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Abstract 1

With around 3 billion people at risk, dengue virus is endemic to many parts of the 2

world. In the Brazilian city of Rio de Janeiro, surveillance measures require notification 3

of new dengue virus cases, and are supplemented by serum collection from patients and 4

sequencing of viral RNA. Phylogenetic analyses have been performed for all serotypes 5

circulating in the country to identify viral genotypes, potentially identify new 6

introductions, and compare viruses presently circulating in the country with those in 7

the past, and of other countries. As a separate type of analysis, a number of 8

mathematical models have been developed to describe dengue virus transmission – 9

particularly qualitative incidence or prevalence patterns – although few have been 10

tested. In this chapter, I show how different mathematical formulations could represent 11

transmission of dengue virus by mosquitoes to humans, how the different model 12

structures entail assumptions about the process, and how these affect outputs 13

qualitatively. Inference from simulated data is used as proof of principle that the kind of 14

data available could be used to accurately estimate all model parameters; however, it is 15

shown that stochasticity may severely hamper efforts to test the models quantitatively. 16

I further implement inference from sequence data for the different models, and compare 17

the performance to that of time series. The methods are applied to the data available 18

for the city of Rio de Janeiro. 19
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1 Background 20

The persistence of dengue fever (as well as more severe syndromes caused by dengue 21

virus) constitutes the most extensive viral epidemic transmitted by arthropods, with 22

around 3 billion people at risk worldwide, and 300 million annual cases estimated 23

(Bhatt et al. 2013). The recently recorded expansion in the range of the main 24

transmission vectors, Aedes aegypti and Aedes albopictus (Kraemer et al. 2015) – 25

presumably due to higher temperatures at temperate regions resulting from climate 26

change – in combination with the emergence of other Aedes-transmitted diseases further 27

increased attention to vector control. 28

Although among the vector transmitted viruses dengue itself has arguably lost some 29

of the attention to Chikungunya and especially to Zika virus (due especially to the 30

previously unknown relationship between the latter and birth defects) at the population 31

level the study of either of these diseases is to a very large extent the study its human 32

and mosquito hosts. The fact that licensed vaccines for these disease was essentially 33

absent – dengue virus had a vaccine in phase 3 clinical trials (Eisen & Moore 2013; 34

Hadinegoro et al. 2015; Villar et al. 2014) that was just recently licensed (WHO 2016) – 35

further highlights the importance of vector control, and of the knowledge about dengue 36

virus transmission in the control of all of the diseases transmitted by the Aedes 37

mosquitoes. 38

One half of the of cycle of dengue virus (DENV ) – that is, the mosquito-to-human 39

transmission – happens through the bite of an infected Aedes aegypti or Aedes 40

albopictus mosquito (i.e. the vector in vector-transmitted disease); the transmission 41

cycle is completed when an infected human is bitten by a mosquito that in turn 42

becomes infected (Halstead 2007). Although importation from other geographical areas 43

(Salje et al. 2012; Stoddard et al. 2013; Vazquez-Prokopec et al. 2010) as well as sylvatic 44

cycles between non-human primates and other Aedes species may play a role in 45

sustaining transmission (Vasilakis et al. 2011), these basic steps of the human-Aedes 46

cycle should be enough to create chains of transmission that allow endemicity, and this 47

is considered the primary cycle in explaining dengue virus persistence. 48

A few details are noteworthy in a general model of dengue virus transmission, which 49

would otherwise conform nicely to that of a generic vector-transmitted mode of 50

propagation. Dengue virus has four antigenically distinct variants – types, or strains – 51

commonly referred to as serotypes (DENV-1 through 4). Anything from a single one to 52

all four of them can be circulating in any one place. If only one serotype is present, a 53

simple description of transmission where a susceptible host gets infected, recovers, and 54

becomes immune to further infection is generally adequate, since infection with a 55

serotype is accepted to confer human hosts lifelong immunity against that same type. If 56

more than one serotype is circulating, infection can happen at least twice (but not more 57

than four times, because unlike influenza, for instance, evolution of the virus does not 58

allow it to escape immunity built against it), one for each previously unseen serotype. 59

In this case multiple infections may need to be accounted for. Also, it could be 60

important to differentiate between strains, as a secondary infection can only be caused 61

by a serotype different from the previous. 62

Dengue virus transmission has been extensively explored through mathematical 63

models (Johansson et al. 2011). As usual, the disease states of the human hosts have 64

been described by simple extensions of the susceptible-infected-recovered framework, 65

often (but not always) coupled with susceptible-infected description of the mosquito 66

hosts. A mix-and-match of other known or suspected features specific (although 67

possibly not exclusive) to dengue virus have been further added: secondary infections, 68

temporary strain-transcending immunity (cross-protection), enhanced (or reduced) 69

susceptibility to secondary infections, increased lethality in case of severe presentations 70

(often associated to secondary infections, as well as other risk factors such as age or 71
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blood-related dysfunctions) (Johansson et al. 2011). 72

Therefore, dengue virus transmission can be described mathematically by multiple 73

explicit serotypes, which we denote by multiple-serotype models (e.g. a two-serotype 74

model means two different strains of dengue are explicitly described), or by a single 75

explicit virus type, hereafter denoted by SIRX models (which include the classic SIR 76

and SIRS models, as well as intermediate formulations, as described in the methods 77

section). Both formulations purport to describe settings where one or more serotypes 78

may be circulating; in the former description each explicit serotype causes infection once, 79

while in the latter the ensemble of unspecified serotypes causes infection twice or more. 80

Although seemingly subtle, the conceptual difference between the two modeling 81

approaches is profound: while in the SIRX vector models secondary infections depended 82

exclusively on waiting for recovered individuals to become susceptible again, in the 83

multi-type models strains compete for multiply susceptible individuals. This feature can 84

causes serotype alternation and induce oscillation even in the absence of seasonal 85

forcing. More importantly, this model is less of a caricature of the process of disease 86

transmission, since it is widely accepted that an individual infected with a serotype 87

cannot be infected again by the same strain, rendering the explicit description of the 88

SIRX models technically impossible. Whether one approach or the other is more 89

suitable to describe real dengue epidemics, however, cannot in principle be decided 90

without confronting both models to epidemiological data. 91

On the epidemiological records side of dengue, some unique patterns are often 92

highlighted in dengue virus epidemics, particularly the oscillations with multianual 93

periods and serotype replacement in successive epidemics (Adams et al. 2006). These 94

can be verified, respectively, from incidence records that show greater number of cases 95

usually around the rainy seasons, and through serological surveys or, more recently, 96

sequencing of circulating viruses. Mathematical models of dengue transmission therefore 97

are built to reproduce these broad patterns; nevertheless, different combinations of 98

anyone’s favorite model components may reproduce them, in a way that is 99

indistinguishable from someone else’s choice of building blocks. A non-exhaustive list of 100

processes that could produce realistic outputs in a computer simulation include: 101

stochasticity(Otero & Solari 2010), spatial structure (Favier et al. 2005), enhanced 102

secondary infectivity (Nagao & Koelle 2008), “unnatural” transmission routes (Chikaki 103

& Ishikawa 2009). 104

One of the most hyped effects among the many incorporated one way or another into 105

the mathematical models is that of antibody dependent enhancement, by which a 106

secondary infection would be more severe than the first in the presence of titers of 107

heterologous antibodies against DENV (Kliks et al. 1989). The inclusion of the effect 108

has been shown to drive chaotic dynamics even in deterministic mathematical models 109

(Bianco et al. 2009), so as a result it has been suggested that it could be the most 110

important effect modulating the observed somewhat erratic epidemic patterns. The 111

plausibility of the effect is asserted through the observation that in the presence of 112

subneutralizing antibodies invasion of the cell by viruses is facilitated (Guzman & 113

Vazquez 2010); however, in terms of a mathematical model it is not clear if that would 114

translate into increased susceptibility, increased infectivity, or simply a 115

transmission-unrelated increase in virus lethality. If the magnitude of the enhancement 116

could ever be as large as claimed in modeling studies is not established either. 117

Furthermore, it is not clear whether, if present, the effect would be the dominant factor, 118

or if it would be important to the transmission dynamics at all. 119

Many other effects and combinations would still not exhaust the list of tens of 120

models that purport to explain dengue transmission (Johansson et al. 2011); 121

nevertheless, a quantitative evaluation of the conformity of these models to real data 122

was not done systematically [but see Rasmussen et al. (2014b) for a rare exception]. 123
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Here, I put together a model of the human and vector population with secondary 124

infections, either one or two serotypes, and temporary immunity after any infection, but 125

otherwise minimal in what regards any other asymmetries, enhancements, or alternative 126

routes of transmission. I show that minimalistic multi-serotype models can sustain 127

oscillations in the absence of any of the latter effects or stochasticity; I also implement 128

an individual-based model that can simulate both epidemiological and viral evolution. I 129

further develop inference methods to fit these models to time series and multi-serotype 130

sequence data, compare the inference results for the different kinds of simulated data, 131

and apply the estimation method to real data.

