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Abstract 16 
The methods for electrophysiology in neuroscience have evolved tremendously over the recent 17 
years with a growing emphasis on dense-array signal recordings. Such increased complexity and 18 
augmented wealth in the volume of data recorded, have not been accompanied by efforts to 19 
streamline and facilitate access to processing methods, which too are susceptible to grow in 20 
sophistication. Moreover, unsuccessful attempts to reproduce peer-reviewed publications 21 
indicate a problem of transparency in science. This growing problem could be tackled by 22 
unrestricted access to methods that promote research transparency and data sharing, ensuring 23 
the reproducibility of published results.  24 
Here, we provide a free, extensive, open-source software that provides data-analysis, data-25 
management and multi-modality integration solutions for invasive neurophysiology. Users can 26 
perform their entire analysis through a user-friendly environment without the need of 27 
programming skills, in a tractable (logged) way. This work contributes to open-science, analysis 28 
standardization, transparency and reproducibility in invasive neurophysiology. 29 
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Introduction 34 
Invasive electrode recordings are a unique source of in-vitro and in-vivo neurophysiological data 35 
at high resolution in both space and time, recorded in relation to complex animal and human 36 
behavior. The complexity of this kind of data has increased in recent years, with the advent of 37 
increasingly dense multi-channel and multi-site electrode arrays. This evolution provides exciting 38 
opportunities to explore the relationship between local events, such as action potentials, and 39 
more global dynamics at the systems level, such as fluctuations in oscillatory network activity. At 40 
the same time, these multiscale explorations require different analytical methods from those 41 
traditionally used in the field.   42 

Challenges in exploring high-dimensional spatio-temporal data sets are not specific to 43 
electrophysiology: they occur frequently in neuroimaging data, as scanners produce increasingly 44 
large volumes of data, which are often shared across multiple groups or research centres. In 45 
response, the brain imaging community has made significant strides in developing shared 46 
software platforms to harmonize analytical methods and to facilitate data sharing (Abraham et 47 
al., 2014; Gorgolewski et al., 2011; Gramfort et al., 2013, 2014; Hanke et al., 2009; Tadel et al., 48 
2011). Indeed, free, open-source software toolkits have been critical for facilitating training and 49 
augmenting research productivity. This approach has transferred to the field of scalp 50 
electrophysiology (Baillet et al., 2011), but as of yet it has not found widespread use in invasive 51 
neurophysiology (IN). Software tools do exist for specific segments of the IN data workflow, such 52 
as for spike detection and sorting and time-series analysis (Fee et al., 1996; Hazan et al., 2006; 53 
Hill et al., 2011; Mitra and Bokil, 2007; Oostenveld et al., 2011; Pachitariu et al., 2016; Quiroga et 54 
al., 2004), but they remain relatively specialized, some with limited support and documentation 55 
and most with restricted interoperability with other tools.  56 

While we acknowledge significant efforts in harmonizing data formats for electrophysiology 57 
(Stead and Halford, 2016; Teeters et al., 2015; Neuroshare - 58 
http://neuroshare.sourceforge.net/index.shtml) , it does seem that this field lags behind others 59 
in meeting the demands of recommended practices for data management and transparency 60 
(Gorgolewski and Poldrack, 2016; Larson and Moser, 2017). In this regard, well-supported 61 
software tools are required to produce analytical workflows that are validated, well documented 62 
and reproducible. Important components include data organization, review and quality control, 63 
verified implementations of signal extraction and decomposition methods, solutions for 64 
advanced visualization registered to anatomy, and sound approaches to machine learning and 65 
statistical inference. As in the brain imaging field, such tools would facilitate the reproducibility 66 
of published results and the dissemination of methods within and between research groups. They 67 
would also save considerable time and resources currently required to re-code published 68 
methods. In addition, re-coding presents challenges in code verification relative to a published 69 
method, raising possible concerns about the validity of the end results and limiting the long-term 70 
value of the effort.  71 

Here we deploy and share open-source software (called Invasive Neurophysiology-Brainstorm, or 72 
IN-Brainstorm) that integrates multiple aspects of data analysis for most modalities and signal 73 
types for basic electrophysiology: from single cells to distributed channel arrays, from spiking 74 
events to local field potentials, from ongoing recordings to event-related responses, and from in 75 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/584185doi: bioRxiv preprint 

https://doi.org/10.1101/584185
http://creativecommons.org/licenses/by/4.0/


 

