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Abstract

Both the Global Neuronal Workspace (GNW) and Integrated Information Theory (IIT) posit that highly complex
and interconnected networks engender perceptual awareness. GNW specifies that activity recruiting fronto-
parietal networks will elicit a subjective experience, while |IT is more concerned with the functional architecture
of networks than with activity within it. Here, we argue that according to IIT mathematics, circuits converging on
integrative vs. convergent yet non-integrative neurons should support a greater degree of consciousness. We
test this hypothesis by analyzing a dataset of neuronal responses collected simultaneously from primary
somatosensory cortex (S1) and ventral premotor cortex (vPM) in non-human primates presented with auditory,
tactile, and audio-tactile stimuli as they are progressively anesthetized with Propofol. We first describe the
multisensory (audio-tactile) characteristics of S1 and vPM neurons (mean and dispersion tendencies, as well
as noise-correlations), and functionally label these neurons as convergent or integrative according to their
spiking responses. Then, we characterize how these different pools of neurons behave as a function of
consciousness. At odds with the [IT mathematics, results suggest that convergent neurons more readily exhibit
properties of consciousness (neural complexity and noise correlation) and are more impacted during the loss
of consciousness than integrative neurons. Lastly, we provide support for the GNW by showing that neural

ignition (i.e., same trial co-activation of S1 and vPM) was more frequent in conscious than unconscious states.

Overall, we contrast GNW and IIT within the same single-unit activity dataset, and support the GNW.
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Introduction
Understanding the neural architecture enabling arousal or wakefulness (i.e., level or state of consciousness)
and conscious experience (i.e., content of consciousness) remains a central unanswered question in systems
neuroscience despite its profound clinical implications in coma, vegetative-state, minimal-consciousness, and
general anesthesia [1-3]. While in recent years a number of electrophysiological measures of

consciousness/awareness have been proposed [4-6], these tend to be more practical than principled, and

grounded more in the realm of engineering than neurobiology.

Lacking a mechanistic account of consciousness, a number of theorists and researchers have started from
empirical observations or phenomenological axioms to derive consciousness theories. A number of these
theories share many commonalities - as well as a number of practical and conceptual differences — as
exemplified by two of the most prevailing and influential of these theories: Global Neuronal Workspace (GNW,

[7, 8]) and Integrated Information Theory (lIT;[9-11], but see [12-17], for a number of other theories).

The GNW posits that an external stimulus will evoke a conscious experience if the associated neural
information is widely distributed across distinct brain areas and networks — most prominently in the pre-frontal
cortex [8]. Rendering sensory information globally available results in a coherent neural assembly of sustained
activity and is most readily indexed via “neural ignition”, the non-linear process whereby in unconscious states
neuronal activation profiles remain encapsulated within their specialized subsystems, whereas in conscious
experiences these activation patterns are widely distributed (see [18] for experimental evidence and [19] for a

recent computational treatise).

In a similar manner, IIT is a systems-level theory of consciousness also postulating that complex and highly
interconnected neural networks support subjective experience [11, 20]. In contrast to GNW, however, the
mathematics developed in hand with the IIT [9, 11] are argued to apply to all physical networks, and in turn IIT
is arguably more focused on the architecture of networks rather than the activity within these. In more detail,
Tononi and colleagues argue that each conscious experience is highly informative, as it represents a particular

instance among a vast repertoire of potential experiences, and is highly unified, unable of being deconstructed
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into sub-experiences that are each independently perceived [21]. In turn, the IIT specifies that an organism
may support conscious experience if imbued with an information processing architecture that is capable of
supporting both high differentiation (i.e., large repertoire of possible states) and integration (i.e., strong

statistical dependencies between system components).

Unfortunately, the neurophysiological data that bears directly on these theories is limited, in particular the IIT
given its computational overhead. Indeed, a strength of the IIT is that it explicitly generates a metric of
consciousness level; phi (®). This value, phi, can in principle be computed for any information processing
system, as long as the transition probability matrix between nodes of the system are known, and in essence is
proportional to the amount of information gained by knowing the state of all nodes within the system vs. having
access to a limited purview of the system (see [9] for more detail). Regretably, computing this measure in
complex biological systems is impossible from a practical standpoint due to its combinatorial search problem

(but see [22, 23] for interesting approaches circumventing current computing limitations).

In an effort to provide empirical evidence germane to theories of consciousness, we propose here simple
neurophysiological benchmarks for consciousness as derived from the GNW and IIT, and test them empirically
in single unit recordings in non-human primates. Of note, we must emphasize that the predictions derived
below, are according to IIT mathematics and are logical consequence to |IT and GNW literature, yet are not
necessarily put forward explicitly by either IIT or GNW theorists. Further, these predictions bear on the nature
of neural processing according to these theories, and are mute regarding “what it feels like” [24] or the “Hard
Problem” [25] of consciousness. With these caveats in mind, first we formalize the role of multisensory neurons
that integrate information from multiple sensory modalities (operationalized as being driven by multisensory
stimulation than to unisensory stimulation, “AND” gates) vs. those that converge yet do not integrate
(operationalized as responding to multiple sensory modalities but not being further driven by multisensory
conditions, “XOR” gates = “OR” gates — “AND” gates; see [26] for an early characterization of multisensory
neurons as Boolean gates). Interestingly, IIT mathematics suggests that a simple 3-node network (e.g.,
unisensory audio node, unisensory tactile node, and multisensory audio-tactile node) merging on an “AND”

gate bears a greater degree of integrated information than one converging on an “XOR” gate (® = 0.78 vs. ® =
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0.25, respectively; see Supplementary Information online, Figure S1 & S2). Thus, according to this
mathematical observation, it can be argued that as organisms’ transition from consciousness to
unconsciousness, neurons capable of integration should be those most readily impacted, hence providing us
with the first testable prediction (Prediction #1). Second, again derived from [IT mathematics, it may be
suggested that when organisms are conscious, neurons that integrate information should demonstrate neural
properties that are present during consciousness (see below) to a greater degree than do neurons that simply

convergent information (Prediction #2). Finally, according to GNW, neural ignition, indexed as single trial co-

activation, should be more readily apparent in conscious than unconscious states (Prediction #3).

To probe these predictions we simultaneously record single units from the primary somatosensory cortex (S1)
and ventral pre-motor cortex (VPM) of non-human primates as they were presented with audio, tactile, or
audio-tactile stimuli. The monkeys were trained to report the presence of a stimulus (regardless of sensory
modality) via button press in order to determine their trial-to-trial alertness during propofol-induced loss of
consciousness (see [27]). We first characterize both the central (e.g., mean) and dispersion (e.g., variance)
tendencies of multisensory responses in S1 and vPM neurons under normal wakefulness, and based on these
responses, divide neurons into integrative or convergent categories. We then describe the impact of
anesthesia on neuronal ascription to these categories as the animals lose consciousness (testing prediction
#1) and the degree to which they exhibit two neurophysiological indices that vary with consciousness -
complexity [28] and noise correlations [29] (testing prediction #2). Finally, the fact that recordings were
performed simultaneously within a known microcircuit (S1 & vPM; [30]) allowed us to examine single trial

neural ignition as a function of consciousness (testing prediction #3).

Results

Characterizing Multisensory Neurons in $1 and vPM

The data, drawn as a subset of a previously published dataset [27], comprise neural responses recorded from
293 single units in S1 (228 from Monkey E and 65 from Monkey H) and 140 single units in vPM (87 from
Monkey E and 53 from Monkey H) recorded across 26 sessions (16 in Monkey E and 10 in Monkey H).

Responses were recorded as the animals were presented with either combined audiotactile (AT), tactile only
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(T), auditory only (A), or no (N) stimuli, and monkeys performed a detection task in which they were asked to
press and hold a button for 3 seconds after sensory stimulation. Animals were progressively anesthetized with
Propofol, at a rate determined to induce a loss of consciousness within approximately 10 minutes (see [27],

and Methods). Thus, given the pattern of behavioral responses, trials can be divided into bins according to

whether the animal was in an aware and unaware state (see Methods).

Firing Rates in S1 and vPM neurons
Regarding the basic characterization of multisensory neurons in S1 and vPM, firing rates demonstrate 1) a
reliable response to stimulus onset (Figure 1, 1% and 3™ row; colored horizontal bars indicate evoked response
vs. baseline at p<0.01), and 2) a reduction in activity when monkeys were rendered unconscious, both with
regard to spontaneous (i.e., baseline,) and evoked activity (Figure 1, 1% and 3™ row; shaded area represents
the difference between evoked activity when animals were conscious and not at p<0.01). Further, as expected
given the known role of vPM in auditory processing [31], neurons in vPM, but not S1, generally responded to

auditory stimulation (interaction at p<0.01 between 60-210 ms post-stimuli onset).

Fano Factors in S1 and vPM neurons
Fano Factors (FF) were calculated to assess inter-trial response variability as a function of brain area,
stimulation type, and state of consciousness. It has been previously reported that FFs are larger in an
unconscious states (~2.2) than in conscious states [29]. Our results support a similar pattern, with FFs values
being on average 1.45 under unconscious conditions and 1.16 under conscious conditions. This pattern fits
nicely with the notion that conscious neural representations are more reproducible than unconscious ones [32].
The results also show an interesting pattern of variability changes as a function of stimulus onset. Whereas
prior work has shown a reduction in variability upon stimulus onset [33], the current results illustrate larger
reductions in FF upon stimulus presentation in unconscious as opposed to conscious states (see S/ for detail).
This observation illustrates that firing rates and FFs are not directly yoked to one another (see [29], for a similar
argument), and thus emphasizes the need to examine both central and dispersion tendencies in the response

profiles of these neural populations.


https://doi.org/10.1101/584516
http://creativecommons.org/licenses/by-nc-nd/4.0/

N~ = —w— =

bioRxiv preprint doi: https://doi.org/10.1101/584516; this version posted March 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

AT A N

— Aware — Aware — Aware — Aware
Unaware Unaware Unaware 3 Unaware

o AT

Firing Rate (Spikes/s)
o - N w
o - N w
‘ (% .
o - N w
o - N

-1 -1 -1
-500 (1] 500 1000 -500 (1] 500 1000 -500 (1] 500 1000 -500 0 500 1000

A el

Fano Factor (slope)S1
o
|
|
o
%
o
|
o

-0.1 -0.1 -0.1 -0.1
-0.2 -0.2 -0.2 -0.2
-0.3 -0.3 -0.3 -0.3
-500 0 500 1000 -500 0 500 1000 -500 0 500 1000 -500 0 500 1000
Time (ms) Time (ms) Time (ms) Time (ms)
15 15 15 15