Figure 1. Structure of an SIRS plus vector model, with possible loss of immunity
indicated by the dashed arrow. All compartments are subject to natural mortality
m, but the arrows corresponding to those processes are ommitted in all but the last
compartments to avoid repetition and clutter.

132

2 Methods 133

2.1 SIR model extensions for dengue virus transmission 134

2.1.1 SIRX plus vector models 135

The simplest model to describe dengue transmission is arguably the vector SIR model, 136

not unlike the first basic models of malaria transmission with a human and mosquito 137

population, although malaria may have an indefinite number of reinfections, making it a 138

SIS model (Ross 1916; Smith et al. 2012). The SIR model assumes human hosts are 139

only susceptible once (S), and after infection (I) enter the recovered compartment (R) 140

permanently, being immune to any further infection by dengue afterwards. 141

The vector compartment is modeled as a susceptible mosquito compartment (U), 142

and an infected one (V ), from which a mosquito host never exits once it enters – noting 143

that the female mosquitoes are the only ones transmitting disease, so the male 144

population is absent, or implicit. 145

Alternatively, human hosts may be allowed to lose immunity acquired from past 146

infections and become susceptible again; under that assumption a single host can 147

potentially be reinfected an unlimited number of times before it dies. 148

The schematic drawing of both model formulations is shown in figure 1, the only 149

difference between the two being the arrow representing hosts that exit the recovered 150

compartment and reenter the initial susceptible compartment. In this latter case, the 151

structure of the human compartments is that of what is dubbed the SIRS model – the 152

first and last susceptible compartments being the same. 153
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The compartments and parameters are very much standard: m being the human 154

host mortality rate; β the mosquito to human transmission coefficient, or rate; γ the 155

human recovery rate; φ is the immunity loss rate (which is equal to zero in the SIR 156

version of the model); b is the mosquito host mortality rate; Ω is the human to mosquito 157

transmission rate. Additionally, it is assumed that the birth rates are the same as the 158

mortality rates for each host species; therefore the population sizes stay constant: H is 159

the value set for the human population, while M is the size of the female mosquito 160

population. The mathematical formulation of the SIRS dynamics of transmission is 161

given by the system of equations (1). 162

dS

dt
= mH + φR− β

H
V S −mS

dI

dt
=

β

H
V S − γI −mI

dR

dt
= γI − φR−mR

dU

dt
= bM − Ω

H
IU − bU

dV

dt
=

Ω

H
IU − bV

(1)

In addition to vector and human basic demographic and epidemiological parameters, 163

it is also common to assume seasonal forcing of the vector population, emulating 164

changing conditions from more to less favorable throughout the year, usually 165

attributable to either hot/cold, or humid/dry seasons. The result of that function is 166

then added either to the birth or death rate of the mosquito population, resulting in a 167

deterministic sinusoidal oscillation. 168

For clarity the seasonality function is not introduced in this first display of the 169

mathematical system (eqs. 1), but is detailed in the following system (2) instead.

Figure 2. Structure of an SIR plus vector model, with explicit number of possible
reinfections (in the particular case illustrated the vector SIRx2).

170

2.1.2 SIR-vector models and multiple infections 171

Given that dengue virus has a finite number of serotypes, it is expected that any one 172

host can only be infected with dengue a few times in a lifetime; therefore, secondary 173

infections can be modeled by explicit compartments for the secondarily or further 174

infected. 175

In this case, the total number of times a single individual can be reinfected has a 176

hard limit given by the number of infected compartments in the model, which are never 177
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revisited. This is straightforwardly modeled by a series of SIR compartments chained 178

together (i.e. an SIR structure followed by another SIR). 179

The identities of individual serotypes are not explicit in this model, but sequential 180

infections implicitly describe this feature of dengue virus transmission. The case with 181

two consecutive infections is shown in figure 2. 182

The compartmental structure of the vector population is unaltered, while the human 183

host population follows a susceptible-infected-recovered path, being immune to 184

reinfection for the time they stay in the first recovered compartment (R1). After that, 185

loss of immunity takes individuals to a second susceptible state (S2, unlike the SIRS 186

model where the first state is revisited), where individuals are again susceptible to 187

infection by infected mosquitoes. 188

In case of infection they move to the secondarily infected compartment (I2), and 189

after recovery they move to the last compartment (R), where they are recovered and 190

can only exit by the ultimate process of death. 191

The model parameters are the same as the previous model and describe exactly the 192

same processes as before, with the single and only slight exception being that φ 193

describes a path of waning immunity through different compartments due to the general 194

model structure. The mathematical formulation of the model with two sequential 195

infected compartments is given by the system of equations (2). 196

As mentioned above, system (2) also has a seasonality term acting on mosquito birth 197

rates. This consists of a time dependent cosine function with argument 2π multiplied by 198

time itself plus a phase variable δ; this assumes these variables are given in years, 199

resulting in an oscillation period of one year, but can trivially be transformed into 200

months, weeks, or days, for instance, by dividing by the appropriate factor. The cosine 201

multiplies the amplitude scaling parameter α; this factor is added to the constant birth 202

rate, resulting in a population whose size oscillates between (1± α)M . 203

dS

dt
= mH − β

H
V S −mS

dI1
dt

=
β

H
V S − (γ +m)I1

dR1

dt
= γI1 − (φ+m)R1

dS2

dt
= φR1 −

β

H
V S2 −mS2

dI2
dt

=
β

H
V S2 − (γ +m)I2

dR2

dt
= γI2 −mR2

dU

dt
= bM [1 + α · cos(2π(t+ δ))]− Ω

H
(I1 + I2)U − bU

dV

dt
=

Ω

H
(I1 + I2)U − bV

(2)

In contrast to the three-compartment SIRS model I refer to this model as the SIRx2 204

model (given that the human population states are described by a SIR plus SIR, or two 205

times the SIR structure), where once-recovered individuals would again become 206

susceptible to infection. Because DENV has 4 human-infecting serotypes infections may 207

further be tertiary or quaternary; unless explicitly stated, I hereafter refer to all 208

infections after the first simply as secondary, as opposed to primary. SIRx3 and SIRx4 209

models where individuals infected twice or three times, respectively, become once again 210
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susceptible can be built by straightforwardly extending the SIRx2; therefore, I do not 211

show specific schemes or systems of equations for those. 212

In the infinity limit these models become the SIRS model, except human hosts enter 213

an infinite number of new compartments instead of entering the same compartments an 214

infinite number of times, provided of course hosts stay alive long enough. Depending on 215

rates of infection and death, a smaller number of compartments may be enough for a 216

human host to have enough new compartments for many lifetimes of repeated infection, 217

in which case the model will also approach the SIRS model even with a finite number of 218

reinfections. 219

I refer to this entire class of models as SIRX, which include the shown SIR, SIRS, as 220

well as the SIRx2 (or any other number between two and infinity) models. In any of 221

those cases, however, the identity of multiple serotypes are only implicit in the fact that 222

human hosts can have secondary infections, because there is only one class of infected 223

mosquitoes that transmit to all susceptible humans regardless.

