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Abstract: Global change impacts on the Earth System are typically evaluated using biome 

classifications based on trees and forests. However, during the Cenozoic, many terrestrial 

biomes were transformed through the displacement of trees and shrubs by grasses. While 

grasses comprise 3% of vascular plant species, they are responsible for more than 25% of 

terrestrial photosynthesis. Critically, grass dominance alters ecosystem dynamics and 

function by introducing new ecological processes, especially surface fires and grazing. 

However, the large grassy component of many global biomes is often neglected in their 

descriptions, thereby ignoring these important ecosystem processes. Furthermore, the 

functional diversity of grasses in vegetation models is usually reduced to C3 and C4 

photosynthetic plant functional types, omitting other relevant traits. Here, we compile 

available data to determine the global distribution of grassy vegetation and key traits related 

to grass dominance. Grassy biomes (where > 50% of the ground layer is covered by grasses) 

occupy almost every part of Earth’s vegetated climate space, characterising over 40% of the 

land surface. Major evolutionary lineages of grasses have specialised in different 

environments, but species from only three grass lineages occupy 88% of the land area of 

grassy vegetation, segregating along gradients of temperature, rainfall and fire. The 

environment occupied by each lineage is associated with unique plant trait combinations, 

including C3 and C4 photosynthesis, maximum plant height, and adaptations to fire and aridity. 

There is no single global climatic limit where C4 grasses replace C3 grasses. Instead this 

ecological transition varies biogeographically, with continental disjunctions arising through 

contrasting evolutionary histories.  
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Significance statement: Worldviews of vegetation generally focus on trees and forests but 

grasses characterize the ground layer over 40% of the Earth’s vegetated land surface. This 

omission is important because grasses transform surface-atmosphere exchanges, biodiversity 

and disturbance regimes. We looked beneath the trees to produce the first global map of 

grass-dominated biomes. Grassy biomes occur in virtually every climate on Earth. However, 

three lineages of grasses are much more successful than others, characterizing 88% of the 

land area of grassy biomes. Each of these grass lineages evolved ecological specializations 

related to aridity, freezing and fire. Recognizing the extent and causes of grass dominance 

beneath trees is important because grassy vegetation plays vital roles in the dynamics of our 

biosphere and human wellbeing. 
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Introduction 1 

The global distribution of terrestrial biomes determines global patterns of carbon storage and 2 

biodiversity (1). Delineation of biome distributions is crucial because it underpins evaluations 3 

of vegetation feedbacks on climate (2), extinction threats for biodiversity (3), and strategies 4 

for monitoring and reversing land-use change and degradation (4). Global studies of biome 5 

distributions typically focus on forests and trees (4-6), following the long-established 6 

paradigm in modern ecology of deterministic relationships between forest distributions and 7 

environment (7). Within this paradigm, there is a widely held perception that grassy 8 

vegetation only occupies semi-arid climates. However, it is increasingly recognized that biome 9 

limits are not deterministically linked to climate but arise from multi-directional feedbacks 10 

between plant functional traits, environment, and disturbance. These processes operate over 11 

evolutionary and ecological timescales (8) creating biogeographic contingencies in biome-12 

environment relationships (9). 13 

Grassy biomes require open-canopied tree layers (or no tree layer) to permit enough 14 

light to penetrate for grass photosynthesis. As a result, grasses dominate the ground layer 15 

when the rate of woody plant recruitment and growth is limited by climate, soil, drainage, 16 

disturbance conditions or light competition (10-12). “Grassy biomes” defined in this way 17 

include tropical savannas, montane grasslands, grassy deserts, temperate steppe grasslands, 18 

boreal parklands, and many temperate woodlands. The distinction of whether the ground 19 

layer is dominated by grasses (Poaceae) is fundamental to understanding global relationships 20 

among plants, climate, and disturbance (13). While, both trees and grasses are clearly 21 

important in driving vegetation dynamics, grass dominance causes a fundamental shift in 22 

disturbance regimes, whereby the consumption of ground layer biomass by fire and grazing 23 

reinforces grass dominance and maintains open tree canopies (10). Grass cover and biomass 24 
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in the ground layer also affects surface energy, carbon, nutrient and water cycling by, for 25 

example, altering rates of decomposition, water infiltration and absorption of sunlight. Grass 26 

dominance therefore leads to novel ecological processes and properties in the Earth System, 27 

including frequent fire and grazing by mammals (14).  28 

During the Cenozoic grasses displaced forests and shrublands by altering disturbance 29 

regimes at large scales across tropical and temperate regions (14, 15). The global expansion 30 

of grassy vegetation enabled major faunal and floral radiations (14, 16), and is linked to events 31 

in human behavioral evolution (17, 18). Today, natural grassy biomes provide grazing lands, 32 

water resources and numerous ecosystem services that directly support over a billion people 33 

(19). Yet, despite this social and economic significance, and the profound disturbance 34 

feedbacks engendered by grassy vegetation (20), understanding of grassy biomes is 35 

geographically biased towards few regions (e.g., South and East African savannas, North 36 

American grasslands), with the global limits of grassy biomes poorly defined.  37 

