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Abstract 

Background 
Normal airway microbial communities play a central role in respiratory health but are poorly 

characterized. Cigarette smoking is the dominant global environmental influence on lung 

function, and asthma has become the most prevalent chronic respiratory disease worldwide. 

Both conditions have major microbial components that are also poorly defined.  

Methods 
We investigated airway bacterial communities in a general population sample of 529 Australian 

adults. Posterior oropharyngeal swabs were analysed by sequencing of the 16S rRNA and 

methionine aminopeptidase genes. The microbiota were characterised according to their 

prevalence, abundance, and network memberships. 

Findings  
Microbial communities were similar across the population and were strongly organized into 

co-abundance networks. Smoking associated with diversity loss, negative effects on abundant 

taxa, profound alterations to network structure and expansion of Streptococcus spp. By 

contrast, the asthmatic microbiota were selectively affected by an increase in Neisseria spp. 

and by reduced numbers of low abundance but prevalent organisms. 

Interpretation 
Our study shows healthy airway microbiota are contained within a highly structured ecosystem, 

indicating balanced relationships between the microbiome and human host factors. The marked 

abnormalities in smokers may be pathogenic for chronic obstructive pulmonary disease 

(COPD) and lung cancer.  The narrow spectrum of abnormalities in asthmatics encourages 

investigation of damaging and protective effects of specific bacteria.   

Funding  
The study was funded by the Asmarley Trust and a Wellcome Senior Investigator Award to 

WOCC and MFM (P46009). The Busselton Healthy Ageing Study is supported by the 
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Government of Western Australia (Office of Science, Department of Health) the City of 

Busselton, and private donations. 
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Introduction 

All animals and plants establish symbiotic relationships with microorganisms1, to the extent 

that hosts and their associated microorganisms can be considered to be a co-evolving unit 

known as a “holobiont”1. The airways of the human lung carry commensal microbiota at a 

similar density to the small intestine2 and the surface area of the lungs is greater than that of 

the gut (40 to 80m2 compared to 30m2) so that the respiratory microbiota have profound 

opportunities to affect health3,4. The ecology of normal airway microbial communities and the 

means through which they modify disease are however still poorly understood, and there is as 

yet no systematic basis for their study.  

A quarter of men and 5% of women in the world smoke cigarettes daily5. Smoking causes 

11·5% of deaths globally5 and COPD and lung cancer are its most common pulmonary 

consequences. COPD is accompanied by recurrent infections6,7 and bacteria contribute to lung 

carcinogenesis8.  

Asthma is an inflammatory disorder of the airways that has become the most prevalent chronic 

respiratory disease worldwide9,10. In numerous studies its rise has been linked to urbanization 

and the loss of traditional rural environments11-13. The “hygiene hypothesis” suggests that loss 

of microbial exposure allows asthma to develop14,15. Formulation and testing of potential 

mechanisms through which a rich microbial environment may protect against asthma has been 

restrained by limited understanding of the airway microbiota in epidemiological samples. 

We therefore examined adults from the population of Busselton in Western Australia who were 

participating in a general health survey16. Direct sampling of the lung microbiota requires 

invasive procedures such as bronchoscopy that are not possible in epidemiological studies. In 

healthy individuals the microbiota of the oropharynx and the intra-thoracic airways are very 

similar2,17. We consequently used oropharyngeal swabs, taken beyond the tonsils and palate, 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 2, 2020. ; https://doi.org/10.1101/583559doi: bioRxiv preprint 

https://doi.org/10.1101/583559
http://creativecommons.org/licenses/by-nd/4.0/


5 

 

for population sampling. We accept nevertheless that the abundance of pathogens in the lower 

airways of diseased subjects is only partially reflected in the oropharynx2,18. 

We used PCR and sequencing of the 16S rRNA gene to identify bacterial taxa (operational 

taxonomic units, OTUs) present in the samples. However, Streptococcus spp., which are 

particularly prevalent in respiratory samples, show high rates of clonal diversity and are poorly 

differentiated by 16S sequences and by standard culture19,20. We therefore sequenced the 

methionine aminopeptidase gene (map) to further differentiate between Streptococcus taxa20. 