Figure 3. Structure of an explicit two-serotype model and its rate parameters.

224

2.1.3 Multiple-serotype infections in the descriptions of dengue virus 225

incidence 226

A more complete description of multiple-serotype transmission is one that differentiates 227

not only between primary and secondary infections but also disinguishing which 228

serotype causes infection each time. This requires not only a series of compartments, 229

but also parallel paths that describe the order in which the multiple serotypes cause 230

infection. For two serotypes, for instance DENV-1 and DENV-2, it is accepted that a 231

human host could be infected twice, once for each serotype; that is accounted for by the 232

two sequential infected compartments of the SIRx2 model described previously. 233

Here I wish to account for the order of infection: a human host can either be 234

infected by DENV-1 and then DENV-2, or by DENV-2 and then DENV-1; this creates 235

two alternative paths which are shown in figure 3 – e.g. I12 denotes individuals first 236

infected with serotype 1 and now infected with serotype 2. 237

Unlike the SIRx2 models the mosquito hosts can either harbour one or the other 238

serotype; therefore, also in contrast to the previous formulations, a secondary human 239

infection depends on transmission from a mosquito with different serotype from that of 240

the primary. The mathematical description of this explicit two-serotype model is given 241
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by the system of equations (3). 242

dS

dt
= mH − β

H
(V1 + V2)S −mS

dI1
dt

=
β

H
V1S − (γ +m)I1

dR1

dt
= γI1 − (ϕ+m)R1

dS1

dt
= ϕR1 −

β

H
V2S1 −mS1

dI12

dt
=

β

H
V2S1 − (γ +m)I12

dI2
dt

=
β

H
V2S − (γ +m)I2

dR2

dt
= γI2 − (ϕ+m)R2

dS2

dt
= ϕR2 −

β

H
V1S2 −mS2

dI21

dt
=

β

H
V1S2 − (γ +m)I21

dR

dt
= γ(I12 + I21)−mR

dU

dt
= bM [1 + α · cos(2π(δ + t))]− Ω

H
(I1 + I21)U − Ω

H
(I2 + I12)U − bU

dV1

dt
=

Ω

H
(I1 + I21)U − bV1

dV2

dt
=

Ω

H
(I2 + I12)U − bV2

(3)

Although the model described by the system of equations (3) does contain (more 243

than a couple) SIR-like components, and could possibly be seen as a parallelization of 244

the SIRx2 model, the level of complexity arising from further introducing 245

DENV -specific features is considerably higher. It may be more useful to look at it as 246

two interacting epidemics (Rohani et al. 2003), since it is unlikely that either the 247

compound output or the individual serotype dynamics can be predicted to trivially 248

conform to that of its more well known building blocks. 249

Regarding the basic reproductive number, R0, because it is calculated with regard to 250

a fully susceptible population, the secondary compartments do not cause the models to 251

differ in that matter, and the quantity is given by R0 = βΩ
b(m+γ)

M
H . If such differences 252

are actually verified in the output of the model, it would be due to the structure of the 253

immunological states believed to represent a population at risk of a multi-serotype 254

dengue epidemic, since all other processes are present in the previous models as well. 255

On top of the structuring of basic epidemiological and demographic processes 256

(Keeling & Rohani 2011), additional complexity may appear by introducing 257

asymmetries between serotypes (e.g. serotype 1 more infective than serotype 2, or 258

causing infection for a longer period of infection) or order-dependent rates of infection 259

(e.g. secondary infections more or less likely than primary), which are plausible for 260

various biological or medical reasons, and are likely in comparison to the narrow null 261

hypothesis of perfect symmetry. 262

Other common extensions that are known to be present to some degree, unlike more 263

complex hypothesized immunological or epidemiological effects, include exposed 264

compartments (describing individuals that harbor the pathogen but cannot transmit it 265

yet), spatial structure of transmission, heterogeneity in contact rates, susceptibility to 266
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infection, or in infectivity, gamma-shaped (as opposed to exponential) host survival, and 267

many others. Nevertheless, none of these are included in the models used here, I discuss 268

some of these later in the text, although it may become clear by the section on inference 269

which are the difficulties of including too many parameters however simple and concrete 270

the processes may be. 271

2.1.4 Implementation 272

The models were initially implemented as continuous ordinary differential equations 273

(ODEs), solved by numerical methods to approximating the deterministic solutions of 274

the system; commonly available as ODE solver functions in multiple programming 275

languages such as Matlab, Python, and R languages, which were used at different times 276

with no particular preference for either. 277

2.2 Individual-based models 278

Discrete, stochastic, individual-based versions of the models described above were also 279

implemented. Besides the importance of the randomness of the events in the 280

epidemiological model, it was important to be able to simulate not only the 281

epidemiological outputs, but also the evolution of viral sequences. Because there is no 282

direct continuous approximation neither to the appearance of a random mutation, nor 283

to a genetic sequence of nucleotides, the most straightforward way of simulating 284

evolution is to explicitly attribute viral sequences to infected individuals, and allowing 285

them to randomly acquire new mutations as they get transmitted. 286

Implementations were done in both C++ programming language by using a previous 287

implementation (Gordo et al. 2009; Gordo & Campos 2007), and later by adapting the 288

algorithm to the Python programming language to take advantage of the random 289

number implementations in the latter. 290

In brief, an “Individual” class was created to have a “sequences” attribute (which 291

was empty if the individual was not infected), and each human or mosquito host was an 292

instance of that class. At each time step (∆t, which multiplies all probabilities hereafter 293

mentioned), the number of new infections was drawn from a random binomial 294

distribution, since the maximum number of infections is bounded by the total number of 295

susceptible individuals; the probability parameters were equal to the force of infection 296

(e.g. λ = βV1/H for infections caused by mosquitos infected with serotype 1) and 297

number of trials equal to the susceptible population (e.g. the susceptible to all S, or to 298

type 1 S2, equivalently.) Because the infectivity of all individuals is assumed to be the 299

same, the sequence infecting each new host is randomly drawn from the pool of all 300

existing sequences from the previous time step. After a successful infection of a new 301

individual, new mutations have the opportunity to arise with probability determined by 302

a per-genome mutation rate – mutations are assumed to follow an infinite alleles and 303

sites model, so every new mutation is one that was not previously present in the 304

population. Mutations do not affect any of the model parameters, so evolution is 305

completely neutral. The number of sequences inside a single infected host can be greater 306

than one, in which case this within-host population undergoes a Wright-Fisher sampling 307

step (Wakeley 2009). 308

The number of new births of the mosquito population, apart from the sinusoidal 309

additional factor, is drawn from a poisson distribution with mean µvec = b; deaths are 310

drawn from a binomial distribution with probability parameter also µvec = b, so the 311

total population is expected to fluctuate around the initial value. The human 312

population is assumed to be strictly constant; that is enforced by the number of births 313

being exactly equal to the number of stochastic deaths – this condition can be easily 314

relaxed, however. 315
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Otherwise, as a general rule, the number of events at each time step was drawn from 316

a random binomial (and when applicable, multinomial) distribution where the number 317

of trials was given by the number of individuals in the compartment, and the parameter 318

for probability of success in each trial was given by the rates in the model (e.g. the 319

number of individuals recovered from an infected compartment I1 is given by a random 320

binomial distribution draw with parameters I1 and γ). If competing processes were 321

present, a multinomial was used instead. If the number of events was not bounded, for 322

instance by the size of the compartment, a poisson distribution was used instead (e.g. 323

the number of mosquito births, or number of new mutations). 324

The output of this implementation is both a stochastic time series of susceptibles, 325

infected, recovered, and incidences (i.e. the randomly drawn number of new infections 326

recorded at each step in the human and vector populations), and the pool of all extant 327

pathogen sequences for each serotype at all or selected time points (for convenience, 328

split into mosquito and human harbored sequences). 329

2.3 Epidemiological surveillance data (and pseudodata) 330

In countries like Brazil, where notification of dengue is compulsory to doctors, the 331

records commonly consist of periodically reported new cases into the Information 332