When considering the limits to grassy biomes, the grass diversity present in a system 38 

is generally reduced to a distinction between species using the C3 or C4 photosynthetic 39 

pathways. If all else is equal, C4 grasses should outcompete C3 grasses under conditions of high 40 

light and temperature as well as low CO2 (21-23). This physiologically based model explains, 41 

in general terms, how C4 grasses dominate tropical regions and C3 grasses dominate 42 

temperate and high-altitude environments under current atmospheric CO2 levels [ppm ≈ 408]. 43 

The physiological mechanisms underpinning this model have critical impacts for predicting 44 

vegetation trajectories with global climate and atmospheric CO2 changes (22) yet attempts to 45 

parse the consequences of grass physiology for global vegetation is often reliant on sparsely 46 

validated modelling (24). Further, a focus on photosynthetic type belies the rich phylogenetic 47 

diversity within grasses independent of photosynthetic pathway (14). Grasses are unusual 48 
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among vascular plants because C4 photosynthesis evolved in up to 24 independent lineages 49 

(25), conferring unique ecological characters to each C4 lineage inherited from its C3 ancestors 50 

(26). Photosynthetic type therefore interacts with different combinations of other functional 51 

traits to determine plant performance under varied environmental conditions (27, 28), but 52 

the influence of these interactions on the global biogeography of grassy biomes is unknown.  53 

Here, we focus on grass-dominated systems to address three questions. First, what are 54 

the global limits of grassy biomes? Second, to what extent is grassy biome structure 55 

contingent on evolutionary history, whereby independent phylogenetic lineages characterize 56 

grassy biomes on each continent? Finally, how do functional traits of the descendant species 57 

of each lineage relate to climate and fire? Our findings have significant implications for the 58 

representation of terrestrial vegetation processes in Earth System Models.  59 

 60 

Identifying grassy biomes. Our dataset provides the first spatially explicit, functional 61 

classification of grassy vegetation at the global scale (Figs. 1 and S1). Necessarily, our approach 62 

that focusses on the ground layer contrasts with efforts to map biomes using remotely sensed 63 

tree cover or biomass (4, 29). Such studies generally misclassify extensive areas of tropical 64 

savanna as forest or degraded forest (30, 31). Global synthesis of grassy biomes has been 65 

prohibited as satellite remote sensing does not see through a tree canopy. Therefore, we 66 

mapped grassy formations by integrating and re-classifying 20 existing national and regional 67 

vegetation maps produced using botanical data and detailed vegetation descriptions (see 68 

Methods and SI).  69 

What is a grassy biome? We defined vegetation units as grassy where the ground layer 70 

is characterized by Poaceae and where grasses comprised > 50% of ground layer cover based 71 

on descriptions within vegetation maps and associated literature (see Methods and SI). A 72 
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relatively small set of species often accounts for the majority of biomass in plant communities, 73 

whether these are communities dominated by trees or grasses, and these species exert major 74 

controls over ecosystem processes (32) and ecosystem services (33). Focusing on dominant 75 

and characteristic species provides one way to explore links between evolutionary history and 76 

ecosystem ecology at large scales (14). Through this process we identified 1,154 grass species 77 

(~10% of the total grass flora) characterizing grassy vegetation. 78 

 79 

Results and Discussion 80 

Global limits of grassy biomes. Grasses can dominate ground layer vegetation in all but the 81 

coldest and driest climates on Earth (Figs. 1 - 2). We estimate that vegetation with a grass-82 

dominated ground layer originally covered ~ 41% of the vegetated land surface, although 83 

much is now under cultivation. Critically, grasses can dominate the ground layer in every 84 

climate where woody vegetation can persist (Figs. 1 - 2). While steppe grasslands and prairies 85 

occupy a large fraction of the global land area in dry temperate climates (Figs. 2, S2-S3), and 86 

savannas and grasslands occupy most of the tropics, grass-dominated ground layers occupy 87 

extensive areas in any other part of the vegetated global climate space (Fig. 2 and Fig. S4). 88 

Members of 16 independently derived C4 grass lineages dominate within at least one 89 

vegetation unit worldwide (Fig. 1). However, two C4 lineages and one C3 lineage dominate 90 

over 88% of the land area of grassy vegetation: C4 Andropogoneae, 37% (1189 species in the 91 

lineage); C4 Chloridoideae, 14% (1601 species in the lineage); and C3 BEP, 38% (Fig. 1). The vast 92 

majority of C3 BEP taxa belong to Pooideae (4234 species in the lineage). In contrast, C3 species 93 

of the PACMAD clade dominate only 2% of grassy biomes (Fig. 1); these are the closest 94 

relatives of C4 grasses and are restricted to warm, wet areas (Figs. S2-S4). Of the remaining 95 
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area of grassy vegetation, 6.6% is characterised by a mix of lineages, and the rest dominated 96 

by 13 other, independently derived, C4 lineages (Fig. 1 and Table S1).  97 

The three dominant lineages sort in climate space. C3 Pooideae dominate cooler, drier 98 

climates, whereas C4 Andropogoneae and Chloridoideae dominate grassy biomes in warmer 99 

climates (Figs. 3, S3-S6). However, precipitation sorts the C4 lineages, with peak dominance of 100 