Rl O

Firing Rate (Spikes/s)

o

o o -
o

o o - ¢
o

o o - ¢
o

o o -

s -0.5 -0.5 -0.5 -0.5
o 500 0 500 1000 500 0 500 1000 500 0 500 1000 500 0 500 1000
> 0.2 0.2 0.2 0.2

Fano Factor (slope)
o
§
° < €
| {
° < €
o
<«

0.1 0.1 -0.1 -0.1
0.2 — 0.2 . 0.2 0.2
-500 0 500 1000 -500 0 500 1000 -500 0 500 1000 -500 0 500 1000
Time (ms) Time (ms) Time (ms) Time (ms)

Figure 1. Time-resolved firing rates and Fano Factors in S1 and vPM as a function of state of consciousness.
Presentation of audiotactile (AT; purple) and tactile (T; blue) stimuli evoked a reliable response in S1, while additionally
the presentation of auditory (A; red) stimuli evoked a reliable response in vPM but not S1. Catch trials (N; black) did not
evoked an increase in neural responses vis-a-vis baseline firing rate (0 on y-axis). Fano Factors were generally larger
under states of unawareness than awareness (not depicted) and interestingly stimuli onset (0 on x-axis) quenched
variability in S1 (particularly onset of AT and T stimuli) but less so (and not differently between states of consciousness) in
vPM. The time-periods demonstrating a significant difference in evoked activity/FF as a function of state of consciousness
(aware = colored, unaware = gray) are shaded in gray, while periods demonstrating a significant response vis-a-vis
baseline are indicated by horizontal lines in each panel.

Multisensory Characteristics of S1 and vPM neurons

Following the observation that neural responses to stimulus presentation were most robust during the 500 ms

immediately following stimulus onset (above, see S/ for detail), we performed a spike count during this interval

to characterize the multisensory properties of neurons recorded (see [34] for a similar approach). The

multisensory integrative responses of these neurons were quantified in two ways: relative to the sum of the
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unisensory responses (i.e., relative to the additive prediction; Supra-Additivity Index), and 2) relative to the

most effective unisensory response (i.e., quantifying the magnitude of the enhancement or depression of

response; Enhancement Index [34, 35]. Here we report both indices for completeness, but operationally define

integrative neurons as those with an enhancement index >1 (as both previous reports and the current dataset

indicate that supra-additivity is rare in cortex (e.g., [36, 37]).
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Figure 2. Characterizing multisensory neurons. A neuron whose multisensory response is greater than the sum of
unisensory responses is said to be supra-additive (see A), while if it's greater than the greatest unisensory response it's
considered to demonstrate multisensory enhancement (see B). A and B illustrate firing rates above a spontaneous rate
(baseline-correction from -500 to Oms; y-axis = 0). The distribution of supra-additive indices (left column) and
enhancement indices (see Methods for detail) were normally distributed both in S1 (C and D) and vPM (E and F),
regardless of whether the animals were aware (black) or unaware (gray).

From the 293 single units recorded in S1, when the animals were aware 2 had a supra-additive index above 1

(supra-additivity index = 1.23 and 1.01, former depicted in Figure 2a), while another 2 (different neurons) had
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supra-additive responses when the monkeys were rendered unconscious (supra-additivity index=2.01 and
1.01). Thus, supra-additivity is seemingly rare in S1. On the other hand, 100 neurons had enhancement
indices above 1 when the animals were conscious (see Figure 2b, for example), a number that was reduced to
55 when the animals were rendered unconscious (25 of which indicating an Enhancement Index greater than 1
in both aware and unaware states). Regarding vPM neurons, of the 140 neurons recorded, when the animals
were aware 2 had a supra-additive index above 1 (Supra-Additivity Index=1.03 and 1.04), while only a single
neuron was supra-additive when the animals were unconscious (Supra-Additivity Index=1.16, distinct neurons
in aware and unaware cases). Twenty-nine vPM neurons had enhancement indices above 1 when animals
were aware, a number that remained stable at 29 when monkeys were unconscious (2 out of the 29 neurons
were the same in aware and unaware states). Hence, multisensory supra-additivity appears equally infrequent
in S1 as in vPM, and interestingly there are seemingly more neurons demonstrating multisensory

enhancement in S1 than vPM when animals were conscious (S1=34%, vPM=20%) yet approximately equal

proportions when the animals are unconscious (S1=18%, vPM=20%).

The distributions of supra-additive and enhancement indices are well described by a Gaussian distribution,
both when monkeys were conscious (chi-square goodness-of-fit test, p=0.28 and p=0.24, respectively) and
unaware (p=0.70, and p=0.90, respectively; see [36] for a similar observation; Figure 2c-f). Given this, we can
readily estimate the mean supra-additivity and enhancement indices associated with each neural population
and consciousness state (see for example [38], for an indication that frequency of multisensory neurons and
degree to which integration occurs may be dissociated). A 2 (recording area; S1 vs. vPM) x 2 (consciousness
state; aware vs. unaware) independent samples ANOVA on supra-additive indices (Figure 2c,e) revealed main
effects both of consciousness state (p=0.015) and recording area (p<0.01), where supra-additivity indices were
larger under aware (M=0.52, S.E.M=0.006) than unaware (M=0.50, S.E.M=0.007) states, and larger in S1
(M=0.52, S.E.M=0.006) when compared with vPM (M=0.48, S.E.M=0.006). There was no interaction between
these variables (p=0.47). On the other hand, a similar analysis with regard to enhancement indices suggested
no distinction between consciousness states (p=0.11), no main effect of recording areas (p=0.30), and no
interaction between these variables (p=0.09). These results highlight that the frequency and magnitude of

multisensory integration may be dissociated (e.g., [38] and that supra-additive — where both unisensory
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responses are considered — and enhancement indices — where only the maximal unisensory response is
compared to the multisensory response — may provide very different views into integrative capacity. Further,
the findings indicate a highly heterogeneous population. Taking the example of the enhancement indexes in
S1 (from which a representative multisensory integrative pool may be drawn, N=100, vs. N=29 in vPM) this
metric indicates no overall change in the amount of integration at a population-level and across states of
consciousness, yet examination of the classification of particular neurons reveals dramatic differences; shifting

from 100 to 55 neurons in S1, only 25 of which were classified as integrating information both in aware and

unaware states.

Fortunately within the current context aimed at examining theories of consciousness (e.g., lIT) we can leverage
this variability to examine the outcome of neurons labeled as integrative or as convergent when animals are
rendered unconscious. Figure 3 depicts the non-mutually exclusive compartmentalization of integrative and
convergent neurons when monkeys were conscious. In this categorization scheme, neurons with an
enhancement index greater than 1 were considered to integrate information. In the conscious state, 43% of
neurons in S1 respond to both audio and tactile stimuli, and thus can be categorized as convergent (figure 3
top left). For vPM, this value is 44% (figure 3 bottom left). When the categorization is done based on integrative
criteria, 52% of neurons in S1 were found to integrate auditory and tactile information (i.e., respond to AT+(AT>
max (A, T); figure 3 top right), while 33% of neurons in vPM were categorized as integrative (figure 3 bottom

right).
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Figure 3. Non-mutually exclusive classification of neurons in S1 (top row) and vPM (bottom row) as convergent,
integrative, unisensory, or non-responsive. Left column; Neurons whose convolved firing rate excited their
spontaneous rate plus 2 standard deviations for at least 10ms between Oms and 1000ms post-stimuli onset were
responsive. If they responded to both tactile (T) and auditory (A) stimulation, they were considered convergent (black). On
the other hand, if they responded solely to T or A stimulation, they were respectively labeled as tactile (blue) and auditory
(red). Right column; Differently from the case of convergence, in order to characterize a neuron as integrative, their
response profile to audio-tactile (AT) stimulation had to be examined. First, neurons were classified as responsive or not
(white; as above). Next, if the neuron was responsive to AT stimulation (defined as above) we queried whether during
some epoch between Oms and 1000ms post-stimuli onset their firing rate to AT stimulation was greater than the sum of A
and T firing rates (supra-additivity; orange) or the maximum of A and T firing rates (enhancement; purple). Lastly, if a
neuron was responsive to AT stimulation but responded less to AT than to unisensory stimulation, the neuron was
classified as demonstrating multisensory depression (green). Lastly, if they neuron did not respond to AT or A stimulation,
but did to T, it was labeled as tactile (blue), while if a neuron did not respond to AT or T, but did to A, it was labeled as
auditory (red).

Importantly, in order to examine how this categorization is changed when animals are rendered unconscious
(Prediction #1) and to quantify the extent to which they exhibit properties of consciousness (Prediction #2), we
created mutually exclusive groups. Neurons that failed to respond to the auditory and tactile stimulus

combination more that to the individual stimuli were classified as strictly convergent (convergent yet not

11


https://doi.org/10.1101/584516
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/584516; this version posted March 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

integrative, or “XOR” gates). Conversely, neurons that responded more vigorously to the multisensory
combination were labeled as integrative neurons, and were operationally categorized as “AND” gates. This
bifurcation of neurons into exclusive groups is important from a statistical perspective (in order not to create
groups that are partially overlapping and overlapping to different extents across states of consciousness and
recordings areas), and most importantly, from a theoretical perspective, creating “AND” and “XOR” neuronal
pools. However, given the initial number of recorded neurons in S1 and vPM, this categorization scheme
yielded a sufficient number of convergent (N=125) and integrative (N=64) neurons in S1, but not in vPM

(convergent, N = 61; integrative, N = 8). Thus, for the analyses specifically probing the difference between

convergent and integrative neurons in light of lIT (Predictions #1 and #2), analyses are restricted to S1.

Testing Consciousness Theory in Multisensory Neurons; Information Integration Theory
Prediction #1; Are integrative neurons most readily impacted by loss of consciousness? A first
neurophysiological prediction that may be derived from the IIT is that network structured around an integrative
neuron should lead to a greater degree of consciousness than one structured around a convergent neuron
(see SI and Introduction). Hence, as an organism is rendered unconscious, the prediction is that integrative

neurons should be most impacted.