 3 

vitro preparations to free-behaving models. We also emphasize the importance of an extensive 76 
graphical interface for user-friendly access to advanced analytical methods, of flexible scripting 77 
features for high-performance computing, and of traceable code execution. The proposed tool is 78 
accompanied by extensive online documentation and support from a user community web 79 
forum. 80 

This free application builds on the foundations of the Brainstorm platform (Tadel et al., 2011), 81 
which is well-established (21,000 user accounts), free open-source software for 82 
magnetoencephalography (MEG) and electroencephalography (EEG). Brainstorm can integrate 83 
multimodal data volumes in addition to scalp electrophysiology e.g., magnetic resonance imaging 84 
(MRI), CT-scans and functional near-infrared spectroscopy (fNIRS). It also features advanced 85 
source modeling for electrophysiological signals. 86 

The IN-Brainstorm application provides a comprehensive suite that interoperates with other, 87 
more specific and constantly evolving IN tools available from the open-source community e.g., 88 
for performing spike sorting. The end result is a unique and expansive software toolkit that 89 
bridges across recording scales and data modalities, registers invasive neurophysiology with 90 
structural anatomy data, and thereby delivers a unifying analytical environment to the 91 
neurophysiology research community.   92 

93 
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Results 94 
The IN-Brainstorm functionalities described here offer comprehensive solutions for data 95 
importation and analysis, including spike-sorting, extraction of local field potentials, and 96 
correlations among these measures across multiple channels. Importantly, thanks to an intuitive 97 
graphical user interface, no programming skills are required for accessing and using the advanced 98 
methods available, including for assembling and sharing advanced data analysis pipelines. A 99 
summary of these software features is provided in Table 1, and a schematic of the workflow 100 
enabled by the toolbox is shown in FIGURE 1. 101 

The bedrock of the present developments is the Brainstorm platform. Brainstorm (Tadel et al., 102 
2011) is written in Matlab (Matlab2008a and higher) and Java. It is therefore independent of the 103 
operating system (Windows, MacOS and Linux). Community code management is via GitHub. 104 
Users without access to a Matlab license can use a fully executable version of the application 105 
compiled for the above operating systems. Extensive documentation is freely available online, 106 
with specialized tutorials, datasets and videos (https://neuroimage.usc.edu/brainstorm/e-107 
phys/Introduction).  108 

In the following sections, we describe a broad spectrum of analysis options for multiscale 109 
electrophysiology that are enabled by IN-Brainstorm and illustrate these features with the 110 
processing of an example raw data file. 111 

 112 

1. Importing, reviewing and pre-processing raw data 113 

1.1. Raw data importation 114 
Data to be analyzed must first be imported into the software. Brainstorm can read raw 115 
electrophysiology data from 80 different file formats. We have added new data formats specific 116 
to single- and multi-unit electrophysiology, including Plexon (.plx and .pl2), Blackrock (.nsX), 117 
Ripple (.nsX), Intan (.rhd), Tucker Davis Technologies, and Neurodata Without Borders (.nwb). 118 
New formats can be added on demand. Raw data can also be read directly from ASCII and basic 119 
binary data formats, with header file parameters easily specified from a GUI.  120 

1.2. Data review 121 
Raw files of continuous data from chronic preparations can be voluminous due to hours-long 122 
durations, tens of kilo-Hertz sampling rate and simultaneous recording from multi-channel 123 
electrode arrays. Hence loading such large raw files at once into computer memory can be 124 
impractical. For this reason, we have implemented efficient data review solutions that load 125 
portions of the data on the fly, depending on the visualization parameters set by the user (e.g., 126 
virtual page length, selection of a subset of channels or montages for review, keyboard and 127 
mouse shortcuts for navigating and marking events).  128 

Task events (e.g., stimulus types and presentation times, behavioral responses) and ancillary 129 
recordings (electrooculograms, electrocardiogram, eye and body movements, video recordings 130 
of behaviour, etc.) are readily registered to the electrophysiological data in IN-Brainstorm, for 131 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/584185doi: bioRxiv preprint 

https://github.com/brainstorm-tools/brainstorm3
https://neuroimage.usc.edu/brainstorm/e-phys/Introduction
https://neuroimage.usc.edu/brainstorm/e-phys/Introduction
https://doi.org/10.1101/584185
http://creativecommons.org/licenses/by/4.0/