System for Incident Notification [Sistema de Informação de Agravos de Notificação] 333

(SINAN). As with many other common endemic diseases, laboratory confirmation is not 334

routine, so diagnostic relies mainly on clinical criteria; neither the serotype causing the 335

infection is normally recorded, nor if the infection is primary or not. Therefore, typical 336

time series do not distinguish between serotypes or sequential infections; what would be 337

available would be a series of equally spaced, discrete values representing the number of 338

cases of “dengue fever” generically defined reported every month or week (SINAN). 339

The time series data set used here is from the Brazilian SINAN, with the absolute 340

number of new weekly cases of dengue from the year 2009 until 2013 in the city of Rio 341

de Janeiro, when three large incidence peaks are observed. More specific diagnostics 342

data have also been occasionally produced in the form of serological surveys, although 343

these were obtained for specific studies and small cohorts. Because this kind of data is 344

sparse and difficult to access, I do not use any such data, but merely note that it exists 345

for the disease and location I am (mainly) concerned with, even if in a fragmented way. 346

Relatively recently, routine surveillance of dengue started to include genetic data of 347

the virus. It is now routine activity to isolate samples from patients and obtain 348

nucleotide sequence from the virus in the isolate; an immediate result is the 349

identification of serotypes, and possibly of more specific variants such as genotype (a 350

finer grained distinction within each serotype) as well as the relationship to strains 351

previously found elsewhere (dos Santos et al. 2002). This data set therefore consists of 352

somewhat sparsely sampled viral isolates sequenced along several years – the total 353

number is in the order of tens for the city of Rio de Janeiro – and is to a great extent 354

available as part of published studies (Araújo et al. 2009; de Bruycker-Nogueira et al. 355

2015; Castro et al. 2013, 2012; Miagostovich et al. 2003, 2006; DeSimone et al. 2004), as 356

well as in public databases for genetic sequences such as GenBank (Benson et al. 2015). 357

The individual-based models described in the previous subsection were designed in a 358

way that could directly reproduce the form observed in the real data available. Unless 359

there is specific interest in greater details, whenever a model is simulated I try to store 360

the output in a format that mimics the amount, type and level of aggregation, period 361

and interval of collection, and any other feature pertinent to a specific data set. When 362

used in the same way as the real data (e.g. for parameter inference), I call a data set of 363

this sort synthetic, or pseudo-data. 364

Generally summarizing the two types of pseudo data sets used here, the time series 365

are weekly records of all new cases (the weekly sum of daily-generated incidences), and 366
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the second type are genetic sequences. The genetic equivalent of the all-inclusive time 367

series data would be a sequence (or group of sequences) for every newly infected 368

individual time-stamped with the week (or any other time step) when it appeared. That 369

is impractical even for simulated data set, and for a series of reasons it is essentially 370

impossible in real epidemics. 371

Instead, the pseudo-sequence data is a sample from different times, where the 372

number of sequences from each time point is proportional to the number of cases then, 373

i.e. it is a sample of sequences over one long period, weighted by epidemic size at each of 374

multiple small intervals. A total number of 100 sequences per serotype over the course of 375

a few years was assumed to be a sufficient number, comparable to that of previous data 376

sets used for similar purposes (Rasmussen et al. 2014b), and considered feasible in a city 377

with a population on the order of 10 million, and outbreaks on the order of a few tens of 378

thousands (SINAN). It is also comparable (though larger) in size to data sets collected 379

for other purposes in the city of Rio de Janeiro (DeSimone et al. 2004) When needed, 380

the specific pseudo and real data sets are detailed at the pertinent results sections. 381

The objective is to obtain pseudo data sets suitable for inference purposes. It is 382

difficult to establish beforehand what the most informative sampling scheme would be 383

(Frost et al. 2015); that is a question on its own right that is not explored here. 384

2.4 Bayesian inference from time series 385

Analytical solutions for the systems adopted in this chapter are not available; therefore, 386

a numerical approximation to the continuous solution was obtained through an ODE 387

solver whenever needed. 388

Because the number of new cases in any given week is an integer number I chose to 389

use a poisson distribution: the likelihood of the observed value is computed using the 390

sum of all possible human infected states as the poisson parameter (as modeled by 391

compartments, i.e. the total number of dengue cases of any kind in the model output), 392

and the total likelihood is therefore the product of that over all time points in the series 393

– or, more conveniently, the sum of their logarithms. 394

A binomial distribution could as well be used, in which case its probability 395

parameter could be given by the forces of infection and the number of trials would be 396

given by the susceptible populations at risk. While that would be possible, and possibly 397

mimic more accurately our simulation model and the bounds in the maximum number 398

of infections, it is more cumbersome to add the parameters coming from the different 399

compartments and, more importantly, the poisson distribution expects greater or equal 400

variance when compared to the binomial, and therefore can accommodate any 401

overdispersion in the data. 402

The bayesian Markov Chain Monte Carlo (MCMC ) inference algorithm was 403

implemented in Python language using the PyMC module (Patil et al. 2010). Unless 404

detailed otherwise, as a norm gamma-shaped priors were used for parameters that have 405

independently estimated or commonly accepted values, and priors uniform over a wide 406

range were used otherwise. As technical criteria for quality of the inference, the 407

following criteria were used (Gelman et al. 2013, chap. 11): Markov chains were run 408

until the likelihood and posterior traces converged to a maximum and attained 409

stationarity with that regard; for all results shown, replicates of the chains were run to 410

assure mixing (unless otherwise specified, model fit and posterios are computed and 411

shown for individual chains only); initial sampling corresponding to one tenth of the 412

total number of iterations was discarded as warm-up or burn-in period. Correlation 413

between parameters were computed at the end of the chain for at least one replicate 414

when parameters seemed systematically biased. 415

Most critical was the time limit of around one month that was imposed for practical 416

reasons; that allowed chains as long as a few million iterations on a dedicated 417
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high-capacity computer. Most implementations did not seem to have issues with the 418

likelihood converging with a few hundred thousand iterations; nevertheless, more subtle 419

issues were observed in some cases and are discussed in the results and discussion 420

sections. 421

I applied this estimation method to both simulated data sets, as well as to a time 422

series of dengue incidence from the city of Rio de Janeiro running from 2009 to 2013 423

(SINAN). 424

The estimation method used does not therefore account for noise in the system state. 425

Stochastic solutions can be used instead; however, doing so is not as simple as replacing 426

a deterministic solution by a single stochastic one (which may be only slightly slower to 427

obtain), but requires a considerably more sophisticated and a computationally much 428

more intensive method method to estimate the likelihood Andrieu & Doucet (2010); 429

Ionides et al. (2006), with possibly a couple of thousand simulations at each iteration of 430

the Markov Chain. I discuss these so called Sequential Monte Carlo or particle filters as 431

perspectives in the end of this chapter. 432

2.5 Population genetics and phylodynamic inference 433

Although the individual-based model can produce a simulated data set that mimics a 434

set of viral sequences sampled at arbitrary time points along time, unlike with the time 435

series data there is no simple way of calculating the likelihood of the model parameters 436

given that kind of data. 437

The conceptually most straightforward method is probably the following: make up 438

metrics that are assumed to be representative of the data; simulate the model; compute 439

the same metrics for a large number of model outputs; and try to find the model 440

parameters that best approximate the real data. In spite of the gross oversimplification 441

of this description, this is the basis of Approximate Bayesian Computation (or ABC ) 442

methods. 443

An alternative framework to compute the likelihood of a model given sequence data – 444

and arguably a more elegant one, at least in the sense that it is based on a full 445

likelihood expression – relies on the bifurcating properties of the trees that connect 446

related sequences, or conversely (with time flowing backwards) the coalescence of a set 447

of related samples into a common ancestor. The latter gives the name to the coalescent 448

theory, or simply, the coalescent, as described by Kingman (1982). Since then the 449

problem of estimating a Wright-Fisher (or Moran) population size from sequence data 450

using the coalescent has been extended to varying environments (Griffiths & Tavaré 451