As illustrated in Figure 4a, while a significant portion of S1 neurons labeled as convergent when the monkey
was conscious became responsive exclusively to touch (42.1%) following loss of consciousness, others were
rendered non-responsive (24.1%) or transitioned to responding exclusively to auditory stimulation (2.5%).
31.0% of neurons remained responsive to both auditory and tactile stimulation following loss of consciousness.
On the other hand, of S1 neurons labeled as integrative when the animal was conscious, nearly two-thirds
(62.9%) remained integrative following the loss of consciousness. 18.6% of integrative neurons became
exclusively responsive to tactile stimulation, 2.2% became exclusively responsive to auditory stimulation, and
16.3% became unresponsive. A Chi-squared test demonstrated that these proportions (62.9% remaining as
integrative but only 31.0% remaining as convergent) were significantly different from one another (p=0.001).
Thus, and in contrast to the prediction derived from IIT, convergent neurons were more impacted when

monkeys became unaware. It must be noted that this occurred despite the fact that arguably the requirements
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for being classified as “integrative” (i.e., responding to AT stimuli beyond their spontaneous and responding to
AT stimuli beyond the maximal unisensory response) was more stringent than the bar required for a neuron to

be classified as “convergent” (i.e., responding to A and T stimuli beyond their spontaneous firing rate).

We further examined whether these anesthesia-induced changes in neuronal responsiveness scaled with the
degree to which neurons may be considered to be integrative. While supra-additivity or multisensory
enhancement are considered to be the hallmarks of multisensory integration [27], many multisensory neurons
respond less vigorously to multisensory stimulation than their maximal response to unisensory stimulation (i.e.,
multisensory depression; [35]. Nonetheless, these neurons are still considered to play an important role in
multisensory integration [39]. As illustrated in Figure 4b, while 56.4% of neurons exhibiting multisensory
enhancement during consciousness had this enhancement preserved when the animal was rendered
unconsciousness, only 36.8% of neurons that were categorized as exhibiting multisensory depression
remained in that category upon the transition to unawareness. These proportions were significantly different
from what is expected under the null distribution (p=0.04). In sum, not only are integrative neurons not most
readily impacted during the loss of consciousness, but the more a neuron is driven by paired stimulation

toward response enhancement, the more likely it is to retains this enhancement during unconsciousness.
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Figure 4. Transitions of S1 convergent and integrative neurons into distinct categories as monkeys are
anesthetized. A) The largest proportion of convergent neurons when monkeys were aware (black, leftmost) became
responsive solely to tactile stimulation (blue) when monkeys were rendered unconscious (second column), while 31.0%
remained as convergent (black, second column). On the other hand, the majority of integrative neurons when monkeys
were aware (rightmost column) remained as integrative (purple, 3¢ column). B) Similar to the contrast between
convergent and integrative neurons, when contrasting neurons exhibiting multisensory depression (i.e., responds to AT
but to a lesser extend than to unisensory stimulation) and enhancement (i.e., responds to AT and to a greater degree than
to unisensory stimulation), results suggests that the larger the multisensory gain, the more neurons remain as integrative
(vs. not) when rendered unconscious.

Prediction #2; Do integrative neurons most readily demonstrate neural properties associated with
consciousness? In addition to probing the fate of convergent and integrative neurons as the animals were
rendered unconscious, we also probed the degree to which these neurons exhibit neurophysiological
properties associated with conscious states. The empirical measure most commonly associated with the IIT is
the perturbation complexity index (PCI; [6]) and a component of this index, Lempel-Ziv complexity (LZ; [28]). In
short, PCI is calculated by perturbing the cortex via transcranial magnetic stimulation (TMS) in an attempt to
engage a distributed brain network, and subsequently compressing the spatiotemporal patterns of neural
activity generated by the perturbation (using LZ) to measure the complexity of the response. In theory, the
more distributed and recurrent the network, the larger should be the spatiotemporal complexity evoked by the

perturbation. This empirical measure was directly derived from the IIT [11] and has been shown to successfully
14
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differentiate between distinct levels of consciousness [6, 40]. In more simple applications, LZ has also been
applied to resting state [41, 42] and stimulus evoked [43, 44] neural activity (most commonly in scalp EEG
datasets), and similar to PCI, has been shown capable of differentiating between levels of consciousness [41,
4?2]. Here we first characterize time-resolved LZ complexity in spike trains as a function of consciousness state
and modality of stimulation. The analysis is performed both on baseline-corrected values (in order to compare
the changes evoked by sensory stimulation) and on non-baseline-corrected values (in order to more generally
examine the relationship between LZ complexity in spike trains and level of consciousness). After establishing
predictions based on the state of consciousness in the neural population as a whole, we then bifurcate S1

neurons into convergent or integrative pools, and examine which cohort most faithfully exhibits LZ complexity

values that tracks the animal’s consciousness state.

As illustrated in Figure 5A, overall LZ complexity was greater (across the entire epoch, see S/) when monkeys
were unaware (Figure 5, 1% and 3™ rows respectively for non-baseline corrected LZ in S1 and vPM) as
opposed to aware. In addition, stimulus evoked suppression of complexity (Figure 5, 2" and 4™ rows) was
more sustained under conscious than unconscious conditions, particularly in S1 (Figure 5A, shaded areas are
significantly different between consciousness states and horizontal colored lines in baseline corrected panels
show interval of evoked reduction in complexity, see S/ for detail). These general properties of LZ complexity
were next indexed in convergent and integrative neurons. As depicted in Figure 5B, a 2 (consciousness state;
aware vs. unaware) x 2 (neuron type; convergent vs. integrative) ANOVA on non-corrected values
demonstrated a main effect of awareness (aware; M=0.80, S.E.M=0.001; unaware; M=0.87, S.E.M=0.002;
p<0.01), yet no main effect of neuron type (all p>0.11). Most interestingly, however, there was a significant
interaction between these variables (p<0.01), as convergent neurons (M=0.79, S.E.M.=0.002) had marginally
lower LZ complexity than integrative neurons (M=0.81, S.E.M.=0.002) when monkeys were aware (p=0.052),
yet this pattern reversed when monkeys loss consciousness (integrative; M=0.86, S.E.M.=0.002; convergent;
M=0.88, S.E.M=0.001, p=0.045). Thus, when quantified using uncorrected LZ values, convergent neurons
tracked the state of consciousness — i.e., they exemplified the LZ behavior expected from a given state of
consciousness (Figure 5A) — better than did integrative neurons. A similar analysis corrected for different

baselines indicated a main effect of consciousness state (p<0.01 between 50ms and 700ms post-stimuli
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onset), but failed to indicate a difference between neuron types (all p>0.02), or an interaction between these

variables (all p>0.09). Hence, while the overall level of LZ complexity appeared to differentiate between

convergent and integrative neurons, the duration and/or magnitude of the change in LZ complexity during

evoked responses did not.
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Figure 5. A; Time-resolved evoked Lempel-Ziv Complexity in spiking activity in S1 (top 2 rows) and vPM (bottom
2 rows) neurons as a function of consciousness state (aware = colored; unaware = gray) and sensory stimulation
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(AT = purple, T = blue; A = red; none = back). Most strikingly as illustrated when time-courses were not corrected for
baseline (1St and 3" rows) results suggest an increase in complexity (y-axis) when monkeys were rendered unconscious.
Further, as better exemplified when correcting for baseline (2nd and 4" rows), the evoked complexity (negative deflection)
is seemingly more sustained when aware than unaware. B; LZ in spiking activity in S1 neurons as a function of
consciousness state (aware = 1% column; unaware = 2™ column) and whether the neuron was determine to
converge (black) or integrate (purple) sensory information when aware. Results suggest that normalized LZ (top row,
y-axis) is higher for integrative than convergent neurons when monkeys are aware (left column) yet this pattern reverses
when monkeys are rendered unconscious (right column). Similarly, the evoked nature of LZ complexity due to AT
stimulation (bottom row) was similarly more sustained for convergent than integrative neurons (particularly when aware;
left column), however there was no significant interaction between consciousness state and neuron type when normalized
LZ complexity was corrected for baseline.

These complexity results, just like the observed shifts in the distributions of convergent and integrative neurons
following loss of consciousness, point in a direction counter to lIT — in that they suggest that convergent, as
opposed to integrative, neurons more faithfully exhibit properties of consciousness. However, an important
caveat is that there is relatively little empirical work quantifying LZ complexity in spike trains [45, 46]. Hence, it
may be useful to apply a similar logic — contrasting convergent and integrative neurons as a function of
consciousness — while utilizing a better-characterized neurophysiological measure within the context of

consciousness studies. Thus, we next examined noise correlations.

Noise correlations — the degree to which the response of a pair of simultaneously recorded neurons co-vary
after accounting for the signal — were originally considered to originate from shared sensory noise arising in
afferent sensory pathways [47]. However, more recent studies suggest that correlated noise may also reflect
meaningful top-down signals generated internally within the central nervous system [48]. Most interestingly for
the current work, noise correlations have been shown to be strongly dependent upon state of awareness. For
example, one study has demonstrated a six-fold increase in these correlations under an opioid anesthetic
when compared to wakefulness (unaware = 0.05; aware = 0.008; [29]). Accordingly, we examined noise
correlations as a function of recording area (S1 and vPM), type of sensory stimulation (AT, T, A, and N), and
consciousness state (aware and unaware). In addition to their relevance to the predictive framework laid out in
the Introduction (specifically prediction #2), our assessment of noise correlations in our data set has added
importance as it represents the first measure of the impact of propofol on single unit noise correlations in non-

human primates.
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As illustrated in Figure 6A, noise correlations demonstrated a striking increase from aware (M = 0.02, S.E.M =
0.001) to unaware (M = 0.11, S.E.M = 0.002) states (F=742.76, p<0.001). This effect was independent of
recording area (p = 0.86) and stimulation type (p = 0.33), nor was there an interaction between variables in
driving the degree to which noise correlated across single units (all p>0.11). Thus, the current dataset (utilizing

Propofol) is in general agreement with the opioid-derived observation [29] in that under anesthesia noise

correlations increase by approximately six-fold.
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Figure 6. A; Noise correlations in S1 (top) and vPM (bottom) as a function of consciousness state and sensory
stimulation. Violin plots colored (purple = AT, blue =T, red = A, black = N) represent conscious states, while their gray
counterparts illustrate noise correlations when the monkeys were rendered unconscious. White dots emphasize the mean.
Overall, across all sensory modalities, noise correlations are 6-fold greater under unconscious than conscious states. B;
Noise correlations in integrative and convergent S1 neurons. When monkeys are aware (leftmost panel) integrative
neurons (purple) exhibit a higher degree of noise correlations than neuron that integrate (black), while the contrary is true
when monkeys were rendered unaware (2nd column). Further, when monkeys were aware, the more a neuron exhibited
noise correlations (3rOI and 4" panel, x-axis) the greater it's supra-additive (3rd panel, y-axis) and enhancement (4th panel,
y-axis) indices. White dots represent the mean of each distribution.