 

 5 

multimodal data review, quality control and event-related processing. We emphasize that when 132 
a raw file is reviewed, the physical data is not duplicated as a Brainstorm file. Instead, the header 133 
of the original data file is automatically parsed to extract metadata, such as channel parameters, 134 
sampling rate, time stamps, event codes, etc.  135 

Figure 2 (left) shows an example of IN-Brainstorm display for data review, including sub-menus 136 
for displaying and navigating through files and events. The right panel shows an example of raw 137 
data collected with a Plexon MAP system and a 32-channel linear electrode implanted in cortical 138 
areas MT and MST of a non-human primate. The animal maintained fixation during the 139 
presentation of a motion stimulus comprising of dots that translated in 8 different directions.  140 

The red line in the figure shows the time of a Stim On event, extracted from the data. Spikes 141 
detected online (labelled as Spikes Channel) were extracted directly from the raw file contents 142 
by IN-Brainstorm, with automatic registration to the data time series.  143 

The bottom right panel of Figure 2 shows a selection of 4 channels temporally aligned with the 144 
top figure. The spikes from a neuron that was isolated on the first electrode are marked with 145 
green circles at the top of the full time-series displayed in the top panel. Users can browse the 146 
raw traces using point-and-click GUI and a series of keyboard shortcuts. On-the-fly bandpass and 147 
notch filtering can be applied to the signals. 148 

1.3. Quality control & data pre-processing 149 
Starting from the kind of raw data shown in Figure 2, users can easily navigate through the 150 
recordings and experimental trials and events for quality control. Data segments, channels and 151 
entire trials can be marked as “bad” and excluded from further analyses using automatic 152 
processes or based on user evaluations.  153 

The IN-Brainstorm pre-processing toolkit features solutions for adjustments of recording 154 
baseline, data resampling and frequency filtering (with linear phase filters). Additionally, 155 
detection and attenuation of artifacts (e.g., heartbeats, eye and body movements, stimulation 156 
and juice artifacts) can be achieved with principal (Uusitalo and Ilmoniemi, 1997) or independent 157 
component analysis  (Bell and Sejnowski, 1995; Cardoso, 1999). Finally, combining sensor data 158 
with the actual geometry of the recording array(s) enables many 2-D and 3-D visualization 159 
possibilities for time-series and realistic topographical plots, as illustrated further below.  160 

2. Spike detection and spike sorting 161 

Following the importation and preprocessing of data, IN data is often processed to extract spiking 162 
events from single or multiple neurons. This entails detecting spike occurrences and classifying 163 
these events according to their respective neural sources (Quiroga, 2007). Most data acquisition 164 
systems feature online spike detection and sorting. These online events can be imported directly 165 
into IN-Brainstorm with the corresponding raw recordings. Yet, usual IN practice is to refine spike 166 
classification with a two-step procedure consisting of 1) unsupervised clustering, which 167 
automatically assigns each spike to a neural source based on waveform features, then 2) 168 
supervised clustering, which requires manual reviewing and editing of the labels from 169 
unsupervised clustering and the elimination of spurious spike events. 170 
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For IN-Brainstorm, we have enabled the direct interoperability with a selection of existing and 171 
openly-available spike-sorting toolkits: Waveclus (Quiroga et al., 2004), UltraMegaSort2000 (Fee 172 
et al., 1996; Hill et al., 2011) and Kilosort (Pachitariu et al., 2016). Those packages can be 173 
downloaded and installed automatically, in a completely transparent procedure. Sequentially, 174 
these tools are called by and interact with IN-Brainstorm without programming interventions 175 
from users. 176 

2.1. Unsupervised spike sorting 177 
Figure 3 (left) shows IN-Brainstorms’ GUI for unsupervised spike-sorting. Raw files are dragged 178 
and dropped into the GUI process box before a spike-sorting tool is selected from the IN-179 
Brainstorm toolkit. Next, spike events are detected on each electrode and classified according to 180 
their putative neuronal generators. 181 