Microbial communities are formed through complex ecological interactions that can be 

exposed through network analyses21. Assuming that correlations in the abundance of different 

taxa reflect co-ordinated growth, we applied weighted correlation network analyses 

(WGCNA)22 to the dataset. We aimed to detect major networks of interacting bacteria 

(“Guilds”) within airway communities, before testing how they were influenced by cigarette 

smoking or the presence of asthma. 
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Methods 

Subject recruitment 

Five hundred and 78 Caucasian adults were recruited through the Busselton Health Study in 

Western Australia. The study has received ethics approval from the University of Western 

Australia Human Research Ethics Committee (Number RA/4/1/2203). Individuals with a 

diagnosis of cancer were excluded. Subjects were not included if they were taking antibiotics 

within six weeks of the time of study. Participants completed a detailed questionnaire as 

previously described16. Subjects were classified as asthmatic if they answered yes to the 

question “Has your doctor ever told you that you have asthma”. Other diagnoses potentially 

influencing the microbiome were diabetes (n=18 patients) and gastro-esophageal reflux 

(GERD, n=36). No associations were found for diabetes or GERD in any analyses, and we 

included subjects with these diagnoses in the unaffected group.  

Samples for microbial analysis were taken under direct vision, using sterile rayon swabs that 

were rubbed gently with an even pressure around the posterior oropharynx five times, strictly 

avoiding contact with tongue, tonsils, palate or nose. Swabs were immediately frozen and 

stored at -80°C prior to transportation on dry ice to Imperial College London, UK. 

16S rRNA gene sequencing 

DNA was extracted from swab heads using the MP Bio FastDNA Spin Kit for Soil 

(http://www.mpbio.com).  A single sample was examined for each subject. Blank controls with 

no sample added were taken from each DNA extraction kit to test for contamination23.  

PCR of the 16S rRNA V4 region was performed in quadruplicate using a custom indexed 

forward primer S-D-Bact-0564-a-S-15 (5’ AYT GGG YDT AAA GNG 3’), reverse primer S-

D-Bact-0785-b-A-18 (5’ TAC NVG GGT ATC TAA TCC 3’) and a high fidelity Taq 

polymerase master mix (Q5, New England Biolabs, Massachusetts, USA).  Primer sequences 

were based on Klindworth et al.24, with dual-barcoding as per Kozich et al.25 with adaptors 
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from Illumina (California, USA). A mock community26 was included to assess sequencing 

quality.  PCR cycling conditions were: 95oC for 2 minutes followed by 35 cycles of 95oC for 

20 seconds, 50oC for 20 seconds and 72oC for 5 minutes.  Amplicons were purified, quantified 

and equi-molar pooled and the library paired-end sequenced (Illumina MiSeq V2 reagent kit) 

as previously described26 . Bacterial load was quantified by qPCR using KAPA BioSystems 

SYBR Fast qPCR Kit with the same 16S rRNA V4 primers used for sequencing.   

Analysis of data was carried out in the R environment and details can be followed on github: 

https://tinyurl.com/y2onjblt. Sequence processing was performed in QIIME (Version 1.9.0)27.  

Community level differences in alpha and beta diversity and Operational Taxonomic Unit 

(OTU) level differences, were analysed using Phyloseq in R (Version 3.2.0).  A phylogenetic 

tree was generated from the representative sequences using the default parameters of the 

make_phylogeny command27. Taxonomy of OTUs was assigned by matching representative 

sequences against release version 23 August 2013 of the Silva database28 using the default 

parameters of the assign_taxonomy command27. OTUs occurring in only one sample or with 

less than 20 reads in the whole dataset were removed. Weighted and unweighted UniFrac beta 

diversity measures and subsequent principal co-ordinates analysis of them was carried out 

using the beta_diversity_through_plots script27. For the purposes of alpha diversity 

calculations, the raw counts tables were rarefied to a minimum of 6,543 reads. Significant 

differences in alpha diversity between datasets were assessed using Mann–Whitney U-tests. 