When restricting noise correlation analysis to the integrative and convergent neurons, we observed significant
main effects of consciousness state (F=91.56, p<0.001) and neuron type (F=19.59, p<0.001), as well as an
interaction between these variables (F=29.63, p<0.001). The interaction seems to be driven by the fact that
when monkeys were unconscious convergent neurons (M=0.16, S.E.M=0.02) showed a greater degree of
noise correlations than integrative neurons (M=0.068, S.E.M=0.008; p<0.001; see Figure 6B), and this
difference disappeared during consciousness (Convergent: M = 0.018, S.E.M = 0.004; Integrative: M=0.028,
S.E.M=0.008; p = 0.067), significant (p=0.067). Thus, while noise correlations were lower during conscious
rather than unconscious states (in the population as a whole), this pattern is most readily apparent in

convergent rather than integrative neurons.

Overall, the results suggest that consciousness is marked by a reduced degree of noise correlations, and that
integrative neurons poorly track level of consciousness as indexed by this measure. In fact, these findings
suggest a potential negative relationship between the degree of noise correlation that is typically associated
with consciousness on one hand and with integration on the other. Namely, neurons that demonstrate the
greatest degree of integration are those that show the greatest degree of noise correlation (in the conscious
state). In support of this hypothesis, and as illustrated in Figure 6B (middle and right panel), both the supra-
additivity (r=0.15, p=0.02) and enhancement (r=0.12, p=0.05) indices were positively correlated with the

degree to which a neuron exhibited noise correlations.

Testing Consciousness Theory in Multisensory Circuits; Global Neuronal Workspace (Prediction #3).
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Beyond the characterization of single cell properties (i.e., firing rate, Fano Factor, complexity), it is possible to
leverage the fact that neurons in both S1 and vPM — a well-studied microcircuit [30] — were concurrently
recorded to test another prominent theory of consciousness; the GNW theory [8]. This theory states that
sensory stimuli will elicit a conscious percept when the neural activity associated with the stimuli propagates
through a broad fronto-parietal network following neural ignition. Adapting this theoretical framework to the
current experimental design, GNW predicts a higher likelihood of near concurrent neuronal firing in S1 and

vPM (at the single trial level) when animals are in a conscious state (and thus capable of conscious content)

than when they are unconscious (Prediction #3).

To test this prediction we define a response threshold as exceeding spontaneous firing by two standard
deviations (see Methods), and then calculate the percentage of trials that result in significant firing in S1, vPM,
or both S1 and vPM, as a function of consciousness and sensory stimulation type. This approach yields
relatively small percentages of trials catalogued as “active”, which is to be expected given Poisson firing (i.e.,
the fact that on most trials the firing rates of most neurons change modestly, with relatively few neurons driving
global population changes [33]), the high threshold set for labeling a trial as “active”, and the requirement for
near concurrent firing. This approach, in other words, is statistically conservative. As highlighted in Figure 7
(leftmost panel), results revealed that when animals were conscious, during combined AT stimulation, both S1
and vPM were concurrently active on 1.17% of trials (labeled “Concurrent Activation”). This number is reduced
to 0.96% of trials during T stimulation, to 0.67% of trials during A stimulation, and to 0.28% of catch trials (main
effect of stimulation type during awareness; Friedman Test, x>= 135, p < 0.001). The percentage of trials in
which sensory stimulation resulted in the co-activation of S1 and vPM was significantly smaller when animals
were rendered unconscious (main effect of consciousness state, Wilcoxon Test, Z=1135, p<0.001) and did not
differ across stimulation types (Friedman Test during unawareness; x*=14.32, p=0.64; stimulation type by
consciousness state interaction, Friedman Test of the difference between conscious vs. unconscious as a
function of sensory stimulation type, x? =204.78, p<0.001). A similar pattern of results emerged when
examining the number of trials that resulted in the independent activation of S1 and vPM (see S/ for detail).
Thus, in S1, 13.2% of AT trials resulted in significant firing when monkeys were conscious, a number that was
reduced to 10.5% in T trials (Wilcoxon, p=1.61e-19), and further reduced to 6.5% in A and 6.1% in N ftrials (T
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vs. A, p=1.28e-8; A vs. N, p=0.68). In vPM, interestingly, the main effect of trial type in the conscious condition
(see Sl) resulted from AT, T, and A all being different from N trials (all p<5.0e-20), as well as from vPM firing
being most likely due to A stimulation (M=8.4%) than to AT (M=7.4%) or T (M=7.5%) stimulation (all p<2.3e-5).
That is, activation of vPM was more probable due to A stimulation than T or AT stimulation — a stipulation that
was not true (in fact opposite) in S1 or when examining co-activation of S1 and vPM. This finding pinpoints that
auditory information must arrive to vPM via a route that is not the same as how tactile information arrives in
vPM (e.g., via S1), a finding that makes a great deal of sense since vPM is known to be part of the auditory
“‘what” or ventral pathway [49]. Lastly, on the vast maijority of trials sensory stimulation did not result in activity

in either S1 or vPM, a finding that is most prominent in unconscious (M=91.0%) than conscious states

(M=81.3%, Z=37949, p < 0.001).
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Figure 7. Percentage of trials that result in significant activation of S1, vPM, both or neither area, as a function of
consciousness state and stimulation type. Concurrent activation is defined as the simultaneous activation of S1 and
vPM (leftmost panel). This phenomenon occurs to a greater degree when animals were conscious than unconscious,
during AT (purple), T (blue), or A (red) stimulation, but not during catch trials (no stimulation). 2" and 3" panel
respectively demonstrate the number of trials that result in significant activation of S1 and vPM. Interestingly, while AT
and T stimulation seemingly result in a greater percentage of trial demonstrating neural ignition and S1 activation than A
stimulation, this is not the case for activation of vPM. Namely, auditory information seemingly reaches prefrontal areas via
other routes. Lastly, rightmost panel illustrates the percentage of trials that do not result in significant activation; here the
percentage is greater in unconscious than conscious trials, regardless of type of sensory stimulation. White dots represent
the mean of each distribution.

Thus, the overall pattern of results incorporating all cells recorded illustrate that when monkeys were conscious

and sensory stimuli were being presented a greater number of trials resulted in co-activation of both primary
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sensory and “associative” areas than when animals were unconscious. The finding is in line with the GNW
theory, but may represent a trivial result given that a larger number of trials also show exclusive activation in
S1 or vPM when the animals were conscious. Hence, for pure probabilistic reasons, co-activation of S1 and
vPM would be more likely under conscious than unconscious conditions. To address this concern, in a second
step of analysis, we multiplied the likelihood of observing activation in S1 by the likelihood of observing
activation in vPM and contrasted this predicted value to that observed (for both conscious and unconscious
conditions). As shown in Figure 8, results demonstrated that in both the aware (M=0.49%, one-sample t-test to
zero, p=2.79e-22) and unaware (M=0.08%, one-sample t-test to zero, p = 2.95e-13) cases, co-activation of S1
and vPM was more likely than what would be predicted by simply multiplying probabilities (Figure 8, y = 0).

More importantly, the degree to which co-activation exceeded this prediction was greater under conscious

conditions than under unconscious conditions (t=6.2, p=6.41e-10).

Lastly, as the previous results (Figures 5, 6; testing the IIT) had suggested that convergent neurons exhibited
properties of consciousness to a greater degree than integrative ones, we sought to determine whether this
was also true for these co-activation results. As illustrated in Figure 8 (center and right-most panels) co-
activation was generally more common when monkeys were conscious (M=1.5%) than unconscious (M=0.3%,
Mann-Whitney U, p<0.001). Further, these likelihoods interacted with neuron type. Co-activation was not
distinct in convergent and integrative neurons when the animals were aware (convergent, M = 1.8%;
integrative, M = 1.6%, p=0.37). In contrast, convergent neurons demonstrated less co-activation than

integrative neurons when the animals were aware (convergent, M=0.26%; integrative, M=0.31%, p=0.004).
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Figure 8. Neural ignition as a function of conscious state. A) Difference in the observed percentage of trials resulting
in neural ignition due to AT stimulation from the percentage of trials that would be predicted based on S1 and vPM
activation alone (y = 0), as a function of conscious state (aware = purple; unaware = gray). B) Neural ignition due to AT
stimulation in integrative (purple) and convergent (black) neurons as a function of consciousness state (aware = left;
unaware = right). White dots represent means of the distribution.

Discussion

Detailing the neural mechanisms enabling wakefulness (i.e., consciousness-level) and conscious experiences
(i.e., consciousness-level) is a central question within systems neuroscience [7]. As such, several theoretical
frameworks have been put forth [7, 8, 11-17, 50]. Two of the most influential of these are Information
Integration Theory (IIT; [11, 50]) and Global Neuronal Workspace (GNW; [7, 8]). Unfortunately, these theories
have seldomly been tested neurophysiologically, and never within the same dataset. A series of concrete
predictions can be generated from these theories, and in the current work we sought to generate such

predictions and test them.

Starting from IIT mathematics, a strong prediction that can be made is that as an organism transitions from
conscious to unconscious states, central integrative hubs (vs. convergent hubs) of neural networks should be
most impacted. Indeed, IIT states that the greater the information possessed by a network above and beyond
its constituent parts, the more conscious the system [11, 50]. Level of consciousness may be calculated and
represented as the variable phi (). We demonstrate that within a simple three-node network, if the central
node is an integrative (“AND” gate) node as opposed to a convergent (“XOR” gate) node, the value of ® triples
(see SI). In evaluating the neuronal data, we categorized neurons as either convergent or integrative and
examined which class was most impacted by propofol administration. The assumption here is that cross-modal
neurons in S1 and vPM receive information regarding the different senses from upstream areas, S1 and vPM
in turn being the central node composed of “AND” and “XOR?” functionality. Of course, this is an over-simplified
biological neural network, but one that permits testing predictions derived from the IIT from a
neurophysiological perspective. Contrary to our lIT-derived predictions, convergent, as opposed to integrative,
neurons were most impacted by the administration of anesthesia. To further test predictions derived from IIT,
we reasoned that when organisms were conscious, integrative neurons should exhibit neurophysiological
properties of consciousness to a greater extent than convergent neurons (i.e., supporting lower phi-values).