The unsupervised spike events produced overwrite the online counterparts that were detected 182 
during data acquisition. The output of the spike-sorting process (Figure 3 Box 1) is automatically 183 
registered to and accessible from the IN-Brainstorm database and linked to the corresponding 184 
raw file. The spike events are labelled in a principled manner (per channel and source cell number 185 
– Figure 3 Box 2).  186 

2.2. Supervised spike sorting 187 
As WaveClus and UltraMegaSort2000 have built-in supervised spike sorting graphical user 188 
interfaces, we synchronized their GUIs with IN-Brainstorm’s. For Kilosort, we developed specific 189 
GUI bridges via Klusters (Hazan et al., 2006). The user-selected supervised clustering tool is called 190 
from Brainstorm’s main window after an unsupervised spike-sorted file is selected (Figure 4A). 191 
The user then switches to the GUI of the selected supervised spike clustering tool (Figure 4 B-D). 192 
Once supervised spike clustering is complete, the spike events are updated accordingly and 193 
registered into the software’s file system. Double-clicking on the link to the raw data file lets the 194 
user review the updated spike events along with the raw electrophysiological traces as shown in 195 
Figure 2 (Right).  196 

Spike events and categories from other spike-sorting tools can be readily imported as Brainstorm 197 
events, following the procedure described in the online documentation 198 
(https://neuroimage.usc.edu/brainstorm/e-phys/ConvertToBrainstormEvents).  199 

3. Extraction of local field potentials 200 

In addition to spiking activity, IN recordings yield local field potentials (LFPs), which provide direct 201 
measures of the summed post-synaptic electrical activity in the vicinity of recording electrodes 202 
(Legatt et al., 1980). These can be useful as a complement to spiking activity or a surrogate for 203 
some aspects of neural activity (e.g.,(Mineault et al., 2013)), provided that LFP traces can reliably 204 
be filtered and separated from spike waveforms (Zanos et al., 2011). 205 

Figure 5A shows the IN-Brainstorm’s GUI for extracting LFP traces from raw recordings. The 206 
application features efficient tools to remove spike traces (Zanos et al., 2011), to perform anti-207 
aliasing bandpass filtering and to down-sample the raw data. The de-spiking method proposed 208 
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by Zanos et al. (2011) increases the accuracy of subsequent spike-field coherence measures and 209 
of spike-triggered average signals.  210 

The resulting LFP traces and experimental events are automatically registered in IN-Brainstorm’s 211 
data repository for further review and analysis with a vast library of tools and pipelines − as 212 
described below − or for easy exportation to other software or plain files. 213 

LFP extraction produces a new IN-Brainstorm down-sampled time-series binary file (Figure 5B) 214 
with all the corresponding metadata, such as channel description (e.g., electrode labels and 215 
locations), and spike and experimental events. This file is easily sharable among researchers since 216 
its size is typically ~20-30 times smaller than the original raw file. Figure 5C shows a segment of 217 
the LFP file created. 218 

4. Epoching  219 

Once the relevant neural signals (LFPs and spikes) have been extracted from the raw data, they 220 
can be divided according to experimental epochs. Epochs are typically comprised of experimental 221 
trials, with the time window selection defined around a stimulation or behavioral event of 222 
interest. These can be imported directly into the IN-Brainstorm file system. 223 

To illustrate these functions, we make use of the example visual cortex recording described 224 
previously (Figure 2). The experiment involved presentations of moving stimuli while the animal 225 
maintained fixation; we defined the relevant epochs as segments of [-500, 1000] ms around the 226 
onset of each visual stimulus (Figure 6 Left). In total we considered 8 different directions of the 227 
visual stimulus moving pattern; each stimulus condition was repeated 4 times (one condition was 228 
repeated for 96 trials for usage in the raster plot, and noise correlation functions). Imported trials 229 
to the database are shown in (Figure 6 – Right). 230 

The following analysis steps can then be applied on the epoched trials.  231 

5. Analysis of individual LFP signals 232 

LFP traces can be analyzed using Brainstorm’s extensive library originally developed for EEG and 233 
MEG research (Tadel et al., 2011). We show in Table 1 a list of the main data processing categories 234 
that are available for LFP analysis. There is extensive online documentation, accompanied by data 235 
files, that describes in detail the methods and practices of LFP signal analysis 236 
(http://neuroimage.usc.edu/brainstorm). 237 