Potential kit contaminant OTUs were identified by the presence of negative Spearman’s 

correlations between OTU abundance and bacterial burden (logged qPCR copy number), 

adjusted using Bonferroni corrected P-values < 0.05. OTUs subsequently of interest were 

cross-checked with a listing of potential contaminants23.  
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Map gene sequencing  
We further differentiated Streptococcus spp. by sequencing the methionine aminopeptidase 

(map) gene20 in 483 samples (constrained to 5 sequencing runs with controls). Of these subjects 

234 were never-smoking and 53 were current smokers. We used barcoded primers map-up 5' 

GCWGACTCWTGTTGGGCWTATGC ‘3 and map-down 5' 

TTARTAAGTTCYTTCTTCDCCTTG ‘3. As positive controls, DNA from nine strains of 

Streptococcus with bacterial identity confirmed through Sanger sequencing was used for 

positive controls (S. agalactiae (DSMZ-2134); S.  constellatus subsp. Constellatus (DSMZ-

20575); S. infantis (DSMZ-12492); S. parasanguinis (DSMZ-6778); S. pneumoniae (DSMZ-

20566); S. pseudopneumoniae (DSMZ-18670); S. pyogenes (DSMZ-20565); S. sanguinis 

(DSMZ-20567); and S. mitis (DSMZ-12643)). Analysis was performed in QIIME27, using a 

clustering level of 95% to define OTUs. We attributed the most common OTU sequences to 

Streptococcal species by BLAST searches. Full details are online 

(http://hdl.handle.net/10044/1/63937).  

Statistical analysis 
We used the Differential Expression Analysis for Sequence Count Data (DESeq2 function in 

R)29 to compare OTU abundance between subject and control groups, controlling the false 

positive rate at P = 0.05. Parameters extracted for each OTU included log2(fold change), 

globally adjusted P value and abundance and prevalence information. Two-sided P values are 

reported throughout. 

Co-abundance networks between non-rarefied OTU abundances were analyzed using the 

WGCNA package30.  Abundances were log transformed with 0.1 added to zeroes31, and the 

topological adjacency matrix was constructed from Spearman’s correlation coefficients with a 

β soft thresholding parameter of 3. Hierarchical clustering of the overlap matrix with dynamic 

tree cutting defined the co-abundance modules, with a minimum module size set at 20 OTUs. 
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The significance of Spearman’s correlation between module eigengenes and clinical variables 

was adjusted for multiple testing using the Benjamini and Hochberg method32. Module 

structure was contrasted between cohorts using the R package circlize (0.4.5).  
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Results 

Structure of the normal airway microbiome 
We submitted oropharyngeal swabs from 578 subjects to 16S rRNA gene qPCR and 

sequencing, the latter yielding 44,290,100 high quality reads (Supplementary Figure 1 for 

analysis flowchart). After removal of 173 OTUs with high probability of being contaminants 

and 13,472 rare OTUs present in only one sample or with less than 20 reads, there remained 

4,218 OTUs derived from 43,775,771 reads. To enable diversity analyses based on proportions, 

the samples were rarefied to a minimum of 6,543 reads, retaining 529 samples containing 4,005 

OTUs and 3,461,247 reads. For consistency, unrarefied data from these same 529 samples were 

used to test differences between subject groups by DeSEQ2, and network analyses. No 

systematic differences in results were seen if the larger sample was analyzed. 

The average age of the 529 subjects was 56 years (Supplementary Table 1). Sixty subjects were 

current smokers and 216 were ex-smokers (with a mean 18 years since quitting). The mean 

levels of the forced expiratory volume in one second (FEV1) and the forced vital capacity 

(FVC) of the subjects were normal. There were 77 doctor-diagnosed asthmatics, 82% of whom 

were atopic by prick skin tests (47% of the rest of the population were also atopic). There was 

only one case with a clinical diagnosis of COPD. The frequency of asthma and current smoking 

were not different to the whole Busselton cohort16.  

An estimate of Bray Curtis beta diversity (β) for the population gave the mean dissimilarity in 

microbial diversity (M) between subjects to be 0.51 ± SD=0.06 (on a scale of 0-1), indicating 

that on average individual airway microbiomes shared half of their OTUs. 

Five phyla contained 98.4% of all OTUs (Table 1, Supplementary Table 2). Firmicutes 

(predominately Streptococcus and Veilonella spp.) was the most common phylum, with 24 

OTUs in the top 50, and 57.9% of all OTUs found in the complete dataset. Bacteroidetes 

(predominately Prevotella spp.) contained 14.1% of the OTUs, Proteobacteria (predominately 
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Neisseria and Haemophilus spp.) contained 12.3%, Actinobacterium 9.1% and Fusobacterium 

4.9%. Overall, the 50 most abundant OTUs accounted for 92% of the data (Supplementary 

Table 2).  