The two measures chosen were Lempel-Ziv complexity and noise correlations, and we examined these as a
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function of stimulation type and conscious state. It is important to note that we do not aim to explain why neural
complexity or noise correlations are altered by consciousness state, but simply to use these measures as
“features of consciousness” and index how these properties are modulated in integrative vs. convergent
neurons as a function of consciousness. Complexity was chosen as it is the measure most often used within
the IIT framework (e.g., [41, 42] — though the relationship between ®, Lempel-Ziv complexity, TMS-evoked
complexity (PCIl) and stimulus-evoked complexity is far from clear [51]). The study of noise correlations was
chosen as this measure has a stronger tradition within neurophysiology, and prior studies [29] have shown
substantial increases in noise correlations after administration of an opioid anesthetic. Here again, findings

indicated that convergent neurons most closely tracked the animals’ consciousness state. Taken together, the

findings of these neurophysiological analyses fail to provide strong empirical support for the IIT.

One of the novel findings of the current study is that under propofol — a GABAa potentiator [52] — noise
correlations are approximately six-fold greater than during wakefulness. This finding is in line with previous
single unit recordings under a different anesthetic (opioid; [29]) and concordant with a recent graph theory
analysis of electrophysiological data showing that a change in local information processing efficiency — a
measure that changes with noise correlations - could differentiate between distinct levels of responsiveness

due to propofol administration [53].

The second theory tested was GNW [7, 8]. In GNW the core concept is that during wakefulness a conscious
experience should result in neural ignition — the broadcasting of sensory evidence throughout the brain.
Concordant with the basic tenets of GNW, our results suggest that the co-activation of primary sensory areas
and higher-order areas on a single trial is more likely under conscious than unconscious conditions.
Importantly, the occurrence of this co-activation exceeded the expected values derived from the probability of
noting S1 and vPM activations alone. In addition to these co-activation findings, we analyzed firing rates in a
time-resolved fashion, which allowed us the opportunity to see whether firing rates to sensory stimulation
during consciousness were more sustained than during unconsciousness. As predicted by the GNW and well

established in electroencephalography and electrocorticography [54, 55, 56], neural activity was more
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sustained when animals were conscious (vs. unconscious). Taken together, our results provide empirical

support (again through the lens of single neurons) for the GNW theory.

In addition to providing empirical neurophysiological evidence relevant to two prevailing theories of
consciousness, our results make several novel contributions to the study of multisensory integration. First, to
our knowledge, this is the first report to detail that supra-additivity and enhancement indices are normally
distributed in both vPM and S1 of non-human primates (see [57], for a categorization of S1 neurons
demonstrating enhancement and supra-additivity in rats). Second, we observed a large number of neurons
exhibiting multisensory enhancement in S1 and vPM, yet very few that exhibited supra-additivity. These results
comport well with the known multisensory convergence in vPM [58, 59], but also represent the first evidence
that these neurons can integrate this information. Third, we detail the dispersion tendencies associated with
the firing patterns of (multi)sensory neurons in S1 and vPM. Variance in neuronal firing may be a result of a
variety of causes [33], both internal to the neuron or as a network property. Interestingly, while the Fano Factor
is likely impacted by both these sources, an elevation in noise correlations likely reflects a source of co-
modulation. Thus, the current results demonstrating an increase in both Fano Factor and noise correlations
during unconsciousness suggests a dynamical system in which the firing patterns of individual neurons are
becoming more chaotic yet the population as a whole is more synchronously co-activated; an observation that
is in line with reports suggesting a potentiation of slow oscillations and a reduction of high-frequencies during
unawareness [27]. Finally, from the observations that conscious states are seemingly associated with low
noise correlations and that neurons showing multisensory convergence (as opposed to integration) more
faithfully track consciousness according to this metric, we reasoned that perhaps a high degree of noise
correlation is beneficial to multisensory integration. In fact, our results suggest a positive correlation between
the amount a neuron shares noise with its neighbors, and the degree to which it exhibits multisensory
integration. We find this result particularly interesting, as multisensory integration is a special form of
integration — a form that has minimal shared variance at the periphery, since information is transduced by
different sensory organs. This relationship between shared noise and greater multisensory integration may be

a result of larger dendritic arborizations in integrative neurons (see [60, 61]), and may represent the neural
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instantiation of the postulation that stimulus correlation detection subserves the synthesis of information across

the senses [62-64].

In conclusion, we started from the IIT [11] and the GNW [7, 8] to derive neurophysiological predictions relating
to consciousness. We then leveraged multisensory neurons and circuits to functionally label neurons as
convergent and integrative, and used these categorical distinctions to test IIT and GNW-derived predictions.
The neurophysiological results generally support the GNW and not the |IT. However, important caveats exist.
First, it is possible that the predictions we generated according to the IIT represented a higher bar to clear than
those we generated from the GNW. Indeed, this is a strength of the IIT (i.e., making strong prediction) — and
thus future work should aim at continuing to translate theoretical postulates into concrete hypotheses, and
subsequently testing these hypotheses. Second, the IIT predictions derived and tested here represent the
simplest implementation and interpretation of the theory possible. Only three nodes were used, and only a
single node was changed in calculating different phi values. Further, we have assumed that single unit spiking
activity was a good approximation of the behavior of “nodes” within the IIT. This is far from trivial, as for
example, in the IIT formalism nodes are either “on” or “off”, yet real neurons can show graded levels of activity.
Third, while simultaneously recording from S1 and vPM lends nicely to testing the GNW — given their known
micro-circuitry [30, 31] — it may be argued that these areas are not ideal for testing the IIT. Indeed, Koch and
colleagues [65], researchers supporting the IIT, recently suggest that anatomical correlates of consciousness
are primarily localized to a “posterior hot zone”. Thus, in the future it may be interesting to test similar ideas to
those presented here in the posterior parietal cortex (but see [66] for arguments suggesting that the neural
correlates of consciousness are in the “front” of the brain). Beyond specific objections related to the IIT, it must
be emphasized that the results reported here are exclusive for propofol anesthesia. Hence, generalization of
these results to the broader domain of consciousness must be done with caution. Future work may aim at
replicating the above-described findings during the administration of several distinct anesthetics — the union of
effects safely being able to be ascribed to consciousness. Further, it must be acknowledged that IIT is primarily
a theory of consciousness-level, while GNW primarily focuses of consciousness-content. These different
aspects of consciousness are closely related (as one does not consciously perceive the external environment if

in an unconscious state), but dissociable. Here both aspects were conflated (i.e., it is assumed animals did not
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hear the auditory tone during unconscious-level), as the primary aim was to contrast IIT and GNW from a
neurophysiological perspective. However, in the future it will be interesting to dissociate these dimensions.
Lastly, the degree to which these findings generalize from macaques to humans is unknown. Regardless of
model organism (macaque, human, or other), we consider that using sensory stimulation from distinct and
multiple sensory modalities (e.g., [44, 67, 68] — as highlighted in the current report - may afford important

leverage in the study of perceptual awareness and consciousness level by allowing functional characterization

of neurons and neuronal ensembles.

Materials and Methods

Animal Model
Animals were handled according to the institutional standards of the National Institutes of Health (NIH) and an
approved protocol by the institutional animal care and use committee at the Massachusetts General Hospital.

Two adult male monkeys (Macaca mulatta, 10 —12 kg) were used.

Behavioral Task and Experimental Procedure
The animals were trained in a behavioral task wherein following the onset of a start tone (1000 Hz, 100 ms,
see Figure 9A, first row) they were required to initiate each trial by holding down a button with their hand
ipsilateral to the recording hemisphere. In order to successfully launch a trial (before loss of consciousness),
the animals were required to hold the button within 1.5 seconds of the trial onset tone (Figure 9A, second row).
Then, following button press, within a uniform random delay between 1 and 3 seconds (Figure 9, blue shaded
area with dashed contour representing a variable delay) one of four sensory stimulus sets was delivered
(tactile air puffs, T; auditory stimuli, A; simultaneous auditory and tactile, AT; no stimuli, N; Figure 9A depicts
an AT trial, and hence T, A, and N trials are shaded). Air puffs during T trials were delivered at 12 psi to the
lower part of the face contralateral to the recording hemisphere via a computer-controlled regulator with a
solenoid valve (AirStim; San Diego Instruments). The eye area was avoided. Auditory stimuli during A trials
were pure tones at 4000 Hz and at 80 dB SPL generated by a computer and delivered using two speakers 40
cm from the animal. Audiotactile (AT) trials were simply the joint and simultaneous presentation of A and T
trials. N trials were catch trials were no stimulus was presented. White noise (50 dB SPL) was applied

throughout the trial to mask inherent noise derived from air puff and mechanical apparatus. All of the stimulus
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sets were presented randomly to the animal regardless of their behavioral response throughout the recording
session. Following the presentation of the sensory stimulus the animals were required to keep holding the
button down until the presentation of liquid reward (3 seconds post stimuli onset, Figure 9A bottom row and
second blue interval). The monkeys were trained to perform a correct response on >90% of the trials
consistently for longer than 1.5 hours in an alert condition. The animal’s performance during the session was
monitored and simultaneously recorded using a MATLAB-based behavior control system [69, 70]. Trial-by-trial
behavioral responses were binned as a correct response (button holding until the trial end and release), failed
attempt (early release, late touch, or no release of the button), or no response (Fig. 1C). Loss of
consciousness was defined as the first no-response trial that was consistently followed by a lack of responses
for the rest of anesthesia (see Figure 9B for an exemplar session where the cumulative sum of trials
categorized as correct responses raises quickly initially and then saturates, while the cumulative sum of trials

categorized as no-response is initially stagnant at zero and subsequently raises rapidly following approximately

280 trials).
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Figure 9. Experimental Procedure, Methods, and Neurophysiology Preprocessing. A) Experimental task; animals
were required to press a button within 1.5 seconds following a start tone. Subsequently, following a random delay
between 1 and 3 seconds post button press (dashed blue area) they were presented with a sensory stimulus (audiotactile,
AT (purple); tactile, T (blue); or auditory, A (red)) or not (faded black, N). In this case an AT trial is illustrated, and hence
represented in a continuous line, while T, A, and N are dashed and shaded. After a fixed delay of 3 seconds post stimulus
onset, if the monkey was still holding the button, it was given a liquid reward and allowed to stop pressing the button. The
trial depicted is a correct response trial, but a trial could also be categorized as failed response (e.g., released the button
too soon) or a no-response trial (e.g., the monkey never executed button press). B) Cumulative sum of trial categories
(leftmost; light gray = correct response; center, dark gray = failed response; rightmost, black = no response). Initially all
trials are correct, but as propofol is administered, the animal falls unconscious and does not execute the button press.
Unawareness is defined as the period between the first no-response trial that is consistently followed by a lack of
responses for the rest of anesthesia. C) A schematic of a monkey brain depicting areas S1 and vPM, where neurons were
recorded and example raster plots from a neuron in S1. Responses during an aware period are depicted on the top row,
while the bottom row illustrates activity during unawareness. The first column shows audiotactile trials, the second
illustrates tactile trials, the third shows audio trials, and the last column shows spiking activity during trials with no sensory
stimuli. On the x-axis is time (in seconds, centered at stimuli onset) and on the y-axis is trial number.