Andropogoneae occurring at ~ 1200mm MAP (Figs. 4, S3-S5), coinciding almost precisely with 101 

the global peak in fire frequency (Fig. 4). This is also the climate space where disturbance-102 

driven feedbacks are considered to play a major role in maintaining open (i.e., grassy) or 103 

closed (i.e., woody) vegetation (34). In contrast, the peak dominance of Chloridoideae occurs 104 

at ~350mm MAP (Figs. 4, S3-S4), within semi-arid climate zones occupied by both dry savannas 105 

and shrublands/thickets e.g., (35). Temperature seasonality also differs among the C4 lineages, 106 

with Chloridoideae dominating in regions with strong seasonality, and Andropogoneae 107 

dominating in more aseasonal environments (Fig. S5).  108 

 109 

Continental disjunctions in C3 and C4 lineage distributions. Globally, the mean growing 110 

season temperature where dominance of grasses transitions from C3 to C4 types varies starkly 111 

among continents, from 8.5-26.1 °C, with a global mean of 17.2 °C (Fig. 3). Lineages using C3 112 

and C4 photosynthetic pathways are clearly sorted by growing season temperature and mean 113 

annual temperature (Figs. 3 and S3-6). The C3 Pooideae lineage has specialized and radiated 114 

in cold environments by evolving physiological cold acclimation to protect tissues from 115 

freezing damage, and vernalization to synchronize flowering with the growing season (36, 37). 116 

Conversely, in tropical regions, the repeated evolution of C4 photosynthesis appears vital in 117 

expanding the range of grassy biomes, by enabling colonization of hot, high light, and 118 

seasonally dry habitats across a wide span of rainfall (38, 39). 119 
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The C3 Pooideae occupy regions with lower winter temperatures and shorter droughts 120 

than the C4 lineages (Fig. S7). C3 Pooideae dominate grassy biomes to much higher 121 

temperatures in the Palearctic than the Nearctic realm, although distributions of C4 122 

Andropogoneae and Chloridoideae in these realms are similar (Fig. 3). Conversely, C3 Pooideae 123 

are confined to the geographically restricted colder parts of the Afrotropics and Indo-Malay 124 

realms, and C4 Andropogoneae dominate at much lower temperatures in these regions (Fig. 125 

3). The sorting of C3 and C4 grass species along local and regional temperature gradients is well 126 

established (40, 41), and the crossover temperature can be modified by ecosystem factors 127 

(e.g., tree cover) (42). However, our observations are broadly consistent with model 128 

predictions of carbon assimilation (22, 23, 43), as modeled crossover temperatures under low 129 

light conditions and modern CO2 levels occurs at ~20-22 °C.  130 

In our data, some species of both Andropogoneae and Chloridoideae lineages have 131 

adapted to low mean annual temperatures and may persist in grassy vegetation within cool 132 

parts of each realm (e.g. Fig. 3). Given equal investment in the carbon-fixing enzyme Rubisco, 133 

a relatively low canopy leaf area and sunny conditions, a C4 canopy can theoretically achieve 134 

higher total daily rates of photosynthesis than a C3 at any temperature (37). In this case, the 135 

primary limitation on canopy carbon uptake becomes light-mediated damage during low 136 

temperature extremes (44), although C4 photosynthesis is energetically expensive. Low 137 

temperature tolerance may be absent from most C4 species as C4 photosynthesis evolved in 138 

the tropics (38).  139 

 140 

Trait combinations of each lineage. Chloridoideae are distinguished from Andropogoneae in 141 

their occupation of regions with lower precipitation, higher daily variation in temperatures 142 

and longer droughts (Fig. S7). Further, these lineages are differentially associated with fire 143 
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where Andropogoneae has the shortest fire return interval of 2 years, the peak occurrence of 144 

Chloridoideae is at an interval of 8 years, while in Pooideae the modal fire return interval 145 

exceeds 20 years (Fig. S7). Maximum plant heights of each lineage sort similarly, with values 146 

peaking at 1.5 m for Andropogoneae and 0.6 m for both Chloridoideae and Pooideae (Fig. S7). 147 

However, annual versus perennial life history is not globally relevant. The only significant areas 148 

dominated by annual grasses occurring at the margins of the Sahara Desert and West Africa, 149 

regions commonly considered as over-grazed. 150 

 80% of burned area globally occurs in the regions we see dominated by 151 

Andropogoneae (20) and differs from other C4 grass lineages with its greater average height 152 

and consequent rapid growth rates. Where rainfall exceeds 800 mm MAP in the tropics, soils 153 

are typically leached and infertile (45). Andropogoneae produce leaves with relatively high 154 

C:N ratios (46, 47), which resist rapid decomposition. The tall, erect architecture of these 155 

grasses produces a flammable well-connected fuelbed (48) and productive tropical 156 

environments, with an annual dry season of > 5 months (13), are primed to burn as the grass 157 

layer senesces. Experimental manipulations demonstrate that fire promotes dominance by 158 

