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ABSTRACT
Motivation:

Applying infrared microscopy in the context of tissue
diagnostics heavily relies on computationally preprocessing
the infrared pixel spectra that constitute an infrared
microscopic image. Existing approaches involve physical
models, which are non-linear in nature and lead to
classifiers that do not generalize well, e.g. across
different types of tissue preparation. Furthermore, existing
preprocessing approaches involve iterative procedures that
are computationally demanding, so that computation time
required for preprocessing does not keep pace with recent
progress in infrared microscopes which can capture whole-
slide images within minutes.
Results:

We investigate the application of stacked contractive
autoencoders as an unsupervised approach to preprocess
infrared microscopic pixel spectra, followed by supervised
fine-tuning to obtain neural networks that can reliably
resolve tissue structure. To validate the robustness of the
resulting classifier, we demonstrate that a network trained on
embedded tissue can be transferred to classify fresh frozen
tissue. The features obtained from unsupervised pretraining
thus generalize across the large spectral differences between
embedded and fresh frozen tissue, where under previous
approaches seperate classifiers had to be trained from
scratch.
Availability:

Our implementation can be downloaded from https://

github.com/arnrau/SCAE_IR_Spectral_Imaging

Contact: axel.mosig@bph.rub.de

1 INTRODUCTION
In recent years, the application of label-free infrared
microscopy to histopathological tissue samples has paved the
way for spectral histopathology [3, 11], which has proven

∗to whom correspondence should be addressed

to be a reliable approach to assess the disease status of
histological sections. Infrared microscopy measures samples
with a resolution of few µm and provides an infrared
spectrum representing the biochemical tissue status at each
pixel location. It has been shown that the pixel spectra
obtained from infrared microscopes are highly representative
for different tissue components as well as for disease status.
As illustrated in Fig. 1, this allows supervised classifiers to
infer the tissue component or disease status from an infrared
pixel spectrum, which has proven successful for several types
of cancer ranging from colon carcinoma [11, 13] to lung
[3, 7] and bladder [8] cancer.

It is commonly observed that besides biomedically relevant
molecular signatures, data obtained from highly sensitive
bioanalytical techniques contain technological or biological
artifacts, background signal and other confounders that
mask those features that are relevant towards disease status.
For infrared microscopy, such background artifacts are
particularly severe and complex in nature [1], and several
approaches have been proprosed to disentangle them from
diagnostically relevant signals. The bandwidth of proposed
approaches range from methods based on physical models
[1, 12, 18] to statistical approaches utilizing principal
components [15]. While these methods have contributed
to the successful application of spectral histoapthology
in clinical studies, preprocessing infrared spectra remains
subject of active investigation in the community [12].

Our contribution breaks with those existing approaches
and takes a machine learning perspective on the problem.
To elaborate, preprocessing infrared spectra can be viewed
as a representation learning [2] problem: raw infrared
spectra are difficult to classify, so that they need to be
transformed into a representation that is more accessible
for classification or interpretation. Recent progress on
learning such representations in an unsupervised manner
suggests that the resulting representations are often more
suitable for classification than previous, problem domain
specific “feature engineered” representations [2]. The success
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Fig. 1. Principle of spectral histopathology: The infrared spectrum
from each pixel position is preprocessed using a physical model
and subsequently classified into the respective tissue component.
Our newly proposed approach aims to use deep neural networks to
classify the uncorrected spectrum, where preprocessing is subsituted
with an unsupervised deep representation learning step.

of unsupervised representation learning is often coupled
with the availability of large amounts of data, which
are commonly accessible in spectral histopathology. Even
a single image commonly contains tens of millions of
spectra [11] that can be measured within minutes [14]. In
other words, the substantial recent progress in the field
of representation learning bears great promises for spectral
histopathology that we investigate in this contribution.