Anesthesia
Thirty minutes after initiating each recording session, propofol was infused for 60 minutes at a fixed rate (200
g/kg/min for Monkey E, and 230 or 270 g/kg/min for Monkey H) through a vascular access port. The infusion

rate of propofol was a priori determined to induce loss of consciousness in approximately 10 minutes for each
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animal. No other sedatives or anesthetics were used during the experiment. The animal’s heart rate and
oxygen saturation were monitored continuously throughout the session (CANL-425SV-A Pulse Oximeter; Med

Associates). The animals maintained >94% oxygen saturation throughout the experiments.

Neurophysiology Data Recording and Preprocessing
Before starting the study, a titanium head post was surgically implanted on each of the two animals. A vascular
access port was equally surgically implanted in the internal jugular vein (Model CP6; Access Technologies).
Once the animals had mastered the behavioral task described above, extracellular microelectrode arrays
(Floating Microelectrode Arrays; MicroProbes) were implanted into S1 and vPM through a craniotomy (see
Figure 9C). Microelectrodes were also implanted in S2, but due to insufficient recorded neurons caused by a
technical malfunction, here we focus our report on recordings from S1 and vPM. Each array (1.95x2.50 mm)
contained 16 platinum—iridium recording microelectrodes (0.5 MQ, 1.5— 4.5 mm staggered length) separated
by 400 um. Landmarks on cortical surface and stereotaxic coordinates [71] guided the placement of arrays. A
total of five arrays were implanted in Monkey E (two arrays in S1, one in S2, and two in vPM, all in the left
hemisphere) and four arrays in Monkey H (two arrays in S1, one in S2, and one and vPM; all in the right
hemisphere). The recording experiments were performed after 2 weeks of recovery following the array surgery.

All experiments were conducted in a radio frequency shielded recording enclosure.

Neural activity was recorded continuously and simultaneously from S1 and vPM through the microelectrode
arrays while the animals were performing the behavioral task. Analog data were amplified, band-pass filtered
between 0.5 and 8 kHz, and sampled at 40 kHz (OmniPlex; Plexon). The spiking activity (see Figure (9C) was
obtained by high-pass filtering at 300 kHz and applying a minimum threshold of 3 standard deviations in order
to exclude background noise from the raw voltage tracings on each channel. Subsequently all action potentials
were sorted using waveform principal component analysis (Offline Sorter; Plexon) and binned into 1 ms bins,

effectively rendering the sampling rate 1kHz.

Neurophysiology Data Analyses

Firing Rate and Fano Factor
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Both central and dispersion tendencies of single-unit spiking activity in S1 and vPM were quantified as a
function of stimulus modality as it is well-established that mean firing rates alone do not fully characterize the
properties of neural activity [33]. Regarding firing rates, spikes were first binned in 1ms intervals, and epochs
were centered on stimuli onset, ranging from 2000ms prior to stimuli onset (i.e., -2000ms), to 2000ms after
stimuli onset. Subsequently spike counts were effectuated within a 100ms window, between -500ms and
1000ms, and in steps of 10ms. It must be noted that this analysis essentially low-passes time, and hence the
exact timing of reported effects should not be emphasized. Analyses of firing rates were conducted both on
baseline-corrected and non-corrected rates. The contrast of non-corrected rates allows for determining the
impact of propofol on baseline firing, while the analysis on baseline-corrected rates allows specifically querying
the evoked-responses to stimuli onset. That is, for the baseline-corrected rates, every spike count function was
centered along the y-axis (i.e., spikes/s) to zero according to their own baseline firing (-500 to Oms post-stimuli
onset). In this manner, positive deviations from 0 indicate an increased in firing rate, while negative deflections
indicate a silencing in spiking activity post-stimuli onset with respect to baseline. Spike counts were first
averaged within a cell and across trials, and subsequently across neurons. In terms of statistical analyses, as
the temporal dynamics of spiking activity was of interest, in particular within the GNW theory [7, 8] emphasizing
sustained activity in aware and not unaware states, we conducted a time-resolved (at each 10ms time-point,
151 in total) 2 (State; Aware vs. Unaware) x 2 (Area; S1 vs. vPM) x 4 (Stimulation; AT, T, A, N) independent
samples analysis of variance (ANOVA). As spiking rates were not normally distributed (i.e., presence of a true
floor, in that negative spikes are not possible), the ANOVAs for non-baseline corrected rates were conducted
on log-transformed data. On the other hand, the subtraction of evoked activity to baseline activity did yield
normal distributions, and hence this data is analyzed without log-transform. The inter-dependence of
observations is difficult to ascertain within a neural network composed of neurons whose precise connections
are unknown, and thus independent as opposed to dependent ANOVAs were conducted in order to adopt the
most conservative approach (i.e., within-samples ANOVAs are statistically stronger than between-samples
analyses). Similarly, in order to protect against Type | error (i.e., false positives) significant effects were only
considered at a < 0.01 for at least 3 consecutive windows (i.e., 30 time-points; see [44], for a similar approach

with time-series data).
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Regarding the inter-trial variance in evoked responses associated with the distinct states of consciousness,
stimuli modalities, and brain areas, fano factors (i.e., ratio of spike-count variance to spike-count mean) were
calculated [70]. Indeed, repeated trials do not yield identical responses, and this variance is associated both
with cellular and molecular processes involved in spike generation at the axon hillock (e.g., refractory periods)
and network-level properties [63]. Conveniently the neuron-specific variance is largely consiered to be well
accounted by a Poisson point process (i.e., mean and variance scale), and hence a fano factor of 1 [33, 64].
Fano factors in excess of 1, thus, may be considered to index variability that is associated with network-level
properties and this variability is typically reduced at stimuli onset. Here, therefore, we report time-resolved fano
factor both corrected for baseline (in order to examine putative network-level decreases in inter-trial variability
as a function of stimuli onset, awareness state and sensory modality), and not corrected for baseline (in order
to assess basal cell-specific and network level inter-trial variability as a function of awareness state). Statistical

analysis is conducted as described above for firing rates.

Neural Index of Multisensory Integration

The hallmark for multisensory integration at the single unit level is an evoked response to multisensory stimuli
(e.g., AT) that may not be linearly predicted by responses to the constituent unisensory stimuli (e.g., A and T;
[73]. Thus, given the time-resolved results demonstrating sustained activity to sensory stimulation until
approximately 500ms post-stimuli onset, mean spike counts to AT, T, A, and N trials were executed within this
time period (see [34], for a similar approach). Subsequently, the i) supra-additivity and ii) enhancement index
of each neuron was computed (according to Eq. 1 and Eq. 2, respectively). Historically, supra-additivity — the
degree to which a multisensory response exceeds the sum of unisensory responses (Eq. 1) - was considered
the clearest indication of multisensory facilitation); nonetheless this feature is not as prominent in cortex as it is
in sub-cortex [39, 73]. Thus, we supplement the supra-additivity index with the enhancement index — the
degree to which a multisensory response is greater than the maximal response to unisensory stimuli (see Eq.
2). An enhancement index above 1 indicates a neuron that is further driven by multisensory than unisensory

stimulation. Supra-additivity (Eq. 1) and enhancement (Eq. 2) indices were computed as follows;

ATgg

Supra — Additivity Index = ——
P Y (Apg + Trr)

Eq.1
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ATgg
Enhancement Index = ———— Eq.2
max(Agg, Trr)

where ATy is the mean baseline-corrected firing rate for a particular neuron to audiotactile stimulation, Tgy is
the mean baseline-corrected firing rate for the particular neuron to tactile stimulation, and finally Az is the

mean baseline-corrected firing rate for the particular neuron to auditory stimulation.

Bifurcation Into Convergence and Integration

Modeling results based on the IIT specify that a network converging on a neuron that integrates information, as
opposed to responding indiscriminately, ought to support a greater degree to consciousness. Hence, here we
aim at testing two predictions that may follow from the IIT; i) as an organism falls into unconsciousness, the
neurons that are most impacted are those that integrate information (i.e., putatively anesthetics act on these
neurons preferentially), and ii) neurons that integrate information exhibit the properties of consciousness when
the organism is conscious. To test these predictions, we divide our population of neurons into those that
integrate vs. converge (Figure 4 and beyond). However, initially we simply describe the proportion of neurons
that fit within each category (Figure 5) in a non-mutually exclusive fashion. A neuron that converges
information is defined as a neuron that on average (i.e., across trials) responds — spike count from 0 to 500ms
- to both unisensory auditory and tactile information beyond its baseline firing rate (-500ms to Oms) plus 2
standard deviations. That is, in order to qualify as convergent, the spiking count of a neuron to AT stimulation
does not need to be examined. On the other hand, a neuron that integrates information is defined as a neuron
that is most readily driven by the simultaneous presence of A and T information. Thus, neurons that respond to
AT stimulation (as defined above) and do so to a greater degree than their maximal unisensory response (i.e.,
enhancement index above 1) were initially classified as integrative. Importantly, beyond Figure 3 (e.g., to
categorize the fate of neurons when the animal becomes unconscious and quantify neural complexity, noise
correlations, and neural ignition) two mutually exclusive classes are created. Neurons that respond
indiscriminately to sensory stimulation and not preferentially to multisensory vs. unisensory presentations are
classified as convergent, while those that exhibit multisensory enhancement without being considered
convergent are taken to integrate information. Given the initial number of neurons in S1 and vPM, this

bifurcation yielded a sufficient quantity of neurons exclusively categorized as convergent (N = 125) and
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integrative (N = 64) in S1, but not in vPM (convergent, N = 61; integrative, N = 8) — thus, for the analyses
specifically probing the difference between convergent and integrative neurons, analyses are restricted to S1.
Further, given the heterogeneity of neuron’s spike trains (see Figures 1-3) for Figure 3 and beyond we
considered a neuron as fitting within a particular category (e.g., A, T, AT convergent, AT integrative) if at some
point between Oms and 1000ms post-stimuli onset they met the particular criteria for at least 50 consecutive

ms.