Andropogoneae (46) and we see this mirrored at a global scale. Grass persistence in these 159 

competitive environments relies on the annual production of a new canopy and, in the 160 

absence of woody investment, dead biomass must either rapidly decompose, burn or be 161 

consumed by herbivores to avoid self-shading (11, 49). Andropogoneae are known to have 162 

morphological adaptations enabling tolerances and persistence to fire that are not commonly 163 

present in other grass lineages (49).  Fire and other forms of repeated disturbance, such as 164 

grazing, are therefore crucial for grass-dominated systems to persist in high rainfall 165 

environments. While Andropogoneae appears to be the C4 lineage most closely associated 166 
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with disturbance by fire, multiple lineages in the semi-arid African tropics appear linked to 167 

grazing tolerance (Fig S8, (50, 51)), and this may be due to the strength and form of 168 

environmental filtering associated with fire versus grazing, as well as the antiquity and 169 

biogeography of grazing pressure relative to fire. 170 

 171 

Implications. The Andropogoneae, Chloridoideae and Pooideae grass lineages dominate 172 

globally, via mechanisms encompassing plant production and competition, resilience to 173 

drought, freezing and disturbance. Why do three of the most diverse grass lineages 174 

characterise grassy biomes? Does diversity beget ecological success or does success beget 175 

diversity? Early diversification may have enabled ecological success, such that ecological 176 

speciation allowed each lineage to radiate across broad environmental envelopes (an 177 

ecological mechanism). Alternatively, a neutral mechanism of a long history of diversification 178 

may have led to high diversity as Andropogoneae and Chloridoideae are the oldest C4 lineages. 179 

Across our dataset, evidence for this is equivocal. We list 8.8% of all grass species and within 180 

lineages: Andropogoneae, 14.5%; Chloridoideae, 6.5%; Pooideae, 10.8%. Perhaps ecological 181 

success facilitated diversification, such that large geographical ranges enabled by unique 182 

adaptations made the isolation of populations and allopatric speciation more likely (a 183 

geographic mechanism). The rapid spread of the cosmopolitan Themeda triandra from Asia to 184 

Africa in < 500,000 years supports this idea (52). Resolving the relative role of these 185 

mechanisms requires comparative phylogenetic analyses of the relationships among ecology, 186 

functional traits, range sizes and diversification rates.  187 

The biogeographic contingencies described here in crossover temperatures align with 188 

emerging evidence that regional evolutionary and environmental histories have been 189 
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important modifiers of biome-climate relationships (9, 53). However, the rapid rates of 190 

dispersal observed in grasses (52), along with their short generation times (49), raises critical 191 

questions about whether the biogeographic contingencies observed in woody plants should 192 

be mirrored in grassy communities. 193 

Global change will rapidly modify the existing global distribution of grassy biomes. 194 

First, environmental change can alter feedbacks between grasses and woody plants via 195 

changes in the processes limiting the growth and mortality of woody plants. For example, 196 

rising CO2 is hypothesised to increase tree recruitment in savannas and forest margins (54, 197 

55), while extreme drought events and warming may cause forest dieback on large scales (56), 198 

where each process has feedbacks with fire leading to ongoing biome shifts (57). Second, 199 

environmental changes will shift the community composition of grass communities. Our 200 

analysis points to globally important ecotones between C3 and C4 likely to be influenced by 201 

rising CO2 and temperature (58), but these are better conceptualised as the boundary 202 

between Pooideae and Chloridoideae in arid and semi-arid regions or regions of high grazing 203 

pressure, and Pooideae and Andropogoneae in wetter regions. An experimental CO2 204 

manipulation in dry mixed prairie found elevated CO2 favoured a Pooideae dominant over a 205 

Chloridoideae dominant, with rising temperature having the opposing effect (59). Conversely, 206 

in a mesic tallgrass prairie, an Andropogoneae dominant displaced a Pooideae dominant in 207 

competition under elevated CO2 via improved water relations (60). In each case, C4 208 

photosynthesis was one trait among many that influenced dynamic environmental responses. 209 

Finally, the boundary between Andropogoneae and Chloridoideae is more likely to be 210 

influenced by changes in rainfall amount and seasonality, along with shifting fire and grazing 211 

regimes that can be directly altered by people at small and large scales.  212 

 213 
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Conclusions. The previous lack of synthesis in biome limits between grasses and woody plants 214 

constrains our understanding of how ecological and evolutionary processes determine the 215 

sensitivity of vegetation to global change. We have shown that divergent evolutionary 216 

histories and unique functional trait combinations have enabled three major grass lineages to 217 

dominate grassy biomes across global climate space. Local dominance by each lineage brings 218 

differing sensitivities to alternative global change drivers.  219 

 220 
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Methods 237 

Classifying grassy biomes. Data from 20 vegetation maps derived from botanical information, 238 

or a combination of botanical and geographic information, were integrated to delineate grassy 239 

biomes (references for these maps are listed in the Supplementary Information). The result 240 

was a global map of grassy biomes resolved into 1,635 discrete vegetation units, each defined 241 

by its characteristic grass species, which formed a list of 1,154 species (accounting for 242 

synonymy) found commonly across global grassy biomes.  243 

Vegetation maps are generally based on botanical survey and geographic analysis, 244 

combined with expert input, that cluster species composition and vegetation structure to 245 

define unique vegetation units. We compiled the ground layer information for the vegetation 246 

units in each map to identify the grass species considered to characterize a vegetation unit. 247 