The aims of our present contribution go beyond the mere
assessment of recent progress in representation learning to
spectral histopathology. Specifically, we propose an approach
to assess the robustness of a learned representation. We
achieve this by transfering a classifier that is based on a
learned representation to a related domain. In our specific
case, we transfer a classifier trained on data obtained
from formalin-fixed tissue to data from fresh frozen tissue,
which is accompanied by significant changes in the infrared
spectra. If the classifier turns out to be transferable, the
learned representation can be considered highly robust
against sample variability and heterogeneity. As robustness
is of predominant importance when classifying biomedical
sample material, we consider the domain transfer approach
as a major contribution of our present paper, which can be
employed to assess the robustness of not just infrared spectral
classifiers, but also of classifiers for data obtained from other
bioanalytical techniques.

2 BACKGROUND
Spectral Histopathology. In order to assign disease relevant
classes to infrared microscopic pixel spectra, different studies
in spectral histopathology have employed a range of different
classification approaches. One common approach [11, 7, 3] is
to use pixel spectra classifiers to obtain a segmentation of the
tissue sample into different physiologically or pathologically

relevant components. The segmented image then serves
as a basis for a diagnostic characterization, for instance
by determining the relative abundance of cancerous or
otherwise disease relevant pixels [23]. Some studies [11, 3]
suggest that resolving other tissue components along with the
distinction into pathological vs. healthy regions is helpful or
even neccessary to reliably characterize the disease status.
Remarkably, all aforementioned infrared microscopy based
studies involve preprocessing of the spectra, typically in the
form of physical models that either remove resonance Mie
scattering [1] or dispersion artifacts [18].

Until recently, most spectral histopathology studies utilized
Fourier transform infrared (FTIR) microscopes, where
the infrared spectrum is derived by Fourier transforming
the signal obtained from an interferometer. Very recently,
FTIR microscopy has been challenged by quantum-cascade
laser (QCL) microscopes, where the spectrum is obtained
from frequency tunable quantum cascade lasers. QCL-based
microscopes exceed the measurement speed of FTIR-based
systems by almost two orders of magnitude [8], so that
infrared images of complete slides of histological sections
can be captured within minutes. At the same time, however,
the infrared spectrum is limited to a smaller spectral range,
which in particular affects the spectral baseline that is
important for resonance Mie correction.

Representation learning and Domain Adaptation. Our
work is motivated by groundbreaking progress in the field of
representation learning surveyed in [2], which gained much
of its momentum from related breakthroughs in the field
of deep neural networks and convolutional neural networks
[17].

Transfer learning. An essential question arising from the
high accuracies often achieved by extremely parameter rich
deep neural networks is whether the network is overfitting the
training data rather than having identified truly discriminative
features between the classes during supervised training.
Observing strong validation measures in conventional cross-
validation schemes is certainly a neccessary, but not sufficient
criterion. A stronger criterion will be to test how the
classifiers perform on previously unseen types of data. In
the domain of clinical data, one can identify several levels of
what constitutes previously unseen. In [9], it was suggested
that validation should be performed at the highest possible
level of replication in order to avoid overfitting. In clinical
studies, different levels of replication are conceivable such
as changes in the measurement device, changes in sample
preparation, or even multi-center studies [24].

The concept of robustness is closely related to the
transferability of classification models: If a classifier
generalizes when trained on one specific task, it should be
feasible to further generalize classification towards a second
task similar to the first task. In a related contribution [10],
it was shown that model transfer significantly improves
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classification of Raman microscopic images across four
different microscopes. We investigate transferability in a
somewhat broader setting: First, we train a deep neural
network on formalin fixed parrafin embedded (FFPE,
henceforth referred to as embedded) histopathological
samples of colon tissue. Then, we investigate a transfer
of this classifier to infrared images of fresh frozen tissue
samples (henceforth referred to as fresh tissue). In related
previous studies [13], classifiers were built independently for
embedded and fresh tissue, respectively, as model transfer
appeared infeasible. In our contribution, we assess transfer
learning approaches [16] to facilitate the transfer of an FFPE
trained neural network to fresh tissue.