We sequenced the map gene to differentiate between Streptococcus taxa20 in 483 subjects. 

After removal of sequences only present in one sample or with fewer than 20 reads or negative 

correlations with qPCR abundance there remained 14,898 map_OTUs (Supplementary Figure 

2), indicating very substantial variation in Streptococcal strains in the population. β diversity 

estimates in rarefied data (to a level of 7,700 reads) found M = 0.84 ± SD=0.06, indicating low 

similarity of the streptococcal composition between subjects. The nine most prevalent 

map_OTUs were identified as S. salivarius, with S. parasanguinis the tenth most prevalent. 

(Supplementary Table 7). The potential pathogen S. mitis/pneumoniae was detected in 58% of 

subjects, although at low abundance.  

Following network analyses with WGCNA22 we observed 13 discrete modules in which the 

abundance of members was strongly correlated. Just 13 OTUs remained unassigned to a 

network. The WGCNA program labels modules with unique colour identifiers, and we have 

named them according to their most abundant genera (Table 2). OTUs unassigned to a network 

are referred to as the grey module. The 5 largest modules (in terms of abundance of members) 

contained contained 97.6% of all OTU sequence reads (Table 2).  

Individual hubs were very strongly connected to their network vectors (range of P = 7.9E-266 

to 1.9E-121) (Supplementary Table 4), and the strengths of association suggest that these co-

abundance modules represent “guilds” of co-operating bacteria that may occupy ecological 

niches on the mucosa.  

The largest guild (Prevotella.1: turquoise) accounted for 42.7% of reads (Table 2, 

Supplementary Table 4). The most common organisms were within the genera Prevotella, 
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Veillonella, Actinomyces and Atopobium. These organisms resemble common mucosal 

commensals at other body sites, and perhaps represent a base microbial carpet. The smaller 

guild (cyan) on the same division (B) of the network dendrogram (Supplementary Figure 3) 

was almost entirely made up of Veillonella spp. and may occupy a related ecological niche. 

The Streptococcus.2 module (blue) contained 21.6% of reads, predominately from the genera 

Streptococcus, Haemophilus and Veillonella. Network hubs included Lactobacillales and 

Gemella. The adjacent network (Neisseria: green) (Supplementary Figure 3) was dominated 

by Neisseria, with Porphyromonas, and Capnocytophagia. This may suggest a normal guild 

that can be occupied by Proteobacteria potential pathogens. 

The Streptococcus.1 module (magenta) (19.4% of reads) was completely dominated by 

Streptococcus taxa (40%) and an unidentified Firmicutes (60%) (Supplementary Table 4) 

which is likely also to be streptococcal (based on phylogenetic clustering, not shown).  Network 

hubs were also Streptococcus. 

Smoking 
A stepwise regression (IBM SPSS Statistics v25) found that microbial diversity in individual 

airways was independently related to current cigarette smoking (R2=6%, P<0.001), a current 

diagnosis of asthma (additional R2=1.4%, P<0.005) and packyears of smoking (additional 

R2=0.8%, P=0.04) (Supplementary Table 3), but not to age or sex. We therefore partitioned the 

data into three subgroups: smoking + packyears>10 (n=159); asthmatic (n=77); and unaffected 

(n=233).  

A DeSEQ2 analysis to identify significant differences in the abundance of specific taxa 

revealed marked effects of cigarette smoking. (Figure 1, Supplementary Figure 4, 

Supplementary Table 5a and 5b). The loss of diversity affected many abundant OTUs, 

including those in the genera Fusobacterium, Neisseria, Haemophilus, Veillonella and 
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Gemella. By contrast, the OTUs increased in smokers were in general highly abundant 

Streptococci. Examination of map gene OTUs attributed increases in abundance to S. 

parasanguinis (log2(Fold change) 5.2, Padjusted=1.75E-07), S. mitis/pneumoniae (3.62, 4.81E-

09), S. salivarius (3.03, 5.59E-15) and S. thermophilus (2.53, 7.38E-05) (Supplementary Table 

8). 

To further explore the impact of smoking and asthma on the higher order structure of the airway 

microbiome, co-abundance networks were constructed separately in the asthmatic and current 

smoker portions of the cohort and compared with the full dataset (representing the whole 

population) (Supplementary Figure 4). The analysis was limited to the 4,207 OTUs present in 

all three datasets. 