To determine whether vegetation units were naturally dominated by grasses, we developed 248 

a set of criteria. First, artificial vegetation units were defined as those plowed or sown for 249 

agriculture and where humans are planting species that would not otherwise occur. We 250 

retained data for this analysis of only natural formations. Second, based on the vegetation 251 

descriptions we determined whether > 50% of the relative ground cover or biomass was 252 

derived from grasses. We used this definition in place of ‘Is there a continuous grassy ground 253 

layer?’ because low herbaceous cover in predominantly grassy vegetation would present a 254 

problem with the classification of desertic and arid environments. Vegetation units were 255 

considered grassy deserts where the total above-ground biomass was considered <50 g m2, 256 

or where total ground cover <25%, throughout the year. Finally, we retained all formations 257 

where grasses were the dominant component of the ground layer, irrespective of tree cover. 258 

Numerous grassy biomes, such as tropical savannas and woodlands, may be characterised by 259 

up to 80% tree cover, but behave functionally as savannas due to a contiguous grassy ground 260 
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layer (13, 35). Where necessary, we sourced additional information from published vegetation 261 

descriptions and analyses to attribute key grass species to a grassy vegetation unit. 262 

Additionally, vegetation units could be classified as mosaics with patches of closed canopy 263 

vegetation intermingled with open vegetation, e.g. across the Steppe region of Russia.  264 

Mapping grassy biomes. The vegetation maps we used as sources were developed 265 

throughout the 20th century. While this method provides an incomplete global coverage, we 266 

integrated available state-, country- and continent-level mapping to assemble what we 267 

consider to be the most robust map possible of the limits of grassy vegetation, where both 268 

vegetation characteristics and key constituent species could be identified. We were obliged 269 

to use the WWF Ecoregions map (61) where no other mapping was available. We re-assessed 270 

this global map to re-define units as grassy or not based on the criteria outlined above.  271 

To quantify the global limits of grassy vegetation according to grass lineage, we gridded 272 

the mapped data compilation at 0.5 degrees resolution. We calculated the proportion of each 273 

0.5-degree grid cell occupied by grassy polygons. Using the grass phylogenetic and trait 274 

information compiled, we then calculated the occupancy of grassy polygons by photosynthetic 275 

type, annual/perennial life history, grass lineage, and mean maximum grass height. These data 276 

are not the same as a classic concept of abundance or dominance but are a relative measure 277 

of the likelihood of occupancy measured from zero to unity. We undertook a validation of our 278 

map compilation described in the Supplementary Information and in Figure S9.  279 

Phylogenetic and plant trait information. We cross-referenced our species list to a taxonomy 280 

of accepted scientific names (GrassBase, http://www.kew.org/data/grasses-syn/cite.htm) 281 

and a recent accepted phylogeny from the Grass Phylogeny Working Group (25) to eliminate 282 

synonymy and link species to descriptions of evolutionary history and functional traits. 283 

Functional traits considered were: C3/C4 photosynthetic pathway, maximum plant height, 284 
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annual/perennial life history, and tolerance of climatic extremes and fire frequency. C3 species 285 

were divided amongst two groups: a polyphyletic group belonging to the PACMAD clade 286 

(including the C3 sister groups for all C4 lineages); and the monophyletic BEP clade, a C3 287 

outgroup to PACMAD, including bamboos, rice relatives and Pooideae species. C4 grass species 288 

were attributed to one of 24 independently evolved grass lineages. Maximum plant size is a 289 

major axis of plant trait variation at a global scale (62), with maximum culm height in 290 

herbaceous grasses reflecting annual rates of height growth, as most grasses annually senesce 291 

their canopy (49). Height also describes differences in life history strategies related to light 292 

competition and flammability and grazing tolerance (49). We included annual/perennial as 293 

while most grasses reach sexual maturity in < 1 growing season, perennial grasses can be long-294 

lived. Plant longevity is an effective strategy for occupying space in competitive environments 295 

(63). We summarized these data for each grassy vegetation unit based on the grass species 296 

listed as characteristic of each unit.  297 

For the Poaceae species that we listed, we extracted all available georeferenced 298 

occurrence records from the Global Biodiversity Information Facility (GBIF) web portal 299 

(http://www.gbif.org/; accessed January 2014) and cleaned these data to ensure longitude 300 

and latitude values were viable and to two decimal places. Species distributions were 301 

standardised against descriptions of distributions in Grassbase using TDWG regions. For this 302 

subset of species produced via distribution records, median fire return intervals were 303 

calculated at a species level following the methods of Archibald et al. 2010 (64). Information 304 

on fire date was extracted for each GBIF location from the MODIS global monthly burnt area 305 

(MCD45A1) satellite data product. To calculate climatic extremes for these same species, the 306 