Equally of note, in Figure 3 neurons that are labeled to integrate auditory and tactile information (purple,
orange, and green) are not first indexed for their unisensory responses. That is, while in S1, 49% of neurons
are classified as responding to a greater extent to AT stimulation than to the maximum unisensory stimulation,
this latter unisensory response is not necessarily different from baseline activity. We consider this approach
appropriate within the current aim of leveraging multisensory responses in querying consciousness theories,
but it must be highlighted that multisensory enhancement may be more strictly considered to apply only when
tactile, auditory, and audiotactile responses are different from baseline, and the latter responses is greater than
the maximal of the former two [27]. Indeed, the categorization here is more in line with the recent emphasis
within the study of multisensory integration to index covert multisensory processes [36], in particular within
classically considered primary sensory areas [74], than with the original description of multisensory integration

in the late eighteens and early nineties [73].

Lempel-Ziv Complexity

Categorizing the complexity of neural representations — operationalized as the number of distinct patterns
present in data — has become of increasing popularity as of late (e.g., [11; 33]) in particular due to its ability to
differentiate between states of consciousness given scalp electrophysiological data [6] and the belief that
complexity is at least indirectly related to functional differentiation/integration, paramount notions with the IIT
[11]. In order to quantify neural complexity, here we measure the Lempel-Ziv (LZ) complexity [28] associated
with each spike train evoked as a consequence of AT, T, A, or N trials, and as a function of the animals’
consciousness state. LZ complexity measures the approximate quantity of non-redundant information

contained within a string by estimating the minimal size of the “vocabulary” necessary to describe the entirety
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of the information contained within the string in a lossless manner [28]. That is, it is a lossless compression
algorithm (routinely used in ZIP files and TIFF images), and it is utilized to measure the number of distinct
patterns in symbolic sequences, in particular within binary signals. LZ is impacted by the overall entropy within
a signal [45]; i.e., a binary string composed almost exclusively of ‘O’ will not have a high LZ, not due to the
arrangement of those ‘1’, but simply because there are not many of them). Thus, here, to equate entropy
across conditions we first converted spike trains into a continuous measure by convolving each trial with a
Gaussian kernel with 0=50ms, and then binarized each time-point within this trial by assigning a ‘1’ to time-
points above the trial mean, and ‘0’ to time-points below the trial mean. Next, LZ was computed (28) in
MATLAB within a sliding window moving between -500ms and 750ms post-stimuli onset, a length of 100ms,
and step size of 50ms. Lastly, the same procedure was executed while randomly shuffling the binary sequence
before calculating LZ. This shuffled LZ time-series represents a theoretical upper bound (i.e., random data has
a higher LZ) and was used to normalize the calculated LZ from the non-shuffled data. Hence, a normalized LZ
of 1 indicates ‘as complex as random noise’, while lower values indicate the presence of structure in the data
(see [43, 44], for a similar approach). Statistical analysis largely followed that of firing rates and fano factors,
which exception that data were never log-transformed as they were normally distributed. Analysis was
effectuated both on baseline-corrected values, in order to compare the negative deflection present during
stimulus onset (see [43] for a similar findings) and most importantly, on non-corrected values, in order to
examine the basal complexity in spiking activity as a function of consciousness and whether neurons were

categorized as convergent or integrative.

Noise Correlations

While LZ complexity is arguably the most often utilized measure within the IIT framework [11], it is not a
traditional measure within neurophysiology. Thus, we sought to further probe the properties of convergent and
integrative neurons — and their correspondence with the alteration in the particular measure as a function of
consciousness state — with a neurophysiological measure that is well established to alter with consciousness
state. Noise correlations [29] express the amount of covariability in the trial-to-trial fluctuations of responses of
two neurons to repeated presentations of the same stimuli, are central to questions of coding accuracy and

efficiency [75], and are well-established to be altered by consciousness state [29]. Thus, this measure was
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computed both in S1 and vPM neurons, as a function of consciousness state and stimuli modality. Noise
correlations where computed as the Pearson correlation between all pairs of neurons recorded simultaneously
within the same session (see [29] for a similar approach). Spike counts were effectuated for each trial on the
500ms immediately following stimuli presentation (defined above as the average time-period of neural
response, and in concert with [29]. We considered the noise correlation for a particular neuron it's average

correlation with all other neurons recorded in the same session.

Neural Ignition

The GNW model points to the late amplification of relevant sensory activity, long-distance cortico-cortical
synchronization at beta and gamma frequencies, and ignition of large-scale fronto-parietal networks as neural
measures of consciousness [8]. To test this prediction, we query at the single trial level whether sensory
stimulation leads to co-activation of both primary sensory areas (i.e., S1) and frontal regions (i.e., vPM) more
commonly during conscious than unconscious states. For each neuron (both in S1 and vPM) we specify a
threshold benchmarking reliable neural activity as the average spike count between -500 and 0 ms post-stimuli
onset plus 2 standard deviations. Similarly, the neural response is considered to be the spike-count between 0
and 500 post-stimuli onset. Then, iteratively we pick a neuron from S1 and a neuron from vPM and query
whether on a particular trial did neither area respond, did solely S1 respond, did solely vPM respond, or did
both S1 and vPM respond. A particular S1 neuron is subsequently paired with all neurons in vPM recorded
during the same session, and finally it's mean activation patterns (e.g., S1 and vPM active, vPM active, S1
active, or none) as a function of consciousness state and sensory stimulation are quantified. The same
procedure is applied to vPM neurons. It must be highlighted that routinely mean firing rates are largely driven
by strong responses in a few trials [33], for example), and hence demanding a response within a particular trial
to exceed baseline plus 2 standard deviations is a conservative approach yielding a great number of no-
response trials. Nonparametric statistics are used in this analysis as data did not confirm to the assumptions

made by parametric inference statistics.
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SUPPLEMENTARY INFORMATION
Rationale and Computation of Integrated Information (®)

From an information-theoretic perspective information is the reduction of uncertainty (Shannon, 1948). In turn,
information may be quantified by considering how a system in its current state S, constrains the system’s
potential past and future states. Figure S1 illustrates this principle form within the purview of C at time t for the
system with an XOR gate. Under this scenario, if C is currently active, then at time t-1 by necessity either A
was active, B was active, A and C were active, or B and C were active (Figure S1, left panel). The probability
distribution of past states that could have been causes of C = 1 is its cause repertoire p(ABCP%t|C = 1). On
the other hand, if it is unknown in what state C is in, t-1 is unconstrained p““(ABCP%%). A similar rationale
applies to future states wherein the current state of C constrains its future potential states, and the effect
repertoire is thus the probability of being in any given state given that C is current active, or
p(ABCf”twe|C = 1). The amount of information that € = 1 specifies about the past is its cause information (ClI)
and the amount it specifies about the future is its effect information (El). Cl and EI are respectively measured
as follows,

CI = EMD(p(ABCt™1|Ct = 1) || p““(ABCt™1) Eq.1
EI = EMD(p(ABC*1|Ct = 1) || p¥(ABCt*Y) Eq.2

where EMD refers to earth mover’s distance (Rubner et al., 2000), the minimal cost of reshaping one
distribution (e.g., unconstrained) into the other (e.g., constrained) or area of distribution moved times the
distance moved. Finally, the total amount of cause-effect information (CEI) specified by € = 1 is the minimum
value between Cl and El. This results from the fact that both Cl and El may act as limiting cases — an
information bottleneck — and hence minimize the CEI of the system as a whole (see Oizumi et al., 2014, for
detail). Finally, while CEl measures information, the IIT conjectures that consciousness is integrated
information. That is, information generated by the system above and beyond that generated by its constituent
parts. Hence, the system as a whole is iteratively partitioned into all possible subsystems or purviews and the
process delineated above is evaluated for each of these components. Similar to CEl, integrated information is
calculated as the EMD between the cause-effect repertoire specified by the system as a whole and the cause-
effect repertoire of the partitioned system. ® is the distance between the system as a whole and the system-
partitioned that makes the least difference; the minimum information partition. That is, ® is the degree to which
the cause effect repertoire for the system as a whole differs from the next most informative partition.
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Figure S1. lllustration of cause and effect repertoires and the constraints imposed on potential probability
distributions by the fact that C=1. Cause (left) and effect (right) repertoires for a system with three nodes as the one
illustrated in Figure 1, and as a function of whether the past-future is constrained to C=1 (top) or not (bottom).

Information integration (phi, ®) was calculated for the multisensory convergent and integrative networks using
the transitions probability matrices illustrated in Figure S2 (see below) and as implemented in PyPhi (Mayner et
al., 2017) with Python 3.4.

Formalizing the Role of Multisensory Integration in Consciousness

To formally ascertain the putative role multisensory integrative (vs. convergent) neurons within a network in
bearing consciousness (according to the IIT), we built two biologically inspired simple neural networks (Figure
S2A). These networks each have 3 nodes, two of which may be considered analogous to unisensory areas
(nodes A and B) and a third (node C), which receives projections from the unisensory areas and may be
considered analogous to a multisensory area. As is well established in biological systems, the multisensory
area equally projected back to unisensory areas (Bizley et al.,, 2007, Cappe et al., 2009, Ghazanfar and
Schroeder, 2006). The two networks were identical with exception that for one network (Figure S2A, left panel)
node C was an “XOR” gate, while for the other it was an “AND” gate (Figure S2A, right panel). The XOR gate
results in a logical “true” (or ‘1’/ ‘HIGH’) when the number of true inputs is odd. In this case, given the system
architecture, the node C would be active if on the previous time step one and only one of gates A or B was
active. Thus, node C can in principle be active following activity in either node A or B, but importantly does not
respond preferentially when both are active. On the other hand, the other network, where node C is an “AND”
gate, responds exclusively when on the precedent time-step both gates A and B were active. That is, this gate
most faithfully mimics the behavior of integrative multisensory neurons that may or may not overtly respond
indiscriminately to distinct sensory inputs, but importantly are most driven by spatio-temporally coincident
multisensory inputs. Hence, the network formed with an XOR gate (Figure S2A, left) instantiates a network with
neurons that are indiscriminant to the nature of sensory input, while in contrast the network formed with an
AND gate (Figure S2A, right) instantiates a network with neurons that integrate sensory information, i.e.,
responds non-linearly to the addition of sensory stimuli from distinct modalities (Stein and Stanford, 2008,
Wallace et al., 2006). The architecture of these systems dictates the composition of transition probability
matrices (TPMs), which guides transitions between states (i.e., neurons that are ‘active’ at different time-
points). In Figure S2B these TPMs have been depicted (left and right respectively for the multisensory
convergent and multisensory integrative systems) and highlighted for their distinctive features. Namely, in the
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case of the convergent network, when ABC nodes are in state 100 (respectively, A, B, and C) or 010 (green
rows), activation of the multisensory node will follow. This is not true if the convergent network is in state 110
(red row). The opposite is true for the network that integrates. Given these TPMs, ® can be calculated when
the state of the network is ABC = 001 (multisensory node active). Results indicate that in fact a network with a
node with integrative capacity in principle may bear a greater degree of consciousness (® = 0.78) than one
that simply responds indiscriminately to stimuli from distinct sensory modalities (® = 0.25).