1994), to implicitly defined population functions (Frost & Volz 2010), and more 452

generally to structured populations (Volz 2012). 453

The Beast 2 software (Bayesian Evolutionary Analysis by Sampling Trees) contains 454

many basic as well as advanced implementations of coalescent-based MCMC inference 455

(Bouckaert et al. 2014); it is written in the Java programming language, and uses an 456

XML file to input the actual sequence data and the specifications to the multiple classes 457

involved in the calculations. A phylodynamics package is also available, which among 458

many things includes implementations of the SIR model (Kühnert). Other software for 459

that purpose is also available, notably as packages for the R programming language 460

(Paradis; Volz et al.). Beast 2 was chosen due to the existence of a general community 461

of users, its openness and extensibility, apparent propensity to phylodynamics 462

implementations, and especially the helpfulness of some of its earliest developers. 463

Nevertheless, there were no tools built in to the core software, nor any extension 464

packages (including the phylodynamics package developed by Kühnert) that were 465

suitable for direct application to the inference using the models pertinent to dengue 466

virus transmission as describe above. For one, a structured implementation is needed – 467

in the simplest case, viral sequences may be either in the human or in the mosquito 468
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host, and intuitively coalescence can only happen if they are inside the same hosts 469

(unfortunately, further details about structure in the coalescent for this kind of model 470

are way out of scope, but see Volz (2012) for a complete description of how structure is 471

incorporated in the context of disease transmission models). The implementation was 472

greatly facilitated by code shared from a previous implementation from Rasmussen et al. 473

(2014b), which consisted of an epidemiological model Java class and a structured 474

coalescent likelihood computation class; these extensions could almost directly be 475

applied to the SIR-vector model, and could straightforwardly be used for the SIRS 476

model as well, and more or less easily adapted to all SIRX models. 477

The implementation of the two-serotype models, however, required additional 478

tinkering. Because DENV serotypes are only 60% similar by sequences, they are 479

usually treated separately (de Bruycker-Nogueira et al. 2015; Castro et al. 2013, 2012). 480

Therefore, they are not expected to find a common ancestor in the recent period of a 481

few years of dengue transmission, in which case two separate trees are needed. The 482

two-serotype epidemiological model produces the poulation dynamics function for both 483

serotypes, so a single Java class was implemented with this model; however, the 484

likelihoods have to be calculated for each tree, so two separate classes were implemented 485

that used separate trees and substitution model parameters, but fetched (different, 486

serotype-specific parts) of the same population model output. The combination of the 487

two tree likelihoods was then the global likelihood of the one-epidemiology, two-tree 488

model, and from then on could be used by the MCMC algorithm in Beast 2 with no 489

additional tinkering needed to perform inference. The same quality checking criteria as 490

in the time series inference were used; one month of real time amounted to a few tens of 491

millions of iterations in Beast 2 for the most complex models. Additionally, Beast 2 492

computed the effective number of samples (Gelman et al. 2013, chap. 11) as an 493

additional metric to assess convergence. 494

Figure 4. SIR+vector models with (red) and without seasonal forcing (blue) Parameter
values in are: Ω = β = 1.0, b = 0.1,m = 3.65 ·10−5, γ = 0.14, α = 0.1, H = 1000000,M =
513789.
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3 Results 495

3.1 Forward model simulation 496

3.1.1 Predictions for disease incidence and prevalence 497

Figure 4 shows a deterministic simulation of the SIR-vector model without, and with 498

seasonal forcing in the birth rates. It is worth noting, that although the amplitude of 499

seasonal forcing is of the magnitude of 10%, oscillations can quite easily be greater than 500

that through resonance of the natural (damped) oscillations and the forcing (Dushoff et 501

al. 2004). The average incidence, however, is roughly the same in the presence or 502

absence of forcing. 503

In the case of waning immunity, secondary infections are also possible, which 504

potentially increases the total incidence at any point in time. Figure 5 shows the total 505

incidence for the vector transmitted SIR, SIRx2, SIRx4, and SIRS models; for a set of 506

parameter values, changing only the transmission rate within a certain range can result 507

in a very similar incidence profile even in a deterministic setting.

Figure 5. SIR+vector models in some of its variants: standard vector SIR (red),
SIRx2 (green), SIRx4 (light blue), and SIRS (purple), showing approximately the same
incidence levels at or near near the oscillatory equilibrium. The single changing parameter
is transmission intensity for the SIR, SIRx2, SIRx4 and SIRS models, respectively:
Ω = β = 0.2536; 0.1835; 0.1680; 0.1665. Additional parameter values in are: b = 0.1,m =
3.65 · 10−5, γ = 0.14, φ = 0.00165, α = 0.02, δ = 0, H = 1000000,M = 513789.

508

Although for larger transmission rates the number of susceptibles may dominate and 509

cause the models to output distinguishable time series, it must be acknowledged that for 510

some parameter sets, model structure is not easily identifiable from the incidence 511

pattern. Therefore, not only parameter values, but also model structure, are likely to be 512
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critical to describe the transmission of dengue virus, and can have a great impact in the 513

parameters estimated.

Figure 6. Incidence dynamics for an explicit two-serotype dengue virus model. Shown
incidence is that for each serotype separately (a), and the sum of new infections for
both serotypes (b). Parameter values are: b = 0.1,Ω = 0.7, β = 0.7,m = 3.65 · 10−5, γ =
0.14, ϕ = 0.00165, α = 0.02, δ = 0, H = 1000000,M = 513789.

514

The structure of the two-serotype model is not directly comparable to the previous 515

models; nevertheless, the output of the model with the same common set of parameters 516

(except for β) is shown in figure 6, except for transmission. 517

Besides the obvious difference that this model has explicit series for both serotypes, 518

the incidence pattern is less regular. A more striking qualitative difference is the fact 519

that the numbers of infected individuals get much closer to zero (at least for individual 520

serotypes); in a deterministic model it means just that, but in a stochastic model that 521

may mean increased probability of extinction. 522

3.1.2 Discrete time and individual-based implementations of vector 523

transmission of DENV 524

Discrete time and stochasticity in the system state transitions can significantly affect 525

the oscillations in resonating systems (Dushoff et al. 2004). This is illustrated by the 526

incidence outputs of both the vector SIR, and more extremely the vector SIRS models, 527

in figure 7. 528

The probability of extinction of the pathogen is generally low in those cases, 529

although it is clear that numbers are much lower for the case without reinfection (vector 530

SIR), such that if extinction doesn’t commonly occur, the trajectories are nevertheless 531

much more prone to the general process noise. Similarly, the intermediate models with 532

two and four infections are prone to effects of discretization and stochasticity. Figure 8 533

shows the results for the remaining SIRX models. 534

For the chosen parameters, extinction is more likely in the two-serotype model 535

Figure 9 shows the results for this model. 536

3.1.3 Summary of forward modeling predictions 537

Models that are structured differently but with the same parameters, and therefore 538

same basic reproductive number, will have different outputs and observed incidence and 539

prevalence levels. Conversely, qualitative aspects of the observed disease data can be 540

reproduced by different combinations of model structure and parameters. It is not at all 541

trivial to determine what aspects of the model are known, or best approximate reality, 542
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Figure 7. Stochastic output of vector SIR model (a), and of SIRS model (b). Gray
lines show solutions to the deterministic system. Parameter values are: b = 0.1,m =
3.65 · 10−5, γ = 0.14, φ = 0.00165, α = 0.02, δ = 0, H = 1000000,M = 513789., and
Ω = β = 0.7 for the SIR, and Ω = β = 0.47, for the SIRS.