WorldClim dataset (www.worldclim.org) was used to obtain species median values of 307 

minimum temperature (BIO6 variable) and seasonal drought length (calculated as the number 308 
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of successive months where mean annual precipitation was below 30mm). These species level 309 

data were used to construct frequency histograms to examine lineage level variation in fire 310 

regimes and climate extremes (Fig S7).  311 

Environmental data used in global analyses. Our analysis aimed to elucidate lineage, climate 312 

and disturbance relationships, and whether biogeography impacts the C3-C4 crossover 313 

temperature. We used the WorldClim dataset at a 0.5 degree resolution to match the 314 

vegetation map, and extracted mean annual precipitation (MAP), rainfall seasonality, mean 315 

annual temperature (MAT) and temperature seasonality (www.worldclim.org). We used a 316 

rainfall concentration index to describe rainfall seasonality based on (35). Growing season 317 

temperature (GST) was calculated for each grid cell to quantify regional and global C3-C4 318 

crossover temperatures. GST was calculated as the mean temperature across months with a 319 

greater than or equal to 5 degree mean temperature and at least 25 mm rainfall, and was 320 

calculated using WoldClim monthly climate normals (65).  321 

A median fire return interval (FRI) is the number of years between fire events that 322 

represents the time period available for plants to grow. We used fire interval data from the 323 

16 year MODIS fire datasets to fit Weibull distributions to 0.5° gridded data for the globe by 324 

using the method outlined in Archibald et al. 2010 (64). Tropical grasslands and savannas have 325 

the world’s shortest fire return times, due to rapid rates of fuel accumulation and a climate 326 

that supports frequent fire (annual dry seasons, warm climate and reliably seasonal rainfall) 327 

(20). Our dataset of estimated fire return times, while spatially biased, is therefore robust for 328 

grassy biomes.  329 

Globally consistent data on present or past herbivore pressures are simply not 330 

available. We were obliged to restrict our analyses to Africa where efforts have been made to 331 

map mammalian herbivore pressures of both wildlife and livestock (66). We combined 332 
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herbivore and fire data to assess links between lineage composition and disturbance. Soils 333 

data are not of sufficient quality to be meaningfully incorporated in analyses of this scale, 334 

despite being known to mediate local scale vegetation patterns (35). In our global analyses, 335 

we excluded grassy vegetation units defined as flooded, saline or edaphic, where the limits of 336 

these units are generally decoupled from climate.  337 

Analyses. First, we mapped the distribution of grassy biomes in geographic space according 338 

to lineage and photosynthetic type to calculate the land area occupied by different grass 339 

lineages in a “rank-abundance” style (Fig. 1). Grassy biome distributions were aligned with 340 

MAT (in 1oC intervals) and MAP (in 100 mm intervals) to construct “Whittaker” style plots of 341 

the limits of grassy biomes and of C3 and C4 photosynthetic types (Figure 2). These data were 342 

further decomposed to represent the climate space of 17 grass lineages including Pooideae 343 

that dominate grasslands (Figure S4). Data were also analysed by climate intervals of MAT and 344 

MAP to calculate the proportion of grassy land area occupied by each grass lineage within 345 

each climate interval, to consider the potential for deterministic links between climate and 346 

biomes (Figs. S3-S4).  347 

Generalised additive models relating the distribution of lineages to growing season 348 

temperature, MAT and MAP across continents were fitted using the mgcv R package and the 349 

function predict.gam (67). Crossover temperatures plus standard deviations were calculated 350 

based on the temperature at which the predicted abundance of C4 dominance reached 50%. 351 

Random forest regressions (https://cran.r-352 

project.org/web/packages/randomForest/randomForest.pdf) were used to examine the 353 

climate niche of key grass lineages and to infer correlations between four key climate 354 

predictors (MAP, MAT, temperature seasonality and rainfall seasonality). Models were 355 

constructed for six groups of interest: the C3 BEP, PACMAD and Pooideae lineages; and the 356 
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independent C4 lineages Andropogoneae, Chloridoideae and MPC (Melinidinae + Panicinae + 357 

Cenchrinae) (25). Model fit was checked via a mean of squared residual test. The relative 358 

importance of each environmental correlate was computed with a mean decrease of accuracy 359 

test. The computed coverage response plots for each grass group was an adaptation of the 360 

evaluation strip method developed by (68). These plots demonstrate the non-linear 361 

relationships between environmental gradients and the various grass lineages. To produce 362 

these plots, an environmental dataset was simulated where the focal environmental variable 363 

is varied over its full environmental range and where, for each interval, the observed median 364 

of each of other environmental variables (median over areas where the focus environmental 365 

variable is within the interval) is returned. The displayed curve in each case is the prediction 366 

of our Regression Random Forest model over this simulated dataset. The process used bi-367 

variate response curves, where two variables rather than one vary simultaneously. The 90th 368 

quantile of a kernel density function (function kde2d from the R package ade4) was used to 369 

plot limits of grass lineages relative to herbivore abundance and fire frequency. 370 

  371 
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List of figures in main text 372 

 373 

Figure 1. Global distributions of grassy biomes and dominant grass lineages.  374 

 375 

Figure 2. Grassy biomes in global climate space. 376 

 377 

Figure 3. Continental disjunctions in lineage-growing season temperature relations.  378 

 379 

Figure 4. Global relationships between rainfall, fire and height.  380 
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Figure 1: Global distributions of grassy biomes and dominant grass lineages. A. Grassy 381 

biomes coded by the C4 and C3 grass lineages dominating each vegetation formation. B. 382 