3 APPROACH
Our computational approach is summarized in Fig. 2. It
is based on first obtaining a gold standard segmentation
based on conventionally corrected spectra classified by a
conventional, previously established classifier. The only
purpose of this pre-segmentation is to obtain a sufficient
amount of training data for the second deep learning stage.
The deep learning stage is in turn divided into two steps:
An unsupervised pre-training is succeeded by supervised
fine-tuning into the final network pt-MLP.

As it has been demonstrated [4], these neural network
based approaches largely benefit from the availability of
large amounts of data. This sets apart our approach in
a fundamental way from previous approaches, which rely
on manual annotations. As there are inherent difficulties
in obtaining suitable annotations on larger numbers of
histopathological samples, conventional approaches are
favourable towards classifiers that generalize well on
small amounts of training data. In this sense, our
present contribution aims to establish neural network based
approaches that scale with the large amounts of data that
are typically available in clinical studies involving infrared
microscopy.

Beyond the accuracy of classifier pt-MLP, a key question
to be assessed is whether pt-MLP generalizes well to unseen
data sets, or whether it rather overfits the training data.
In order to assess the capability of pt-MLP to generalize,
we perform transfer learning. Specifically, we employ a
second set of colon cancer related tissue samples. This set of
tissue samples and the image spectra obtained from it differ
substantially from the first set: first, this data set has been
acquired from fresh tissue rather than paraffin embedded
tissue. Second, the samples were obtained as full sections
rather than as tissue microarrays. The substantial differences
in the image spectra are illustrated in Supplementary Fig. 1.
A gold standard pre-segmentation for producing training data
was applied in a similar fashion as for the first data set.

For convenience, Supplementary Table 1 provides an
overview of the different supervised classifiers and their role
in this study.

4 METHODS
Sample Material. We employed two datasets of infrared
images of histopathological samples related to colon cancer
that have been investigated in previous studies.

The first dataset from [13] consists of infrared microscopic
images of embedded tissue microarray (TMA) samples. We
employed two such TMA slides purchased from US Biomax
Inc., MD, USA, referred to by their IDs CO1002b and CO722,
respectively, each of which consists of 100 circular spots of
tissue sample. Each spot has a diameter of roughly 1 mm.
Along with this data set, we also utilized the random forest
classifier established previously in [13], which classifies
resonance Mie corrected infrared pixel spectra into 19
different classes representing 13 types of tissue components
and subclasses, as depicted in Supplementary Fig. 3. This
random forest classifier is referred to as classifier RF in Fig.
2 and throughout the rest of this manuscript. We will refer
to this dataset as the FFPE dataset. The FFPE dataset was
available and utilized both in the form of uncorrected spectra
and resonance Mie corrected spectra preprocessed by the
approach from [1]. The FFPE data set was subdivided into
three parts, one part for unsupervised pre-training, the second
subset for supervised fine-tuning, and the third subset was
withheld for validation. The validation subset was strictly
seperated from the other two parts and was neither involved
in pre-training nor in supervised learning.

Our second dataset was acquired from fresh-frozen
histopathological colon tissue samples. Each sample is
represented by one infrared image covering a whole tissue
section roughly 2 cm2 in size. The dataset involves three
such whole-slide images. For this data set, we utilized a
corresponding classifier RF2 that was established previously.
The training data for classifier RF2 have been obtained fully
independent of classifier RF. Throughout this manuscript, we
will refer to this dataset as the fresh tissue dataset.

In both data sets, the FFPE as well as the fresh data
set, pixel spectra with low signal intensity were filtered out
and marked as background based on previously described
practice [11, 13]. The filtering is performed on uncorrected
raw spectra, so that it does not affect our approach being
independent from the physical model based resonance Mie
correction.

Obtaining ground truth segmentations. In order to obtain
uncorrected spectra with labels for supervised training, we
applied classifier RF which was previsouly established in
[13] to all resonance Mie corrected spectra from the FFPE
dataset. Since the uncorrected counterpart is immediately
available for each corrected pixel spectrum, this allowed
us to assign a class to each uncorrected spectrum. As
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illustrated in Fig. 2, we use the resulting assignment between
uncorrected spectra and tissue components as ground truth
for the training data set for our deep neural networks. Note
that the classification outcome of RF cannot be assumed to
be 100% correct on a per-pixel basis and the assignment
thus obtained constitutes a gold standard in the sense of the
best-possible per-pixel annotation rather than a ground truth.
Despite this somewhat curtailing factor, we will refer to the
training labels obtained from RF as ground truth.