We briefly provide below a few examples of these functions and their implementation in IN-238 
Brainstorm. 239 

 240 

5.1. Time-frequency decompositions  241 
Having extracted the LFP signal and defined an appropriate analysis epoch, one can compute the 242 
LFP power at different frequencies and at different times relative to a stimulus event. Such 243 
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information is often used to infer stimulus selectivity, anatomical sources of input, and other 244 
factors that are not necessarily apparent in spiking activity (Buzsáki, 2006; Fries et al., 2008; 245 
Pesaran et al., 2002; Wilke et al., 2006; Womelsdorf et al., 2006). 246 

IN-Brainstorm provides functionality for spectral and time-frequency decompositions, which can 247 
be derived using power spectrum density estimates, Hilbert or wavelet transforms. An example 248 
time-frequency decomposition (wavelet) is shown in Figure 7A for the example LFP data 249 
corresponding to a single stimulus condition and epoch that shows a strong beta response after 250 
stimulation. The wavelet decomposition was z-scored with respect to a pre-stimulus baseline [-251 
500:-100] ms. 252 

 253 

5.2. LFP-LFP signal analysis 254 
LFP signals from multichannel recordings can be analyzed to detect occurrences of various forms 255 
of signal similarities in the time or frequency domain. These measures are often interpreted as 256 
representing functional connectivity between different sites (Fries, 2005; Fries et al., 2002, 2008; 257 
Womelsdorf et al., 2006). IN-Brainstorm provides support for widely-used measures based on 258 
amplitude or phase statistics as indicators of possible interregional brain interactions (coherence, 259 
phase-locking values, bandlimited amplitude envelope correlations, phase-transfer entropy) and 260 
parametric models (estimates of time- or frequency-domain Granger causality). Advanced 261 
measures of interdependence between oscillatory components of polyrhythmic brain activity can 262 
be derived with phase-amplitude coupling (PAC) estimation tools (Canolty et al., 2006, Samiee 263 
and Baillet, 2017). An example estimation of coherence among all combinations of electrodes is 264 
shown in Figure 7B for a single stimulus condition and epoch. The bimodal pattern that emerges 265 
(high coherence among some channels and low coherence among others) is an indication of the 266 
transition of the linear probe across neighboring cortical areas, from MT (electrodes 1:13) to MST 267 
(14:32). 268 

 269 

6. Analysis of individual neuron spiking activity 270 

Spikes are registered in IN-Brainstorm as events; the corresponding features are 1) the time of 271 
occurrence and 2) a label for distinguishing between neuronal sources. We provide several 272 
features for visualization of epoched spiking data. 273 

6.1. Raster plots 274 
Raster plots are routinely used to visualize the relations between neuronal firing and a stimulus 275 
event or a behavioral response. The spike occurrences in each trial and from each neuron are 276 
binned over user-defined time epochs and converted into firing rates (spikes/second).  277 

We provide two methods for visualizing spiking activity with IN-Brainstorm:  278 

The first method shows the spiking data as trial vs. time bins for each neuron. Raster plots of 279 
spiking rates are displayed after interactive selection of the cell to be reviewed. Figure 8A shows 280 
the raster plot of the first neuron detected from contact AD01, with 10-ms binning. The trial 281 
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average of the neuron’s firing rate from 96 trials of a single condition revealed a stimulus-onset-282 
to-maximum-firing latency of about 150 ms. 283 

The second method is embedded within the topographical plots section as shown below. 284 

6.2 Tuning curves 285 
Tuning curves capture the relationship between an experimental variable (e.g., the orientation 286 
of a visual stimulus) and a scalar measure of neural activity (e.g., a single neuron’s trial-averaged 287 
firing rate).  288 

Tuning curves are readily produced from continuous data files that contain the event markers of 289 
interest to the study. Tuning curves are displayed with IN-Brainstorm after manual assignment 290 
of the order of the experimental conditions (x-axis), the selection of the neurons to be displayed, 291 
and the selection of the time window of interest for reporting spiking activity. A separate tuning 292 
curve figure is produced for each neuron selected. 293 