The network structure of the communities was profoundly altered in current smokers. Whilst 

the largest guild (Prevotellla.1: commensal carpet) showed relative preservation, other modules 

showed markedly lower levels of conservation and were strongly positively or negatively 

associated with smoking status; either in terms of module eigenvectors or hubs (Figure 2, Table 

2, Supplementary Table 4). In smokers, 276 OTUs became disconnected from any module. 

These most strongly featured Streptococcus (70 OTUs), unknown genera (41 OTUs) and 

Veillonella (35 OTUs).  

Asthma 

Microbial diversity loss in asthmatics compared to non-smoking subjects was qualitatively 

different to the effects of smoking. DeSEQ analysis showed only two taxa (Neisseria and 

Rothia OTUs) to be increased in abundance in asthmatic airways (Padjusted<0.05) (Figure 3, 

Supplementary Table 6a). Of these, the Neisseria OTU was abundant (4.7% of reads in the 

population) and showed a 2-fold increase, consistent with increases in Protebacteria spp. 

consistently observed in excess by comparisons of asthmatic and normal airways2,3,33,34.  
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Eighty-four OTUs were in relatively low abundance amongst asthmatic subjects (Figure 3, 

Supplementary Table 6b). In marked contrast to smokers, the affected organisms were often in 

poorly characterized or potentially fastidious genera, including Leptotrichia, Selenomonas, 

Megasphaera and Capnocytophaga. Some representatives of the more common genera 

Actinomyces, Prevotella and Veillonella were also less abundant.  

Inhaled corticosteroids (ICS) are widely used in the maintenance treatment of asthma, and 51 

(66%) of our asthmatics were currently using such therapy. Logistic regression analyses 

showed no independent effect on ICS use from OTUs positively or negatively associated with 

asthma, or with microbial diversity. 

The module eigenvectors did not correlate with the presence of asthma, indicating that the 

general structure of oropharyngeal microbial communities in asthmatics was preserved (Figure 

2). Nevertheless, the asthma-enriched Neisseria_10019 taxon was a hub of the Neisseria guild, 

which also contained the significantly reduced Capnocytophagia_2454 (Supplementary Table 

4). Other asthma-reduced taxa were concentrated in the Prevotella.1 (containing 57 of the 84 

asthma-associated OTUs) and Prevotella.2 (12/84) guilds (Chi2 exact test, P=2.8x10-8). 

Asthma-associated OTUs were enriched amongst the most highly connected module members 

(OR=18.6, P=2.9x10-9), and so are well positioned to influence host-microbial interactions. 

The Neisseria, Prevotella.1 and Prevotella.2 guilds thus provide a focus for further 

understanding of the ecology of asthmatic airway microbiota. 
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Discussion 
Our study shows that the healthy airway microbiota are contained within a structured 

ecosystem that is conserved across the general population. In this aspect are they are thus 

similar to commensals at other body sites. The main phyla in airway samples (Firmicutes, 

Bacteriodetes, Actinobacteria, and Proteobacteria) also dominate the gut35, skin36 and vagina37, 

although bacterial genera and species differ considerably between body surfaces,   

Our results were well powered to map microbial community composition, but we could only 

surmise limited functions by genus assignments and network relationships. Metagenomic 

shotgun sequencing has given profound insights into the function of the gut microbiota, but 

shotgun sequencing has been problematic for respiratory samples because high concentrations 

of human DNA (~99%) interfere with PCR and require a 100 fold increase in sequencing depth 

(and cost) to derive coverage comparable to faecal samples4. Additionally, genome assembly 

from shotgun sequences is limited by a paucity of reference genomes for airway commensals. 

Secreted host factors that either constrain airway pathogens or support commensal bacteria are 

known to exist38, but they have also not yet been systematically surveyed.  

Cigarette smoking is known to affect the airway microbiota7, but the extent and specificity of 

disruption shown here suggests an independent capacity to damage human health. The loss of 

diversity may predispose smokers to the recurrent infections that lead to COPD6,7. The annual 

rate of antibiotic prescription in the Australian population is 254 per 1000, and half of these 

will be for respiratory infections39, so it is likely that many smokers will have intermittently 

been given antibiotics which will have contributed to the microbial community abnormalities. 