Learning regularized representations through autoencoders.
Formally, an autoencoder is constituted by a neural network
that represents a mapping A : Rd → Rd, i.e., a network
whose input and output layers consist of d neurons
each. In its most basic form, an autoencoder involves
one hidden layer with M < d neurons. A sequence
of (d,M1), (M1,M2), . . . , (MK−1,MK) autoencoders can
be cascaded in a straighforward manner as illustrated in
Supplementary Fig. 2 and detailed in Supplement S.1. In
[21], such stacked autoencoders have been proposed and
successfully established as highly effective regularizers on
several data sets.

Our stacked autoencoder preprocesses spectra represented
as a vector featuring absorbances at d = 450 many
wavenumbers. The stacked autoencoder involved six hidden
layers of sizes M1, . . . ,M6 = 450, 900, 450, 100, 100, 100.
The stacked autonecoder was trained in an unsupervised
fashion following [20] on 2, 220, 000 spectra obtained from
25 spots of TMA slide CO1002b. Each autoencoder was
initialized following [6].

Supervised finetuning for classification of pixel spectra. We
followed the approach by Rifai et al [17] and employed
the autoencoder described in Section 4 as an unsupervised
pretraining procedure to improve a subsequent supervised
learning step. To this end, a softmax output layer with one
output neuron for each of the 19 classes was added to the
six encoding layers of the stacked autoencoder. The resulting
network topology was initialized with the parameters of the
stacked autonecoder for the first six layers, and random
values for the input weights of the output layer. The last three
hidden layers were treated as drop out layers [19] with a drop
out rate of 50%. This network was trained on the ground
truth provided by classifier RF as shown in Fig. 2 to obtain
supervised classifier pt-MLP using RMSProp optimization
running for 15, 000 epochs.

As a reference to assess the performance of pt-MLP, we
trained a conventional multilayer perceptron MLP based on
the same topology as network pt-MLP. As in classifier pt-
MLP, the last three hidden layers were implemented as drop
out layers with a dropout rate of 50%. We initialized all
parameters in the network randomly and trained it against the
same ground truth using RMSprop for optimization running
15, 000 iterations.

Transfer learning for domain adaptation. In order to assess
the generalization capability of the unsupervised pretraining
procedure and the resulting classifier pt-MLP, we performed
transfer learning from FFPE to fresh tissue samples. Ground
truth on fresh tissue for transfer learning was obtained from
a previously established classifier RF2, which was trained on
resonance Mie corrected spectra in fresh tissue. To adapt to
the different classes of tissue components annotated in FFPE
vs. fresh tissue (see Supplementary Fig. 3), the output layer
was substituted by a randomly initialized softmax layer. The
transfer learning approach is illustrated in Supplementary
Fig. 5.

We divided data set Fresh 1 into a trainig data set and a test
data set for transfer learning, and performed 15, 000 epochs
of RMSProp training. Data sets Fresh 2 and Fresh 3 were
used for validation. For technical reasons, data set Fresh 3
was subdivided into data sets Fresh 3A and Fresh 3B during
validation.

Details of determining accuracies for validation are
described in Supplement S.2.

5 RESULTS
Pretraining with SCAE and supervised Finetuning. We
performed pretraining as described in Section 4 on 2.2
million spectra from the FFPE data set CO722. The deep
learning classifier pt-MLP was obtained by finetuning as
described in Section 4 on 1.3 million spectra from data set
CO1002b.

Fig. 3 demonstrates the generalization capability on a
held-back TMA dataset. The per-pixel accuracy of classifier
pt-MLP reconstructing the ground truth segmentation of
classifier RF achieved an accuracy of 96%.