Figure 8. Stochastic output of vector SIRx2 model (a), and of SIRx4 model (b). Gray
lines show solutions to the deterministic system. Parameter values are: b = 0.1,Ω = β =
0.7,m = 3.65 · 10−5, γ = 0.14, φ = 0.00165, α = 0.02, δ = 0, H = 1000000,M = 513789.

which can be treated as nuisances, and which of them are robust to structure or 543

parametrization changes. 544

In the case of genetic diversity, it is even harder to distinguish clear relationships 545

between the real data and the model predictions. Summaries are useful to make broad 546

assessments about the data, but are usually not suitable for finer grained comparisons, 547

nor model testing. A quantitative comparison is therefore needed to assess which model 548

best represents reality, and what parameter values explain the processes of disease 549

transmission. 550

The forward simulation approach is quite convenient when good estimates are 551

available for all or most parameters, and there is good confidence in the model 552

structure, or the outputs are robust or easy to evaluate for unknown parameters. Even 553

for a reasonably large amount of synthetic (or pseudo-) data it is feasible to perform 554

computation of genetic summaries in a reasonably short time without much algorithm 555

optimization effort. 556

For complex, non-linear models it may, however, be difficult to thoroughly perform 557

sensitivity analyses for more than a couple parameters and identify disease dynamics 558

compatible with real data. For genetic diversity computations that rely on 559

individual-based simulations it is even more costly and time-consuming to adopt the 560
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Figure 9. Stochastic output of two-sreotype model. Gray lines show solutions to the
deterministic system. Parameter values are the same as before.

forward approach. 561

3.2 Inference: quantitative hypothesis testing 562

3.2.1 Time series-based inference 563

The MCMC algorithm produces samples of the joint posterior, which consist of a series 564

of parameter sets accepted by the method, the fit can be empirically computed by 565

simulating the model for a representative subset of these samples, and computing the 566

mean or median values of the model output. Credibility intervals can be similarly 567

computed by taking the score at some percentile (e.g. a 95% CI results if 2.5% and 568

97.5% are chosen). We present the mean computed as described above and call it the 569

“fit” hereafter, together with the 95% credibility intervals, unless otherwise stated. 570

For inference purposes, the ratio of mosquito population M to human hosts H is the 571

estimated parameter, denoted hereafter as Mratio. The mean time of immunity before 572

becoming susceptible, that is 1/ϕ or 1/φ are the parameters actually estimated, and are 573

denoted just as such, the inverse of the original parameter. 574

The easiest data set the inference method can fit is a deterministic simulation with 575

some noise added afterwards to the continuous solution. This best case but unlikely 576

scenario serves as proof of concept that there would be enough information in a data set 577

with this format. Figure 10, panel A shows the fit of the two-serotype model to 578

pseudodata produced by a deterministic simulation of 209 weeks (approximately four 579

years) with poisson noise added to each of the 209 time points, i.e. the model used for 580

estimation is the same as that used to produce the simulated data. 581

The fit shown in is extremely good, considering the pseudodata is the output of a 582

highly nonlinear model, and that only an aggregated and partial observation of the 583

system is used (i.e. the sum of the changes in the infected compartment ). Therefore, 584

while this is the best case scenario, it is not a given that it would be possible to 585

adequately fit the model, and furthermore estimate the parameters accurately – the 586

parameters could be structurally unidentifiable, or the amount or type of data could not 587
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allow accurate estimation of the parameters. The estimates of the model parameters are 588

shown in figure 10, panel B, which displays the prior and posterior distributions. Most 589

estimates are quite precise even in the absence of informative priors.

Figure 10. Fit of the continuous two-serotype model with poisson likelihood to data
simulated from the continuous model with poisson noise added afterwards (A). Posterior
distributions (crimson) of epidemiological parameters (B) – prior distributions are shown
in light blue (possibly not visible if the densities are very low compared to the posterior
density). True values, i.e. parameter values used to simulate the data set, are shown as
vertical black lines.

590

The case of the exact same estimation method applied to a data set produced by the 591

stochastic individual-based model simulation instead is shown in figure 11. While the fit 592

to the data is still quite good, the effect of stochasticity on the posterior estimates can 593

be observed as pronounced biases in some posterior distributions. 594

Unlike the previous case, gamma priors were used for the initial population states, 595

and they are nevertheless not as well estimated as before, but contain the true values 596

(not shown). Particularly important is the estimate for R0, which is significantly lower 597

than the true value and the estimate of the temporary cross protection time (i.e. 598

strain-transcending immunity – the inverse of the rate of immunity waning ϕ – only 599

present in models with secondary infections), which is precisely estimated. 600

The observed biases are similar to those observed with a simpler vector SIR model 601

(see appendix, ), and the fact that these are not observed with the continuous 602

simulation suggests that model complexity or data structure are not the main factors. 603

Indeed, fixing some parameters and/or initial conditions can improve estimation of 604

the remaining parameters. Appendix A shows that fixing all other epidemiological 605

parameters except for R0 improves it estimate and fixing initial conditions improves it 606
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further (figure A.2) However, it is not necessarily true that the more parameters fixed, 607

the better the estimates, as leaving a few of the epidemiological parameters results in 608

the best estimate of R0 when compared to the above (figure A.3). 609

The MCMC algorithm allows empirical computation of the correlation between the 610

parameters, since it relies on repeatedly sampling the posterior distribution of 611

parameters. The biases could therefore be at least in part attributed to correlation 612

between the estimates (not shown, but see discussion section); however, the problem 613

seems to go beyond lack of identifiability of specific parameter combinations, since 614

allowing some parameters to accommodate uncertainty can improve inference results. I 615

further discuss parameter correlation, fixing parameters, uncertainty in estimates, and 616

possible methods to get around these issues in the next section.

Figure 11. Fit of the two-seroytpe continuous model with poisson likelihood to data
simulated from its stochastic version (A). Posterior distributions (crimson color) and
priors (light blue) of epidemiological parameters and initial conditions (B).

617

Because incidence data most likely does not differentiate between infecting serotypes, 618

a time series gives no information about the number of circulating serotypes, and 619

therefore it is not possible to decide on single or multi-serotype models based on that 620

alone. For inference purposes a number of circulating serotypes must be assumed when 621

a transmission model is used. 622

The previous results assume the correct model structure (although not the correct 623

error model) is known; with real data other factors such as model misspecification can 624

introduce further sources of errors. Appendix A shows that using the vector SIRx2 625

model to estimate parameters from a time series simulated from the two-serotype model 626

can throw estimates off (particularly that of R0); using the same model on data 627

simulated from the vector SIR model can have equally problematic results. That 628
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highlights the importance of testing different alternative models for the same data set, 629

when it is not possible to favor any specific model based on the data alone. 630

It is in principle possible to distinguish the infecting serotype, and even the order of 631

infection, for time series data; however, that would require elaborated tests and/or 632

record keeping for current and previous infections for every single recorded case. 633

Sequence based inference relies on a sample of cases, not all possible records, and 634

differentiates infecting serotype by default, which can get around some of these issues. 635