Relationships among the dominant C4 grass lineages, with colours matching those used on the 383 

map. The phylogeny is based on (25) and for simplicity excludes C3 PACMAD sister clades. C. 384 

Rank-abundance curve for C4 and C3 grass lineages at the global scale, ordered by the 385 

proportion of the terrestrial surface dominated by each lineage. 386 

  387 
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Figure 2: Grassy biomes in global climate space. Based on data at a 0.5-degree resolution, 388 

where data has been binned in 1o mean annual temperature (MAT) and 100 mm mean annual 389 

precipitation (MAP) intervals. Colour ramp shows the relative proportion of the global climate 390 

space for that MAP x MAT bin occupied by grassy biomes. Grey shading represents the 391 

vegetated land area. Data shown here link to Figure S1 showing the total vegetated land area 392 

within each climate interval.  393 

  394 
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Fig. 3. Continental disjunctions in lineage-growing season temperature relationships. The 395 

distribution of grass lineages relative to growing season temperature (GST) in degrees Celsius 396 

globally (top panel) and then showing the variation in estimated C3-C4 crossover temperatures 397 

by geographic realm. Distributions was fitted using generalized additive models and the 398 

crossover temperature calculated as the point where modelled C4 grass abundance is 50%, 399 

based on the mapping in Figure 1. The fitted lines and confidence intervals are shown in 400 

different colours for each lineage, with the legend on the figure. 401 
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Figure 4. Global relationships between rainfall, fire and grass lineages. The global 403 

relationships of grass lineage abundance relative to MAP using a generalised additive model, 404 

showing 95% confidence intervals. The right-hand axis is the global relationship between fire 405 

return interval and MAP for grassy biomes and is inverted to reflect the inverse relationship 406 

with MAP. The global peak in fire activity coincides with the global peak in dominance of 407 

Andropogoneae grassy biomes. In contrast longer fire return times are associated with 408 

dominance by Pooideae and Chloridoideae.   409 

 410 
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Development and validation of map compilation 586 

Rarely, if ever, has this rich body of vegetation mapping research been integrated with Earth 587 

system science or evolutionary studies. This is perhaps because vegetation mapping is 588 

considered a descriptive natural science in an age of big data. The contiguous land mass 589 

covering the countries of China, Mongolia, the former Soviet Union, Afghanistan, Turkey and 590 

Europe are represented by detailed botanical data. The regions of Africa, North America, 591 

Mexico, Panama, Venezuela, Brazil, Argentina, Papua New Guinea, Indonesia, northern and 592 

western Australia are also well documented by botanical data. However, there is a general 593 

paucity of adequate vegetation mapping available across India, South-East Asia (Burma, 594 

Thailand, Laos, and Vietnam), Central America, and parts of South America (Chile, Peru, 595 

Bolivia, Uruguay, Paraguay, Ecuador, and Columbia). It is worth noting that given anticipated 596 

impacts of global change on the distribution and dynamics of vegetation, an absence of 597 

publicly available vegetation mapping for key regions such as South East Asia and the Andes 598 

should be of concern to many.  599 

 600 

We undertook a validation process between plot data describing in situ grass abundance and 601 

our global species list. Using publicly available data that intersected with vegetation unit 602 

descriptions we found that, at the level of independent evolutionary lineages of grasses (i.e., 603 

subfamily), we had strong confidence in the geographic and environmental relationships we 604 

elucidate here (Fig. S9). To validate the classification of common grass species across regions, 605 

we compared the species list in each vegetation unit to a plot level database developed for 606 

validation purposes (Fig. S9). Plot data were sourced from the literature and vegetation 607 

databases and assembled by the authors (see references in the Supplementary Information). 608 
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110 vegetation units contained enough plot level data for validation analyses. To determine 609 

what taxonomic levels agree with plot data, the comparison was conducted at the species and 610 

subfamily levels. We also examined the agreement of our map and plot datasets at a 611 

functional level by comparing the attribution of photosynthetic type. From the 507 common 612 

grass species across these vegetation units, 88% of these species were present in the plot 613 

dataset of those appropriate vegetation types. This is a very high degree of overlap in species 614 

in our mapping classifications and plot data, especially considering the difference in scale 615 

between local species plots and large vegetation units. Furthermore, we found that vegetation 616 

types generally had similar percentages of characteristic grass species represented in their 617 

plot datasets, although the agreement was worse for particularly large and broadscale 618 

vegetation units. To validate the higher taxonomic classifications and plant functional type 619 

classifications of our map units, we compared the proportion each classification in plots 620 

(weighted by abundance) to the proportion of that classification in our map. Because these 621 

data are on the interval (0,1) we used beta regression to model this relationship. Beta 622 

regression can be interpreted much like logistic regression, except that it allows continuous 623 

values in the dependent variable. Proportions of Poaceae subfamilies and functional types 624 

showed that plot values were strongly predictive of classified values in our map (Fig. S9). 625 

  626 
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Figure S1: Global distribution of grassy biomes. The global map was derived as a composite 627 

from national and regional maps of vegetation that was gap-filled using the Ecoregions map 628 

(see Methods in the main text and references for all maps at the end of the Supplementary 629 