Transfer-Learning Segmentations of Fresh Tissue. To
assess the transferability of classifiers from FFPE tissue to
fresh tissue, we first visualized spectral differences between
FFPE tissue and fresh tissue, which is illustrated for two
classes of tissue components in Supplemtary Fig. 1. In
particular at the level of uncorrected raw spectra, these
differences are substantial, so that applying classifiers trained
on FFPE spectra to fresh tissue can be expected to lead
to very limited success. To examine this in practice, we
applied the FFPE-trained classifier pt-MLP to fresh tissue.
As ground truth, we used the segmentation obtained from
a previously established random forest classifier RF2. As
shown in Fig. 4, pt-MLP performs poorly in identifying
the tissue structure, achieving an accuracy of only 53%.
Two classes, namely submucosa and muscle, were at least
partially detected correctly by pt-MLP.

Finally, we performed transfer learning from FFPE tissue
spectra to fresh tissue spectra by training classifier tl-MLP
using pt-MLP as a starting point. As training data for transfer
learning, we used uncorrected fresh tissue spectra labelled
with the output classifier RF2 as ground truth, as illustrated
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Fig. 3. Classification of FTIR raw data of two FFPE-embedded
Tissue Microarray spots (TMA) from the fully independent
validation data set. The agreement between the pre-trained pt-MLP
(first row) and the ground truth provided by RF (middle row) is very
high, and differences recognizable only in small details. The non-
pretrained classifier MLP, on the other hand, exhibits systematic
misclassification, which is most notably of crypts in the tumor-free
spot (right, index color pink) and the tumor and the submucosa class
(red and green), which are systematically misclassified as muscle
(white) in the tumor spot (left). Classification results of further spots
are displayed in Supplementary Fig. 4.

in Fig. 5. A validation of the result is shown in Figures 4 and
Supplementary Fig. 6, demonstrating the high accuracies of

82%, 72% and 80% on data sets Fresh 2, Fresh 3A and Fresh
3B, respectively of the transfer learned classifier tl-MLP.

6 DISCUSSION
In our study, we demonstrated that unsupervised pre-training
of infrared spectra facilitates highly accurate classification
of spectral histopathology imaging data. Unsupervised pre-
training takes the role of spectral pre-processing, which
previously has been tackled on the grounds of physical
models in combination with conventional classifiers. Thus,
we have demonstrated that a purely data-driven approach can
take the role that has previously been taken by a physical
model when classifying pixel spectra.

A natural question that arises in this context, and in neural
networks in general, is to characterize and interpret what
the neural network actually learned. Our results allow the
conclusion that the network implicitely identified variances
that are eliminated by correction procedure underlying the
resonance Mie model by Basan et al. [1], because classifier
pt-MLP can reproduce the classification of resonance Mie
corrected spectra. This is remarkable since this implies
that the network has learned to disentangle the complex
interference between molecular spectrum and the scattering
artifact, which is neither additive nor linear.

Since the resonance Mie model is neither explicitely
nor implicitely involved in the procedure of training the
network, the question arises whether the network may have
learned a much more general representation of infrared
pixel spectra from histopathological samples. While beyond
the scope of our current contribution, this question of
model interpretation points to an interesting and relevant
new direction for future research, namely to correlate the
output of the stacked autoencoder with different physical
model-based correction procedures. More specifically, one
could investigate how well a spectrum corrected by a
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Classifier RF2 (ground truth) Classifier tl-MLPClassifier pt-MLP

Fig. 4. Classification of FTIR raw data with and without transfer learning on independent validation data set Fresh 2. Left: ground truth
obtained from classifier RF2 on Mie-scattering corrected FTIR-microspectroscopy imaging; Middle: prediction obtained from the FFPE-
based classifier pt-MLP, which fails to identify most of the tissue components in fresh tissue and achieves an accuracy of only 53%. Right:
prediction of the transfer learned deep learning classifier tl-MLP. Results for data set Fresh 3 are shown in Supplementary Fig. 6.

physical model can be reconstructed from the representation
learned by the neural network. This could be realized by
establishing a neural network that learns to approximate a
given correction procedure, using the representation learned
by the unsupervised pre-training as a starting point. If such
a network could reconstruct the result of given physical
model-based preprocessing procedure, one would obtain a
more explicit proof that the network has learned a certain
preprocessing function.