3.2.2 Genealogy-based inference 636

The aim of this section is to show results of methods comparable to that of time 637

series-based inference. In Rio de Janeiro, the available dengue virus sequence data 638

seems to be a result of concentrated efforts to obtain data representative of each single 639

epidemic period, not an overall data set with particular features. To my knowledge, 640

there is no specific goal for the entirety of the available data as to the total size, 641

sampling interval, or representativity of both epidemic and inter-epidemic periods, for 642

instance. Therefore, the simulated data set used for inference here is created to mimic 643

more of an ideal yet feasible data set to collect. In practice that was done by deciding 644

on the total number of sequences desired and sampling with a constant probability that 645

would yield that expected value – given that binomial sampling was done every week, 646

periods with greater number of cases would be more represented in the data. 647

For a constant probability to be specified, the total number of cases in the entire 648

interval should be known before sampling, which cannot be the case in the real world; 649

even if that was known a probability of sampling a sequence cannot be directly decided 650

on by researchers. Nevertheless, the computational sampling scheme mimics the real 651

world in that the greater the number of infected individuals, the more report to 652

hospitals and health centers, and the probability of obtaining consent to get biological 653

samples and sequencing them can be set by an arbitrary rate (e.g. a goal to obtain a 654

sample from one out of 100 patients) that would yield a total number of samples over a 655

usual epidemic. 656

For the vector SIR model, a pseudodata set was sampled from the last four years of 657

a sixteen year run resulting in 106 simulated sequences with random mutations. The 658

results from estimation based on that data are shown in figure 12. The posterior 659

contains the true values of the parameters, although some are slightly biased, not 660

centered around the true value. 661

Again an expected value and confidence intervals are computed from the sets of 662

parameters in each step of the Markov Chain; however, figure 12A does not show a fit, 663

since the time series data is not used for estimation, but rather a reconstruction of the 664

incidence patterns. Nevertheless, this reconstruction may accurately depict the mean 665

incidence if the sequence data is informative enough, and here it indeed reproduces 666

oscillations on the same order as those in the data. The phase of the oscillations are not 667

perfectly synchronized, and the amplitude is more regular than the actual incidence 668

(although this is expected due to the stochastic data as opposed to the deterministic 669

nature of the inference method; this is further discussed in the next section). 670

For the two-serotype model, the pseudo-sequences used here for inference were 671

produced by the same run of the individual-based model as the time series pseudodata 672

(in the previous subsection) – as would be the case with a real epidemic, where all 673

possible new cases are recorded as incidence, and some of them are sampled for 674

sequencing. The pseudo-sequence data is sampled from the same 209 weeks for which 675

pseudo-incidence time series was recorded; the total simulation length was 16 years 676

(therefore, the pseudo-time series in the previous subsection actually consists of the last 677

4 years of this longer run. Only the sequence data is used to produced the results that 678

follow. 679

20/31

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2019. ; https://doi.org/10.1101/583351doi: bioRxiv preprint 

https://doi.org/10.1101/583351
http://creativecommons.org/licenses/by-nc/4.0/


Figure 12. Reconstruction of the epidemic with a vector SIR model from sequences
simulated by its corresponding individual-based model(A). Red portion of the time series
denotes period from which samples were taken. Posterior distributions (crimson color)
and priors (light blue) of epidemiological parameters (B).

Inference using 119 type 1 sequences and 104 type 2 sequences sampled according to 680

the above scheme from a population of simulated individuals is shown in figure 13. 681

The general MCMC settings are the same as with the time series wherever 682

applicable, despite them being different implementations as explained in the methods 683

section. Also, there is no way around the fact that some parameters in this estimation 684

are absent and do not apply to the previous case – for instance the origin time of the 685

epidemic (which for a time series is trivially defined as the first time point), the 686

mutation rate and the tree itself (both of which have no impact on the incidence series). 687

Otherwise, the estimates are generally comparable. 688

Biases are not nearly as pronounced as in the inference with the time series; Besides, 689

the variables with gamma-distributed priors seem not to get much information from the 690

likelihood and stay almost unaltered compared to their priors. The origin parameter, 691

the time before the present when the epidemics starts, is fixed at 5852 days; this choice 692

is discussed in the following sections. On the other hand, parameters with 693

uninformative priors such as the mosquito mortality rate are quite well estimated; 694

moreover, the basic reproductive number is quite accurately estimated. 695
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Figure 13. Reconstruction of the epidemic with a two-serotype model from sequences
simulated by its corresponding individual-based model (A). Posterior distributions
(crimson color) and priors (light blue) of epidemiological parameters (B).

3.2.3 Inference for epidemiological data from the city of Rio de Janeiro, 696

Brazil 697

We apply the methods tested above to epidemiological data from the city of Rio de 698

Janeiro, Brazil. Weekly incidence data for a period of approximately four years between 699

the end of 2009 and that of 2013 was used to fit both the vector SIRx2 and the 700

two-serotype models. Given the caveats observed for the simulated data, preliminary 701

estimation was performed using the MCMC method for time series described above. In 702

addition to the continuous model described above, a fixed scale (or reporting rate) 703

parameter multiplies the incidence output to account for underreporting of cases in the 704

recorded series – i.e. a parameter value lower than one means the actual epidemic is 705

larger than the observed time series record. 706

The parameter estimates for the vector SIRx2 model are shown as posteriors (Figure 707

14B); the parameters with independent estimates (included in the inference method as 708

prior probabilities) deviate from that expectation, notably the population size H, and 709

human mortality rate m, both of which are grossly overestimated. It could be that there 710

is a biological explanation for the departures from the independent estimates, but as 711

seen in the previous subsection, bias and correlation between parameters is likely to 712

affect the estimates. Another well accepted value is recovery happening in around a 713

week (1/γ); the posterior confidently places that at around twice that time. The 714

biological parameters of interest without accepted values place the mosquito lifespan 715

(1/b) at around 22 days, and temporary immunity period (1/ϕ) at 1 day, while R0 is 716
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Figure 14. Fit of the vector SIRx2 continuous model with poisson likelihood to
epidemiological data from Rio de Janeiro (A). Posterior distributions (crimson color)
and priors (light blue) of epidemiological parameters and initial conditions (B).

estimated to be around 8. Parameters of more epidemiological interest are the reporting 717

rate (“scale” parameter) close to only 4% and the vector to human ratio of close to 2 718

mosquitoes for every human host. The general fit (Figure 14A) is good, although the 719

model predicts a lower incidence at the first and third peaks, as well as an early 720

outbreak around the 20th epidemiological week, which is not present in the 721

epidemiological data. 722

Next, the two-serotype model is fitted to the same data set; the results are shown in 723

figure 15. The general fit is visibly improved. Interestingly, again some of the better 724

known, or accepted, parameters deviate from expectation in the same direction as with 725

the vector SIRx2 model; human lifespan (1/m) is again underestimated, but population 726

size H is inferred to be close to the census-recorded number. Recovery γ is again 727

estimated to be twice as slow as the commonly accepted rate of a seven day long 728

infection; mosquito mortality rate b also has a similar value to that in the one-serotype 729

model. 730

The robustness of the estimates can be interpreted as a strong signal in the data for 731

these parameters, although it is difficult to know how much they are affected by the 732

deviation in the independently-estimated values, as well as the others with no accepted 733

values such as the temporary immunity period 1/ϕ. The robustness of some of the 734

estimates can be further tested by fixing the parameters with well accepted values (γ, 735

m, H). These results are in appendix A. Figure A.6 shows that while preventing 736

parameter values very inconsistent with prior beliefs or independent estimates, most 737

estimates are affected by the choice of free parameters estimated. 738
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Figure 15. Fit of the two-serotype continuous model with poisson likelihood to
epidemiological data from Rio de Janeiro (A). Posterior distributions (crimson color)
and priors (light blue) of epidemiological parameters and initial conditions (B).