Information). Coloured areas show the extent of grassy biomes globally and dominance of 630 

these by C3 grasses and C4 grasses mapped at the scale of identified vegetation units (i.e., 631 

polygons). Red = High proportion of C4 grasses. Blue = High proportion C3 grasses. Datum: 632 

WGS84. 633 

 634 

 635 
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Figure S2. Global vegetated land area as related to Mean annual temperature and mean 637 

annual precipitation. Mean annual precipitation is in 100 mm bins, while temperature is in 638 

1oC bins. The color ramp represents the number of 0.5 degree points in 100mm x 1oc unit of 639 

climate space. Note the grey background that highlights the global extent of climate space 640 

where these temperature – precipitation combinations are essentially rare on the vegetated 641 

land surface. The color ramp from dark blue to purple represents an increasing density of 642 

points in a given climate bin.  643 

  644 

 645 

 646 

 647 
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Figure S3: Global abundance of the main grass lineages by temperature and rainfall. Colour 649 

scale indicates the proportion of 0.5° grid squares dominated by each lineage at the global 650 

scale for each of (A) mean annual temperature and (B) Mean annual precipitation. These plots 651 

demonstrate that, in cool, dry regions where the C3 Pooideae lineage is concentrated, it tends 652 

to be the only grass lineage present, and this lineage dominates that climate space. These can 653 

be considered as deterministic grasslands. In contrast, the heterogeneity of the dominance of 654 

C4 Andropogoneae and C4 Chloridoideae lineages across climate space could suggest that the 655 

grassy biomes where these lineages are found are not deterministic, and dominance may be 656 

driven by processes other than climate.  657 

A. Dominance by mean annual temperature 658 

 659 
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B. Dominance by mean annual precipitation 660 

 661 
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Figure S4: Concentration of 17 grass lineages in climate space. This figure builds on S1 – S2 663 

by again highlighting the climate space characterised by different grass lineages. It is very clear 664 

that C3 PACMAD dominance is highly restricted to warmer wetter parts of climate and we 665 

know from S1 that geographically these combinations of temperature and precipitation are 666 

limited. These figures also again highlight the wide distribution of Pooideae, Andropogoneae 667 

and Chloridoideae.  668 

  669 
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Figure S5: Plots from Random Forest analyses of the relative importance of mean 670 

temperature, mean precipitation, temperature seasonality and rainfall seasonality in the 671 

limits of the three key lineages of grasses. A) C3 BEP, B) C4 Andropogoneae, and C) C4 672 

Chloridoideae. Model fits against data are shown for the land area over which each lineage 673 

dominates against each climate variable. 674 

 675 

A. C3 BEP 676 

 677 

  678 
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B. C4 Andropogoneae 679 

 680 
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C. C4 Chloridoideae681 

  682 
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Figure S6. Lineage – temperature associations.  683 
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Fig. S7: Trait-environment associations. Density plots of traits that characterise the realised 685 

ecological niche of dominant grass lineages: A) Median minimum annual temperature (°C) 686 

across the range of each species; B) Median drought length (months); and C) Median fire 687 

return interval (years), calculated by mapping GBIF occurrence data for each species onto 688 

Earth Observation data layers (see Methods). D) Maximum height of the culm (flowering stem) 689 

for each species, as a measure of plant size at maturity (see Methods). In each case, species 690 

from each lineage recorded within vegetation units in our dataset were mapped across their 691 

whole range (i.e. beyond the area over which they dominate ground cover). 692 

 693 
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Figure S8. Ordination of fire frequency and herbivore biomass with the 90th quantile of 695 

lineage distributions shown via different colours. This ordination shows the limits of five 696 

grass lineages relative to the prevalence of fire and modelled herbivore biomass. Colours 697 

representing lineages are consistent with figures in the main text. Key here is that one lineage 698 

stretches into environments of more frequent fire (Andropogoneae = orange), while a number 699 

of lineages are clustered and overlapping with respect to variation in herbivore biomass. 700 

However, it is worth noting the globally poor data on herbivore biomass in contrast to fire that 701 

is relatively easily quantified by satellites as changes in surface reflectance and heat.  702 

 703 

704 
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Figure S9. Validation of mapping approach to determine function and lineage level 705 

distributions of grassy biomes. Shown are figures relating plot level versus map level 706 

estimates of different grass groups (as shown on each plot). Logistic regression was used to 707 

quantify relationships and the deviance explained of the analyses are shown on each plot.  708 

 709 
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Table S1: Land area occupied by each grass lineage. Each column represents a slightly 711 

different way to calculate the relative coverage of grassy biomes by different grass lineages. 712 

Polygon calculations are based on the mapped polygons while grid cells represent the 713 

conversion of data from Both calculations use a WGS84 projection.  714 

  715 

LINEAGE Percentage of grassy (from 

polygons) 

Percentage of grassy (from grid 

cells) 

Andropogoneae 38.99 36.66 

C3 BEP 32.51 37.57 

Chloridoideae 13.93 13.51 

Mixed 10.66 6.56 

MPC 1.38 1.48 

C3 PACMAD 0.92 2.06 

Aristida 0.64 0.73 

Stipagrostis 0.62 0.53 

Paspalum 0.18 0.64 

Tristachyideae 0.09 0.09 

Axonopus 0.07 0.17 
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