We selected the events and individual neurons previously identified from spike sorting via IN-294 
Brainstorm’s GUI. Figure 8B shows the tuning curves of one example neuron (labeled as “Spikes 295 
Channel AD07 |1|”) for the 8 different conditions (Stim On -3/4 pi, Stim On -2/4 pi etc.) of the 296 
motion stimuli. The tuning curve shows the preference of this neuron for stimuli moving in the 297 
right direction (Stim On 0 condition). 298 

 299 

6.3 Topographical plots 300 
When multichannel recording devices are used, neurophysiology data can be shown as 301 
topographically registered to structural anatomy. IN-Brainstorm can show neuronal firing at the 302 
3-D locations of the recording probes/arrays. To illustrate this feature, we used a separate 303 
dataset that was collected from two 96-channel Utah arrays and one 32-linear probe (Krause et 304 
al., 2017). A structural T1-weighted MRI volume was acquired preoperatively. The head and brain 305 
surface envelopes were segmented with Freesurfer ( Fischl et al., 2001) and directly imported in 306 
IN-Brainstorm. The electrode contact locations were co-registered to the 3-D anatomical volume 307 
by specifying the distance of the electrodes along the probe and locating the tip of the probe and 308 
the entry point through the skull, using Brainstorm’s MRI volume viewer. 309 

Neuronal firing was binned in 10-ms segments and displayed on the animal’s anatomy as shown 310 
in Figure 9A (a single bin is displayed in the figure). This figure shows IN-Brainstorm’s ability to 311 
overlay the segmented cortical surface, MRI orthogonal slices, the implanted devices with actual 312 
geometry, and color-coded displays of raw or processed electrophysiology data (here 313 
instantaneous firing rates). Figure 9B shows a zoomed-in version of Figure 9A over the Utah array 314 
implanted in the prefrontal cortex. 315 

 316 
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7. Spike-spike analysis: Noise correlations 317 

While tuning curves capture neuronal sensitivity to stimulus properties, the fidelity of a 318 
population code is thought to be limited by noise that is common across neurons (Zohary et al., 319 
1994); for example, neurons would be noise correlated if for each stimulus their activities are 320 
correlated (Eyherabide and Samengo, 2013). Such noise correlations are typically quantified as 321 
the Pearson correlation coefficient between the firing rates of two neurons across trials. Such 322 
correlations strongly influence the accuracy of population coding (Abbott and Dayan, 1999; 323 
Averbeck et al., 2006; Liu et al., 2016; Panzeri et al., 1999; Sompolinsky et al., 2001).  324 

Noise correlation statistics are displayed with IN-Brainstorm from the correlation of the spike 325 
trains that each neuron elicited within a given epoch, for all neuronal combinations. The end 326 
result is a nxn matrix (with n the number of unique neurons that produced spikes during the 327 
selected trials) that shows noise correlation estimates between the selected neurons. 328 

Figure 8C shows the noise correlation profile across the 32-channel array of the example dataset, 329 
for 53 unique neurons that elicited spikes across all trials at the 8 conditions of presentation of 330 
the moving stimulus in the original data set from Figure 2. Spikes included in the correlation 331 
computations were selected in the [0,300]-ms time range of each trial. 332 

The computed noise correlation showed 2 pairs of neurons with abnormally high noise 333 
correlation (above 0.8). After further inspection, it was revealed that this was due to the fact that 334 
the spike-sorter that was used was not taking into account the relative position of the electrodes, 335 
and the same neurons were picked up from neighbouring channels: 336 

Neurons: AD01 |1| - AD02|2| and AD08 |1| - AD09 |1| were the same neuron. 337 

8. Spike-LFP analysis 338 

Spikes are local events, reflecting outputs from individual neurons. LFPs in contrast can capture 339 
activity over regions, including subthreshold post-synaptic activity, and therefore reflect the state 340 
of a broader network (Cui et al., 2016). There is considerable interest in relating the two types of 341 
signals for estimating the dependence of spiking activity on the broader context in which the 342 
neuron is embedded.  343 

8.1. Spike-field coherence 344 
Spike-field coherence (SFC) estimates the consistency between the time occurrence of spike 345 
trains and the phase of co-localized LFP cycles as a function of frequency (Arce-McShane et al., 346 
2018). SFC can also be used to evaluate synchronized activity between distant brain regions, as a 347 
marker of neuronal communication (Fries, 2005; Gregoriou et al., 2009; Liebe et al., 2012; Singer, 348 
1999; Womelsdorf et al., 2007). IN-Brainstorm features the spike-field coherence estimator 349 
proposed by Fries et al. (2001). The user can derive SFC estimates for each GUI-selected neuron, 350 
for all electrodes and frequencies of interest.  351 

