195

hypothesis. That implies on considering the migratory and proliferative phenotypes as mutually exclusive, 196

with the tumor cells deterring proliferation to favor migration. However, a recent study using 35 cell lines of 197

tumors originated in three different tissues demonstrated that this exclusive behavior is not general [30]. 198

Indeed, the authors conclude that the cancer cells that they analyzed do not defer proliferation for migration 199

and these two characteristics of a tumor cell are regulated differently depending on their tissue of origin. 200

Such an observation favors our approach as it permits describing the cell phenotypes as an spectrum ranging 201

from mutually exclusive proliferative or migratory towards different combinations of values of the migration 202

and division rates of a given cell, in short, a ”go and/or grow” description. 203

One prominent effect of the tumor heterogeneity represented by the two-phenotypes is the diauxie-like 204

curve governing the total cell density. That occurs when the sub-population of proliferative cells grows to a 205

maximum value and decays while the number of migratory cells keep increasing (see Fig. 4(C)). Such a result 206

resembles the cancer immunoediting process having an initially slow growth, when the immune system 207
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eliminates modified cells, followed by an equilibrium, when the immune system prevents the tumor to keep 208

growing, and the escape, when the tumor cells overcome the immune suppression and tumor growth restarts 209

with activation of the migratory processes [46,47]. 210

Our approach also allows investigating the spatial patterns of distribution of the two cell phenotypes 211

accordingly with their kinetic constants. Indeed, in each row of Fig. ?? we take a representative pattern. 212

The first row shows a weak mixing of the two cell sub-populations which contrasts with the highly mixed 213

sub-populations at the second row. Note, however, that the populations on those two row grow at similar 214

rates. In the simulation of the first row we consider a small value of α, which implies on a slow migration 215

even when we have small values for the cell division rate (see the Eq. 1). Hence, there is a slow spread of 216

cells through the available space and no additional explicit interaction between cells is needed to ensure 217

separation between the sub-populations. On the other hand, the cells of the second column are well mixed 218

and α is much greater. That implies on the migration rate that is greater even for smaller division rates such 219

that the two sub-populations become well mixed because of their higher mobility. 220

Our approach is effective, in the sense that we neglected the microscopic phenomena underlying a given 221

cellular phenotype, such as the switching between the proliferative and migratory phenotypes depending on 222

the amounts of the Mitf and Brn2 [29], or the relation of the cell metabolism and the quantities of RKIP and 223

BACH1 [6]. Establishing the relationship between the cell phenotype and the amounts of its molecular 224

components is an important challenge which would help us to understand the biological meaning of the 225

constant k. Fig. 1(A) shows a graph for the division rate as function of N , and we note that the greater is k, 226

the steeper is the decay of the division rate with the growth of the population. Particularly, note that for 227

k = 1 the decay is slow and the division rate may not approach zero. Hence, k might also be interpreted as 228

an index for the cell’s sensitivity to contact inhibition [48,49], where lower values of k imply on lower 229

sensitivity to contact inhibition, and higher cell densities. Indeed, such an interpretation has some support in 230

our simulations, as we note that lower values of k’s result in greater asymptotic cell densities as shown at 231

Figs. 3(A) and 3(B). Additionally, we note that for larger values of α, as shown in Fig. 4(D), the 232

sub-population having the smaller k, even if it has the migratory phenotype, can reach larger densities. 233

The occurrence of multiple biological scenarios is expected in a model having multiple parameters and its 234

further refinement will require the guidance of experiments. For example, one might measure the decay of 235

the division rate as function of the cell density to establish a clearer interpretation of the parameter k. 236

Additionally, co-culture experiments might be used to understand how k affects the prevalence of a given 237

cellular phenotype during the different phases of the tumor growth. Those additional results would support 238

both the verification of the usefulness of our approach and to determine its scope of application in cancer 239

research. 240
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Supporting information 353

S1 Video Video with frames from simulation which input parameter set were kp = km = 1, N = 6750, 354

αi = Ai/100, ν = 10−5 . In this simulation we observed that both subpopulation are quite immiscible. 355

S2 Video Video with frames from simulation which input parameter set were kp = km = 1,N = 6750, 356

αi = Ai/2.02, ν = 10−5 . In this simulation we observed that both subpopulation are totaly miscible. 357

S3 Video Video with frames from simulation which input parameter set were kp = km = 10,N = 1125, 358

αi = Ai/2.02, ν = 10−5 . In this simulation we observed that from a given moment the cells spread through 359

the domain. 360

S4 Video Video with frames from simulation which input parameter set were kp = km = 10, N = 1125, 361

αi = Ai/100, ν = 10−5. In this simulation we observed that from a given moment the cells remain quite 362

closely . 363

S5 Video Video with frames from simulation which input parameter set were kp = 10, km = 1,N = 1125, 364

αi = Ai/100, ν = 10−7 . In this simulation we observed that the proliferative cell growth and goes to 365

extinction meanwhile the migratory cells emerge from borders forming cell conglomerates, but in long time 366

intervals the population assume an irregular shape. 367

S6 Video Video with frames from simulation which input parameter set were kp = 10, km = 1,N = 6750, 368

αi = Ai/100, ν = 10−7 . In this simulation we observed that the proliferative cell growth but takes a long 369

time interval to goes to extinction, the migratory cells once again emerge from borders but in this situation 370

the population no longer assumes an irregular shape. 371

S7 Video Video with frames from simulation which input parameter set were 372

kp = 1, km = 10, N = 6750, αi = Ai/100, ν = 10−7. In this simulation we observed that migratory do not last 373

time enough to survive and proliferate. 374

S1 Table. Table containg Gompertz model’s parameters value 375

Figure
N

Gompertz-model parameters
r

x(0) K γ

3a

1125 0.010 0.404 0.024 0.996
2250 0.013 0.698 0.022 0.997
4500 0.009 0.875 0.029 0.999
6750 0.005 0.913 0.035 0.998

3b

1125 5e-8 0.062 0.252 0.999
2250 3e-6 0.123 0.170 0.999
4500 5e-6 0.247 0.129 0.999
6750 9e-6 0.372 0.109 0.999

3c

1125 0.010 0.406 0.024 0.991
2250 0.013 0.699 0.023 0.992
4500 0.009 0.877 0.029 0.995
6750 0.054 0.914 0.035 0.997

Table 2. Parameters values for adjusting the Gompertz model to simulation curves shown in Figs. 3(A),
3(B), and 3(C). The Pearson’s correlation coefficient between simulation data and the Gompertz curve is
denoted by r.
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