A) Multisensory Convergence Multisensory Integration

O
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>4 2
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100 0 0001 0 0O 100 0 00 0 O0O0OO0OTO O
010 00 0O0O1O0O0TPO 010 00 0O0OOUO OO OO
110 00 0O0OOTU OO 110 00 0O0OT1O0O0TUO
001 000 1O0O0TO0OTP O 001 0 001O0O0O0OTPO
101 0 00 O0OO OO O 1 101 0 001O0O0O0OTPO
o011 0 00O0OOO OO O 1 o011 000 1O0O0O0OTPO
m 0 001O0O0O0OTPO m 0 0 0O0OOO OO O 1
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C)
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Figure S2. Formalizing the role of multisensory integrative neurons in bearing consciousness according to liT. A)
Depiction of a multisensory convergent (left) and integrative (right) network. There is no connection between A and B
nodes, as these transition probability values are zero. The dashed connections leading to A and B are to illustrate that
these putative unisensory areas receive input from downstream neural areas, yet they play no role in the ITT-driven
model. B) The transition probability matrices (TPM) for a deterministic (e.g., probability is either 0 or 1) convergent (left)
and integrative (right) network are illustrated. State t is represented in the abscissa and t+1 on the ordinate. Green and
red rows are highlighted to emphasize key difference between the convergent and integrative networks, yet these
differences are not exhaustive (however do dictate the rest of differences). C) The ® value associated with the convergent
(left) and integrative (right) TMPs as determined in PyPhi (Mayner et al., 2017).

S1 and vPM Firing Rates as a Function of Sensory Modality and Awareness

Regarding the firing rate, analyses on non baseline-corrected activity indicated a clear generalized decrease in
firing rate when monkeys were rendered unconscious (p<0.01 at all time points; Aware; M = 4.43 spikes/s,
S.E.M = 0.008 spikes/s; Unaware; M = 2.44 spikes/s, S.E.M = 0.007), a significant difference in spiking activity
across the areas recorded between 50ms and 160ms post-stimuli onset (p<0.01, S1, M = 5.68 spikes/s, S.E.M
= 0.008 spikes/s; vPM, M = 4.88 spikes/s, S.E.M = 0.006 spikes/s), and a significant main effect of stimulation
type (i.e., AT, T, A, N) between 50ms and 480ms post-stimuli onset (AT, M = 4.14 spikes/s, S.E.M = 0.01
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spikes/s; T, M = 4.31 spikes/s, S.E.M = 0.01 spikes/s; A, M = 3.75 spikes/s, S.E.M = 0.006 spikes/s; N, M =
3.28 spikes/s, S.E.M = 0.001 spikes/s). Importantly, a stimulation-type (i.e., AT, T, A, N) by area recorded (i.e.,
S1 vs. vPM) interaction was also evident (p<0.01, between 60ms and 210ms post-stimuli onset), driven by the
fact that vPM responded to A stimulation (M = 3.21 spikes/s, S.E.M = 0.10 spikes/s), while S1 did not (M =
2.18 spikes/s, S.E.M = 0.10 spikes/s). Thus, in sum and as expected, these analyses demonstrated that
propofol silenced spiking activity generally, that neurons in S1 and vPM responded differently to distinct
sensory stimuli between 50 and 480ms post-stimuli onset, and that vPM but not S1 responded to auditory
stimulation. The baseline-corrected analyses (depicted in Figure 2, rows 1 and 3) largely demonstrated
analogous results, while indicating that the bifurcation in evoked responses (as opposed to baseline
responses, as indicated above) between states of consciousness occurred (regardless of sensory modality) 80
ms post-stimuli onset (p<0.01, averaged across 80-1000ms post-stimuli onset; Aware, M = 0.48 spikes/s,
S.E.M = 0.04; Unaware, M = 0.09 spikes/s, S.E.M = 0.01 spikes/s) and also highlighting a consciousness state
by sensory modality (p<0.01 between 40-110ms, and 200-380ms) as well as 3-way (modality, state, and area)
interaction (p<0.01, 410-610ms post-stimuli onset). The time-periods demonstrating a significant difference in
evoked activity as a function of state of consciousness are shaded in gray in Figure 1 (main text) separated by
area recorded and sensory stimulation, while the time-periods demonstrating a significant response vis-a-vis
baseline are indicated by horizontal lines in each panel (see Figure 1).

S$1 and vPM Fano Factors as a Function of Sensory Modality and Awareness

Regarding fano factors (FFs), results demonstrated heightened variability under unaware (M = 1.45, S.E.M =
7.3e-4) than aware (M = 1.16, S.E.M = 5.6e-4) conditions (see Ecker et al., 2014 for a similar result), while
both of these were significantly greater than 1 (unaware, p < 4.76e-92; aware, p = 4.76e-92), and hence likely
exhibiting inter-trial variability above and beyond what is presumed to be attributable intrinsically to neurons
(i.e., FF = 1). Similarly, FFs were larger in S1 (M = 1.32, S.E.M = 6.91e-4) than vPM (M = 1.22, S.E.M = 5.70e-
4), throughout the post-stimuli period (p<0.01, for exemption of the period between 80ms and 120ms post-
stimuli onset. The period between 50ms and 270ms post-stimuli onset demonstrated a significant difference in
FFs as a function of stimulus modality (p<0.01), with the AT (M =1.29, SEM=0.02)and T (M =1.28, SEM =
0.03) conditions being the less variable (AT vs. T, p = 0.58) than the A (M = 1.31, S.E.M = 0.02) and N (M =
1.33, S.E.M = 0.02) conditions (T vs. A, t = 2.03, p = 0.041; A vs. N, p = 0.43). Importantly, FFs also
demonstrated a consciousness state by recording area interaction (p<0.01, between 200ms and 320ms post-
stimuli onset) and a recording area by stimulus modality interaction (p<0.01, between 50ms and 180ms post-
stimuli onset). The latter interaction was driven by a main effect of stimuli modality that was sustained in S1
(p<0.01, between 50ms and 250ms, as well as 350ms and 540ms post-stimuli onset) and only transient in vPM
(p<0.01, between 110 and 140ms post-stimuli onset), while the former is attributable to a rapprochement in FF
between consciousness states in S1 and not in vPM. Indeed, this last effect is further appreciable when
correcting FFs for baseline (Figure 1) as a further quenching in variability in S1 (vs. vPM) specifically to AT and
T sensory stimulation (contrasts between aware and unaware conditions; S1; AT, p<0.01 between 160ms-
200ms, T, p<0.01 between 180ms-220ms, never for A and N; vPM, never). As for firing rates, the time-periods
demonstrating a significant difference in FF as a function of state of consciousness are shaded in gray in
Figure 1 (main text) separated by area of recording and sensory stimulation type. Time-periods demonstrating
a significant quenching in FF vis-a-vis baseline are indicated by horizontal lines in each panel (see Figure 1).

Lempel-Ziv Complexity as a Function of Sensory Modality and Awareness

Figure 5A illustrates normalized LZ (see Andrillon et al., 2016, Noel et al., 2018, and Methods), both in its
baseline-corrected and non-corrected format, and as a function of consciousness state (aware = colored;
unaware = gray) and sensory stimulation. Regarding the non-corrected values, a 2 (consciousness state;
aware vs. unaware) x 2 (recording area; S1 vs. vPM) x 4 (stimulation type; AT, T, A, N) ANOVA most strikingly
revealed that unaware states (M = 0.88, S.E.M = 0.003) were generally more complex (p<0.01 at all time-
points) than aware states (M = 0.81, S.E.M = 0.004). This analysis also revealed a main effect of recording
area between 50ms and 100ms post-stimuli onset (p<0.01), as well as a main effect of stimulation between
50ms and 250ms (p<0.01). This analysis equally indicated a significant interaction between recording area and
stimulation type (p<0.01 between 50ms and 150ms post-stimuli onset). The interaction was driven by a
significant main effect of stimulation that lasted longer (p<0.01, between 50ms and 250ms post-stimuli onset)
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in S1 than vPM (p<0.01 between 100 and 150ms). Once normalized LZ was corrected for baseline, analyses
specified a main effect of consciousness state specifically between 200 and 400ms post-stimuli onset (p<0.01),
indicating that not only was overall LZ different across consciousness states, but the evoked nature of this
measure equally differed. This main effect was driven by the AT and T conditions, where complexity returned
to it's baseline value more readily under unaware (AT, and T, return to baseline at 300ms) than aware states
(AT and T, return to baseline at 350ms). The rest of statistical contrasts followed the same pattern as for the
non-corrected values. The time-periods demonstrating a significant difference in evoked activity as a function
of state of consciousness are shaded in gray in Figure 5A separated by area recorded and sensory stimulation,
while the time-periods demonstrating a significant response vis-a-vis baseline are indicated by horizontal lines
in each panel (see Figure 5A). In sum, therefore, the state of awareness is seemingly indexed in spiking
activity by an overall lower level of LZ complexity (see Figure 5A, non-corrected normalized LZ), as well as by
a more sustained negative deflection evoked by sensory stimulation (see Andrillon et al., 2016, for a similar
observation).

Percentage of Trials Evoking Significant Firing in S1 and vPM as a Function of Sensory Modality and
Awareness

The percentage of trials that resulted in significant firing of S1 neuron was altered by the sensory modality of
the stimuli presented and the consciousness level of the monkey. In particular, results demonstrated a main
effect of consciousness state (Z=1294, p<0.001), stimulation modality (x°=51.52, p<0.001), and an interaction
between these variables (x*=80.99, p<0.001). The interaction was driven by a significant main effect of stimuli
type during consciousness (x> =91.18, p<0.001), but not unconsciousness (x’=4.07, p=0.19). Regarding
significant activation of pre-frontal cortex neurons, once again results demonstrated further activation
consciously (M=6.9%) than unconsciously (M=3.1%; Z=1319, p<0.001), a main effect of stimulation type
(x*=105.7, p<0.001), and an interaction between these variables (x*= 233.11, p < 0.001). The interaction was
driven by differential trial-activation percentages as a function of stimulation type when the monkeys were
conscious (X*=133.7, p<0.001) but not unconscious (x°= 7.51, p=0.08).
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