Figure 8D shows SFC up to 60 Hz between a single neuron detected at channel AD07 of the 352 
example data set and the LFP traces at all the 32 channels of the probe. The time window selected 353 
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around the spiking events was [-150, 150] ms. The horizontal white line indicates the electrode 354 
where the neuron was detected. 355 

 356 

8.2. Spike-triggered average of the LFP 357 
Spike-triggered averaging (STA) of the LFP reveals how neuronal spiking is related to the dynamics 358 
of proximal or distant LFPs (Jin et al., 2008; Nauhaus et al., 2009; Ray and Maunsell, 2011). STA 359 
proceeds with trial averaging of LFP traces time-locked to a designated neuron’s spike events, 360 
followed by normalization with the total spike count.  361 

Analogous to spike-field coherence, STA is computed over a user-selected time window around 362 
each spiking event. STA scores are per neuron, showcasing the average LFP amplitude around 363 
the occurrence of the spikes of each neuron. STA can be visualized on topological 2-D 364 
representations of the recording array, to reveal time-locked associations between neuronal 365 
spiking activity and local or remote LFP recordings. 366 

Figure 8E shows the STA time-locked to the firing of the first neuron detected by electrode AD01 367 
across trials and conditions. The topographical 2-D plot is produced with IN-Brainstorm using 368 
multidimensional scaling of the actual 3-D location and geometry of the implanted probe. The 369 
LFP epoch around spike event was [-150,150] ms.  370 

9. Statistical inference and machine learning  371 

Once measures have been extracted from spiking or LFP data, tools to conduct inferential 372 
statistical analysis in the multiple dimensions of electrophysiological data (space, time, 373 
frequency, connectivity) are available from Brainstorm’s library.  374 

Parametric (one- and two-sample tests) and nonparametric permutation tests, descriptive and 375 
distribution statistics from histograms (Q-Q plot and Shapiro-Wilk test for data normality) are 376 
available. Here too, the software architecture emphasises interoperability with other toolkits, for 377 
expanded resources. For instance, multidimensional and nonparametric cluster statistics can be 378 
run on LFP and time-frequency data, from Brainstorm, via calls to FieldTrip (Oostenveld et al., 379 
2011).  380 

In addition, statistical learning tools for decoding and multivariate pattern analysis (MVPA) are 381 
also available (see e.g., Cichy et al., 2014). The Brainstorm library also includes support vector 382 
machine (SVM) and linear discriminant analysis (LDA) classification of LFP time series based on 383 
experimental events and conditions. 384 

 385 

 386 

 387 
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10. Additional features 388 

10.1 Processing power 389 

Hardware acceleration in the processing of long recordings is enabled by Matlab’s standard 390 
parallel computing (e.g., multi-core) features, which are controlled directly from Brainstorm’s 391 
GUI. Flexible management of memory resources is also accessible to users, with the specification 392 
of the amount of RAM allocated to data manipulations while executing the LFP extraction 393 
process. 394 

10.2 Data management 395 
Generally speaking, formal data management plans are seldom adopted by electrophysiology 396 
labs. Instead, the handling of data is typically project-based, with trainees managing their 397 
individual data collection and analyses until publication. When they move on to another project 398 
or to the next step of their career, they frequently leave data, analysis pipelines and results 399 
behind, with minimal documented organization for sustainability and knowledge transfer. This 400 
limits the long-term value of data and negatively impacts the reproducibility and verification of 401 
research results (Baker, 2016). Brainstorm has tools to improve and facilitate data management: 402 
data is hierarchically organized by Studies, followed by Subjects/Samples and (experimental) 403 
Conditions, which point to data elements such as links to raw data files, single-trial epochs, 404 
sample statistics, and other derivatives:  power spectra, wavelet decompositions, measures of 405 
cross-frequency coupling and inter-regional connectivity, etc. As with all features in the 406 
application, user interactions with Brainstorm’s data organization are facilitated both by the 407 
application’s GUI and direct access via scriptable functions using Matlab code. 408 