As we have argued, there is strong evidence that the
stacked autoencoder did learn a meaningful representation
of infrared pixel spectra. An obvious next question is how
far this representation will generalize: how much variance
can be added and what type of variance can be added
before networks derived from the representation will lose
their classification capability. Our approach to determine
generalization capability was to investigate the capability of
the network to perform domain adaptation: If the network
can adapt from the domain of embedded tissue to the
domain fresh tissue, the underlying representation must
be sufficiently abstract and thus generalizable. The high
accuracies we observe in the transfer learned networks for
fresh tissue strongly indicate that indeed the representation
is sufficiently general. It is quite remarkable that despite the
moderate effort used for transfer learning – we used the same
number of epochs for transfer learning tl-MLP as for fine-
tuning the original network pt-MLP while the last hidden
layer of tl-MLP had to be fully re-initialized due to the
differences in ground truth classes – we obtain very high
accuracies.

As the generalization capability is strong enough to adapt
an FFPE classifier to fresh tissue, the question emerges
how strongly the network will generalize. There is a broad
bandwidth of conceivable sources of variance over which it is
desirable to obtain a general spectral representation: Besides

the variation in tissue type (FFPE vs. fresh) investigated here,
there may be variation in the type of microscope (FTIR vs.
QCL), variation in the substrate, or variation in the organ
of origin (colon vs. tissue form other organs), to mention
only a few. A key question to be adressed will be which
variation needs to be included in the data for pre-training the
stacked autonecoder, and to which variation will the resulting
network be capable of generalizing. As we have shown in
our work, not all variation needs to be reflected in the pre-
training data: Although we did not use any fresh tissue for
pre-training, the network turned out to be transferable to fresh
tissue anyway. An ultimate goal may be to train an universal
preprocessing network that generalizes broadly across the
aforementioned sources of variance. We limit our claims
of the pre-training performed in the present study for the
network to generalize across tissue type, i.e., across FFPE
and fresh tissue. This constitutes a major progress over the
previously employed physical model based preprocessing,
whose generalization capabilities are inherently limited if
present at all.

Finally, generalization capability of classifiers against
different sources of variance certainly is a key aspect
for robust classifiers in life science research in general,
and biomarker discovery in particular. As our approach
to combine representation learning with domain adaptation
involves no assumptions specific to infrared microscopy, this
observation bears promise well beyond infrared microscopy.
In fact, baseline correction or other forms of preprocessing
commonly constitute problems in the analysis of various
types of bioanalytical data, ranging from NMR spectroscopy
[22], mass spectrometry [5] or Raman spectroscopy [25].
While several different approaches have been proposed
for these techniques, it has been commonly observed that
preprocessing, in some cases heavily, affects subsequent
analysis [5]. On the other hand, the baseline artifacts in other
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bioanalytical spectra tend to be less complex than artifacts
in infrared spectra, and it thus appears reasonable to assume
that other types of bioanalytical data can greatly benefit from
our purely data-driven unsupervised preprocessing approach
using stacked autonecoders.

7 CONCLUSION
We have tackled and successfully solved two related
problems in spectral histopathology that have not been
studied previously, likely because they could not be solved
with conventional classifiers: First, we demonstrated that
unsupervised pre-training allows to train classifiers that
can classify unprocessed raw pixel spectra of infrared
microscopic images, and thus may substitute the physical
model based preprocessing of infrared image spectra. At the
same time, these classifiers are well-established regularizers
and thus hold the promise of generalizing stronger and
having less tendency towards overfitting. Second, we have
demonstrated the transfer of a classifier from the domain of
FFPE samples to the domain of fresh tissue, which previously
required collecting substantial amounts of new training data
and training a classifier from scratch.
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