Smoking is accompanied by substantial changes in the bowel flora40 that may mediate smoking 

influences on inflammatory bowel disease. Bacteria have known roles in the genesis of cancer 

in general41 and in lung cancer specifically8. Streptococcus spp. produce an array of potent 

toxins that act against human cells or tissues42, and the expansion of Streptococcus clades in 
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smokers might be carcinogenic. Most patients with lung cancer have been heavy smokers and 

smoking often continues after diagnosis. Our results might also suggest that the local lung 

microbiota should be considered a factor in lung cancer responses to immunotherapy43. 

Although the profound consequences of cigarette smoking are clear, the community 

degradation seen in asthmatics is more subtle and without an obvious cause. Importantly, we 

have been able to show that ICS are not associated with an abnormal microbiome, consistent 

with published results44. Asthma is not considered an indication for antibiotics in the Australian 

healthcare system. A simple iatrogenic pruning of diversity in asthmatics therefore appears 

improbable. 

 Divergent (but potentially complementary) theories are offered on mechanisms by which 

microbial diversity might prevent asthma. The “immune deviation” hypothesis suggests that 

the adaptive immune system needs exposure to infections in order to avoid inappropriate 

reactions45. An extension of this model is that absence of commensal organisms leads to loss 

of local or systematic tonic signals that normally down-regulate immune responses at mucosal 

surfaces46. Our findings, of reduced numbers of distinctive low-abundance organisms, are 

consistent with immune modulation by these organisms. 

However, the consistent finding of excesses of Proteobacteria in this and other studies 2,3,34 

(and Streptococcus spp. in severe disease 2,47,48) are also consistent with asthmatic airway 

inflammation that follows intermittent mucosal damage by bacteria. Proteobacteria include 

many known potential pathogens from the genera Haemophilus, Moraxella, and Neisseria that, 

despite the ability to cause disease, are commonly carried without symptoms in the population 

(“pathobionts”)4.  In the “asthma as an infection” hypothesis it becomes possible that a diverse 

microbial community protects against asthma through inhibition of pathobiont effects, by 

modifying their growth, adherence or biofilm formation49. 
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Our results provide a strong impetus to isolate and study the organisms that are perturbed in 

asthmatic airways, and to test hypotheses that involve immune modulation or mucosal damage. 

The demonstration of a highly ordered and conserved microbiome is relevant to many lung 

disorders4, particularly the respiratory infections that take 4 million lives annually50.  Factors 

that trigger the switch between colonisation and infection include the density of pathobionts in 

vulnerable sites,  synergism and nutrient competition with commensals51, and intercurrent viral 

infections. Diversity in the gut microbiota confers colonization resistance to intestinal 

infections52-54, and our results allow consideration of therapeutic manipulation of the 

pulmonary microbiome. 
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Tables 

Table 1 Principal phyla and genera of airway bacteria in a general population sample 
 

Phylum Genus Abundance*  Phylum Genus Abundance* 

Firmicutes (53.4%)   Bacteroidetes (17.7%)  

 Streptococcus 18.92%   Prevotella 15.36% 

 Veillonella 13.74%   Porphyromonas 1.45% 

 Unidentified_Firmicutes 11.79%   Capnocytophaga 0.73% 

 Selenomonas 1.71%   Tannerella 0.09% 

 Gemella 1.64%   Bergeyella 0.08% 

 Granulicatella 1.45%  Fusobacteria (8.5%)  

 Johnsonella 0.70%   Fusobacterium 4.40% 

 Lachnoanaerobaculum 0.69%   Leptotrichia 4.09% 

 Megasphaera 0.66%  Proteobacteria (8.5%)  

 Not known 0.46%   Neisseria 4.59% 

 Stomatobaculum 0.43%   Haemophilus 3.48% 

 Oribacterium 0.43%   Not known 0.33% 

 Solobacterium 0.23%   Campylobacter 0.07% 

 Peptostreptococcus 0.17%  Actinobacteria (7.2%)  

 Peptococcus 0.16%   Actinomyces 4.62% 

 Parvimonas 0.16%   Atopobium 2.11% 

 Butyrivibrio 0.10%   Rothia 0.36% 

 Catonella 0.05%   Bifidobacterium 0.08% 

 Filifactor 0.05%  Other (0.25%)  
 