Another important aspect of Brainstorm is its capacity for importing entire data repositories at 409 
once, with associated metadata, when those datasets are organized according to the emergent 410 
Brain Imaging Data Structure (BIDS). Originally driven by the neuroimaging community, BIDS is a 411 
grassroots effort to harmonize data organization and documentation (Gorgolewski et al., 2016). 412 
BIDS has recently been extended to MEG electrophysiology (Niso et al., 2018) and is presently 413 
integrating EEG (Pernet et al.), and invasive neurophysiology (Holdgraf et al.). 414 

 415 

10.3 Batch processing 416 
The software has a specific GUI for assembling data processing pipelines in an intuitive manner, 417 
choosing elementary processes from the (IN-)Brainstorm library and assembling them together 418 
into a logical progression along the workflow. These pipelines enable the reproduction of any 419 
data workflow with a click of a button. They can also be shared in Matlab format with 420 
collaborators or the entire user community. The Matlab code for pipelines can also be generated 421 
automatically by Brainstorm e.g., for execution in headless (no GUI) mode on high-performance 422 
computing servers and cloud resources. 423 

 424 

 425 
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Discussion 426 
We provide a free, extensive open-source software application for invasive electrophysiology. IN-427 
Brainstorm is built on the foundations of Brainstorm, which was originally designed for human 428 
multimodal electrophysiology and imaging. IN-Brainstorm supports multiple data formats of raw 429 
signals from a variety of acquisition systems. The recorded traces and their LFP versions can be 430 
reviewed, quality-controlled and processed within a unique analytical environment, with easy 431 
GUI interactions, rich visualization, intuitive pipeline editing for scripting and sharing. We have 432 
built bridges for IN-Brainstorm to interoperate seamlessly with established, free spike-sorting 433 
tools.  434 

A specific emphasis was put on providing versatile solutions for multidimensional data 435 
visualization, including 2-D and 3-D topographical plots registered to structural anatomy from co-436 
registered MRI data. Source modeling of array data is also available using boundary element 437 
modeling of head and brain tissues (Gramfort et al., 2010; Kybic et al., 2005) and a variety of 438 
source modeling techniques available in Brainstorm (Baillet et al., 2001). Videos synchronised to 439 
electrophysiological traces can also be imported and visualized simultaneously in synchrony, for 440 
marking behavioral events.  441 

The software is supported by an expansive online documentation (with tutorial data) and online 442 
user forum. 443 

 444 

A tool for augmented research productivity and reproducibility 445 
With IN-Brainstorm, electrophysiologists are provided a free, integrated software environment 446 
that promotes and facilitates harmonized principles of data management, methods, 447 
documentation, code verification and reproducibility of data analyses. Such practical and user-448 
friendly tools also accelerate the education of electrophysiologist trainees and promotes the 449 
adoption and expansion of data harmonization efforts, such as BIDS and Neurodata Without 450 
Borders. 451 

Every instance of data processing is logged, with the filenames of the data used and time stamps 452 
of execution. These simple, yet powerful features document the provenance of data derivatives 453 
and analysis results. Custom IN analysis pipelines assembled for elementary processing blocks of 454 
the software’s library can be shared with collaborators, publishers and the scientific community. 455 
Pipelines are constructed via the GUI and saved as Matlab files. The open-source code of IN-456 
Brainstorm is thoroughly documented, verifiable and can benefit from contributions from any 457 
user via GitHub. Sharing is further encouraged and facilitated by Brainstorm’s data organization 458 
in Studies, which can be zipped for archiving, exportation (e.g., as a BIDS repository) or 459 
importation into the Brainstorm environment of a collaborator. Batch processing of multiple data 460 
volumes is automated, thanks to the systematic organization of Brainstorm’s file system and can 461 
be executed on high-performance computing servers without requiring GUI interactions. 462 

For all these reasons, we believe that IN-Brainstorm responds to an unmet need of the 463 
electrophysiology community. By providing a unique environment with a common set of 464 
analytical tools, the application also provides a unique bridge between recording scales, data 465 
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types and researchers, and additionally, between the methods used in human, animal and slice 466 
preparations. It also represents a scalable framework to developments and integration of existing 467 
or future tools and data formats for the entire field of electrophysiology.  468 

 469 
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