Contrary to the vector SIRx2 model, the estimate for R0 is on the high end of the 739

uniform prior probability assigned to the variable, around 26; the mosquito to human 740

ratio is also opposite to the estimate of the previous model, being about twice as low as 741

the mean of the prior distribution at 0.2, and the cross protection time is in the 742

complete opposite side of the range at 729 days. Mosquito lifespan is close to the 743

previous estimate, 18 days, and the reporting rate is on the order of 10% 744

The values inferred, however, must not be taken at face value, considering the 745

limitations observed in the inference using the simulated data. We discuss that further 746

in the next section. 747

4 Discussion 748

The issue of modeling dengue virus transmission is far from trivial, as is probably 749

modeling most infectious diseases. Writing on a paper or programming a SIR-like model 750

into a computer is indeed straightforward; that in its simplicity that alone can capture 751

unintuitive features from disease transmission is quite surprising, but going beyond that 752

is a long and winding road, and extending the basic models in the right direction even 753

more so. It may also be reasonable to ignore variation and selection in some cases (even 754

out of necessity), which greatly simplifies model formulation; still under these simplified 755

models there is plenty to criticize in the existent body of work in modeling dengue 756

transmission (Johansson et al. 2011). Basic simplifications whose consequences are 757
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taken for granted may also rear up their ugly heads when the model needs to be 758

confronted to real data. 759

Inference is a logical next step, although it is an arduous task that may not be as 760

rewarding as straightforward simulation. Despite perfection being far out of sight, the 761

critical exercise can be a constructive one. The difficulties in the case of dengue are 762

illustrated by the issue of multiple serotype interactions, and more subtle effects that 763

are expected – like asymmetry between serotypes or antibody dependent enhancement. 764

From the forward simulation point of view, it is clear that the structure of the model 765

radically affects the observed incidence – in what can be understood as the crucial 766

factor of the availability of susceptibles – therefore interpreting epidemic series in terms 767

of a single preferred model and its associated parameters is guaranteed to be 768

problematic. The impact of structural differences for a given parameter set – as shown 769

by the forward simulations – is evident, others may not be so clear beforehand, but are 770

indisputable once we become aware of it; for instance, heterogeneity in any rates is more 771

than expected, it must be present, and can have dramatic consequences (Gomes et al. 772

2012, 2016). These effects are likely to be larger than those of small asymmetries. 773

A baseline problem of this order is likely not to be solved by adding parameters and 774

processes to the same model structure (Johansson et al. 2011), but instead the basic 775

structures and multiple extensions have to be systematically compared. In theory this 776

problem could be solved by formally comparing the performance of all available models 777

against real data; in practice, the task is a harder one: a record of a time series that 778

aggregates all kinds of infections may lack the information necessary to distinguish 779

between alternative models. 780

Identifiability analyses may uncover structural features of the model that may 781

prevent inference of particular parameters, and may point to reparametrization of 782

combinations that prevent structural identifiability issues (Bellu et al. 2007); however, it 783

can be cumbersome to implement for larger models (Eisenberg et al. 2013), and it is 784

uncommon (and possibly not feasible) that researchers in the different communities go 785

about all the methods that could improve their results. The analysis of the data 786

simulated by a continuous model strongly suggests that there are no severe structural 787

issues with the method, although I did not perform any of the above-mentioned 788

analyses. Alternative to structural identifiability analyses are more empirical 789

assessments of parameter inferability (Toni et al. 2009), and model comparison based on 790

information criteria (Gelman et al. 2013, chap. 7). 791

Formal model selection criteria rely on a reasonable fit by the different models; 792

conversely, there should be enough information in the data to grant support to the most 793

appropriate model – for instance, a more or less regular oscillating pattern produced by 794

a two-serotype model may be easily reproduced by a one-serotype model, and the latter 795

may be favored for having fewer parameters; what is more, a single cosine function (or a 796

couple of them) could fit the pattern with fewer of parameters, but that does not 797

change the fact that the data was produced by, and the correct model is still, a 798

two-serotype model. 799

An example of the difficulties mentioned above are the estimates obtained here from 800

incidence data of the city of Rio de Janeiro. Similar parameter values for different 801

models suggest robustness in the estimates; nevertheless, large deviations from 802

independent estimates may call into question these supposedly robust estimates. 803

Conversely, disparate values for different models may point to the inadequacy of one of 804

the models, and lack of robustness of estimates under model misspecification, but it does 805

not guarantee that either estimate is correct – it is not possible to check deviation from 806

the correct value if no independent estimate is available. Fixing the known parameters 807

can be an additional constraint to the parameter space; however, it may force the 808

remaining parameters into erroneous values due to the decreased flexibility in the model. 809
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The more fine-grained the data is, the more precise can the comparison between 810

models be, but that assumes that some of the models can explain the data well enough. 811

It may, however, be the case that more detailed data causes the models only to fail more 812

miserably than before. In the end, all models are approximations (at best, reasonable 813

ones, but most likely rather crude ones), so that the multiple aspects of model and 814

inference framework must also improve as data becomes better and more plentiful. 815

The use of sequence data for model-based inference presents itself as both an exciting 816

perspective as well as a challenge: on the one hand it can make important distinctions 817

such as genotypes and serotypes of pathogens, and by design allow inference about the 818

entire population to be derived from a sample. It also carries, by default, information 819

about more than one time series at the same time – i.e. incidence, prevalence and, if 820

applicable, migration (Volz 2012). On the other hand fitting a model to sequences relies 821

on elaborate constructs that are difficult to visualize and evaluate – some of the 822

improvements that come with new kinds of data are therefore not without new issues. 823

One thing that seems to be unique to epidemiological models is that the data 824

associated to the pathogens can be acquired simultaneously in different formats, so 825

inference with one kind of data may be independently validated by another kind (e.g. 826

sequence-based reconstruction of the epidemic can be compared to incidence data, as 827

shown for pseudo data). Alternatively, these and other kinds of data (serological, vector 828

population data, etc) can be used in combination to improve estimation, if the problem 829

is scarcity of data. 830

This aspect is probably an important contrast to coalescent-based methods in fields 831

like conservation genetics, where great strides have been made to incorporate processes 832

like recombination (McVean & Cardin 2005), structured environments (as opposed to 833

change in effective population size) (Mazet et al. 2016) and even allow inference from a 834

single recombining genome (Li & Durbin 2011), but where very little validation of 835

alternative models exists, especially with alternative types of data, which are not 836

available for hundreds or thousands of years ago. Coalescent methods in epidemiology 837

offer the opportunity of trying the methods, and validating them with more stringent 838

criteria. 839

Increasingly it seems that scarcity is not the main problem (Pybus et al. 2013), but 840

rather the difficulty of inferring multi-dimensional parameter sets (or constraining their 841

space enough via independent estimation of individual parameters), and formally 842

comparing full models in a way that makes the estimates actually useful, in addition to 843

more subtle aspects of data collection (Frost et al. 2015). 844

Although its effects are clear in the individual-based simulations, the issue of 845

stochasticity in the system state was not directly tackled here; therefore, a deterministic 846

model can be forced to fit a different trajectory only by changing its parameters, even if 847

the deviation is caused by chance. Methods such as particle filtering (or Sequential 848

Monte Carlo) allow tracking of the stochastic system state along time (Ionides et al. 849

2006); these have been incorporated into genealogy-based estimation (Rasmussen et al. 850

2014a, 2011), potentially solving the issue of the effect of stochasticity in the population 851

immunological states. These methods apply straightforwardly to population 852

immunological states along time, which in the case on inference from time series is 853

directly correspondent to the likelihood; in the coalescent-based estimation that is one 854

of the components of the inference model, but it is not as easy to illustrate genetic drift 855

in a similar way. Implementing methods that account for stochasticity is beyond the 856

scope of this thesis, although the results shown strongly suggest that the simple fact 857

that stochasticity is present can hamper progress in an otherwise simple task. 858

It can be tempting to focus specifically on the fine-tuning mathematical models, 859

development new inference methods, and on extensive efforts to gather comprehensive 860

data sets, but it is important to take into account how the weaknesses of each of the 861
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steps compound into a larger impediment. Concentrating particularly into just one of 862

these (or other even more particular) aspects may prevent a realistic use of data-driven, 863

model-based analysis. I have shown how model structure, assumptions about 864

stochasticity, prior information and data requirements all deserve specific treatments 865

lest the lack thereof introduces or amplifies biases and inaccuracies in the results, and 866

therefore hope to have contributed to the integration of model building, inference 867

frameworks, as well as future efforts to gather epidemiological data of different kinds. 868
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