*Abundance based on total 43,652,299 high-quality sequence reads in 529 subjects 
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Table 2. WGCNA module summary and associations with smoking 
 

Module ID 

(Colour) 

Number 

of OTUs 

Total 

Abundance 

Overall 

% 

Cum 

% 

Smoking 

R 

Smoking 

P 

Module description 

Prevotella.1 

(Turquoise) 

2218 18,636,985 42.69 42.69 
  

Commensal carpet: Veilonella, Prevotella, 

Actinomyces. Veillonella and Atopobium hubs 

Streptococcus.2 

(Blue) 

472 9,433,313 21.61 64.30 -0.13 2.E-02 Streptococcus and Haemophilus prevalent. 

Lactobacilliae and Gemella hubs 

Streptococcus.1 

(Magenta) 

126 8,480,289 19.43 83.73 0.18 8.E-04 Streptococci dominated 

Fusobacteria 

(Brown) 

583 3,099,110 7.10 90.83 -0.26 4.E-08 Fusobacteria and Leptotrichia hubs 

Neisseria 

(Green) 

204 2,969,651 6.80 97.63 -0.35 1.E-14 Neisseria dominated, prevalent Capnocytophagia 

Prevotella.2 

(Black) 

136 387,098 0.89 98.52 0.15 4.E-03 Prevotella, Parvimonas, Streptococci, Porphryomonas  

Veillonella 

(Cyan) 

50 173,186 0.40 98.92 0.17 1.E-03 Veillonella 

Prevotella.3 

(Purple) 

71 105,630 0.24 99.16 
  

Prevotella dominated 

Indeterminate 

(Tan) 

55 101,284 0.23 99.39 0.15 4.E-03 Prevotella and Treponema 

Porphymonas 

(Salmon) 

50 89,951 0.21 99.60 0.15 6.E-03 Porphyromonas and Prevotella  

Bifidobacteria 

(Pink) 

134 86,562 0.20 99.80 0.32 8.E-13 Bifidobacterium hubs 

Peptococcus 

(Midnightblue) 

44 79,920 0.18 99.98 -0.16 2.E-03 Peptococcus 

Contaminants 

(GreenYellow) 

62 8,869 0.02 100.00 -0.12 3.E-02 Herbaspirillum: potential contaminants 

Unconnected 

(Grey) 

13 451 0.00 
   

Unconnected OTUs: potential contaminants 
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Figures 

Figure 1. Smoking and the airway microbiome 

 

a) The volcano plot shows significant differences in the abundance of OTUs between current smokers and the rest of the population. Fold change 

is shown on the x axis and -log10 P (FDR corrected) on the y axis. Relative abundances are reflected in the data point sizes; b) shows differences 

in alpha diversity between smokers and never smokers (boxes show inter-quartile range, notches 95% CI of the median, P values are two-sided 

from multiple regression); c) shows progressive increase in the abundance of Streptococcus OTUs with increasing packyears (shaded area indicates 

95% CI); and d) shows how the phyla of ex-smokers resemble never-smokers, implying a beneficial effect of smoking cessation.  
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Figure 2. Network structure of the airway microbiome in normal subjects, compared to smokers and asthmatics  

 

The Chord plots show sharing and discordance of 4,207 OTUs common to the three datasets for co-abundance networks. a) Network membership 

in the whole population (top half of plot) compared to current smokers (bottom half of plot); and b) compared to asthmatics. Module colours are 

arbitrarily assigned by WGCNA, and module bacterial names are derived from Table 2.  Modules in smokers and asthmatics are simply named by 

size (Smoking.1, Asthma.2, etc.). There is a marked change of structure with fragmentation of major networks in the smokers, but high conservation 

of network membership between asthmatics and the whole cohort. 
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Figure 3. Asthma and the airway microbiome 
 

 

a) The volcano plot shows significant differences in the abundance of OTUs between 

asthmatics and non-smoking subjects with less than 10 packyears of lifetime exposure. Fold 

change is shown on the x axis and -log10 P (FDR corrected) on the y axis. Relative abundances 

are reflected in the data point sizes; b) shows differences in alpha diversity between asthmatics 

and unaffected non-smoking subjects (boxes show inter-quartile range, notches 95% CI of the 

median, P values are two-sided from multiple regression).  
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