
A stochastic hybrid model for DNA replication
incorporating protein mobility dynamics

Jonas Windhager1,2,4*, Amelia Paine1*, Patroula Nathanailidou3,
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ABSTRACT

DNA replication is a complex process that ensures the maintenance of genetic infor-
mation. Recently, advancements in chromatin conformation capture techniques have
enabled the modeling of DNA replication as a spatio-temporal process. Here, we present
a stochastic hybrid model for DNA replication that incorporates protein mobility dy-
namics and 3D chromatin structure. Performing simulations for three model variations
and a broad range of parameter values, we collected about 300,000 in silico replication
profiles for fission yeast and conducted a parameter sensitivity analysis. We find that the
number of firing factors initiating replication is rate-limiting and dominates the time un-
til completion of DNA replication. In support of recent work, we also find that explicitly
modeling the recruitment of firing factors by the spindle pole body (SPB) best reca-
pitulates published origin efficiencies, and independently validate these findings in vivo.
Accounting for probabilistic effects in molecular interactions, we further investigated the
replication kinetics inherent to the model and were able to capture known properties of
DNA replication. Importantly, we confirm earlier observations that, without further as-
sumptions, the characteristic shape of a function commonly used to describe replication
kinetics arises from a rate-limiting number of firing factors in conjunction with their
recycling upon replication fork collision. While the model faithfully recapitulates global
spatial patterns of replication initiation, additional analysis of spatial concurrence and
competition suggests that a uniform binding probability is too simplistic to capture lo-
cal neighborhood effects in origin firing. In summary, our model provides a framework
to realistically simulate DNA replication for a complete eukaryotic genome, and to in-
vestigate the relationship between three-dimensional chromatin conformation and DNA
replication timing.
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1 Introduction

DNA replication is a tightly regulated process that ensures the faithful duplication of
the genome before cell division. In eukaryotes, DNA replication initiates from multiple
sites along the genome called replication origins. During G1 phase, the origin recogni-
tion complex (ORC) binds to selected replication origins and recruits additional factors
Cdt1, Cdc6 [1, 2], and the helicase MCM2-7 [3, 4]. Together, these molecules form the
pre-replicative complex (pre-RC) in a process known as origin licensing [5, 6]. After the
G1-S transition, a cascade of phosphorylation events, orchestrated by cyclin-dependent
kinase (CDK) and Dbf4-dependent kinase (DDK) [7], leads to the binding of additional
firing factors (e.g., Cdc45, Sl2, Sld3 and GINS [8, 9]) to the pre-RCs of selected origins,
forming the pre-initiation complex (pre-IC) [10–12]. These events trigger the helicase
activity of the MCM hexamer, the recruitment of DNA polymerases, and the forma-
tion of the Cdc45-MCM-GINS (CMG) complex on the pre-ICs [13]. Known as origin
firing [14], this process is a key decision point in cell cycle progression and concludes
with the formation of two sister replisomes (replication forks) that move in opposite
directions, simultaneously unwinding the DNA and synthesizing a new copy [13, 15].
Recently, a molecular mechanism to ensure the simultaneous activation of replisomes
has been proposed, suggesting that firing factors form dimers, which, upon origin acti-
vation, monomerize and travel along with both replication forks, before reuniting with
neighboring replisomes to release a new firing factor upon fork collision [16].

DNA replication in eukaryotes is a complex and uncertain process: Origin firing is
stochastic and replication progression along the genome is unique in every cell cycle
and in every cell in a population [17–19]. One aspect of uncertainty regards the base-
pair location and sequence characteristics of replication origins per se. In fission yeast,
replication origins are located in intergenic, nucleosome-depleted regions with high AT
content [20–24], while in metazoan genomes the nature of replication origins is more
elusive [25, 26]. Another aspect of uncertainty regards both the efficiency (i.e., frequency)
and timing of origin firing. The number of pre-ICs is redundant, with only a small subset
activated in a single cell cycle and the rest remaining dormant until passive replication
[27]. Because selected origins fire in an asynchronous manner, the exact temporal order
of origin firing is stochastic. A variety of factors have been shown to influence DNA
replication timing [28–30]. Chromosomal context and local chromatin state are major
determinants, with euchromatic and pericentromeric regions typically containing early-
firing origins, and heterochromatic and subtelomeric regions containing late-firing and/or
dormant origins [31]. Last, mammalian genomes are organized in replication timing
domains, i.e., large regions containing many synchronously-firing replicons [32, 33].

Recent advancements in chromosome conformation capture techniques (e.g., 3C, Hi-C)
have enabled the determination of DNA structure and nuclear organization. As a con-
sequence, studies on various organisms have observed that DNA replication timing is
highly correlated with chromatin folding and global nuclear architecture [34–36]. In
mammalian cells, chromatin conformation maps agree with replication timing profiles
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more closely than any other chromatin property, independently establishing the exis-
tence of evolutionarily conserved units of temporally co-regulated replicons aligned with
replication domains [37–41]. In budding yeast nuclei, early firing origins were found
to be clustered [42]. A recent study in fission yeast identified a gradient of origin effi-
ciency centered on the spindle pole body (SPB), suggesting a diffusion-based mechanism
coordinating DNA replication [43].

A number of mathematical and computational models have attempted to elucidate the
complex nature of DNA replication using different mathematical formulations, such as
the KJMA framework [44, 45], anomalous reaction-diffusion and inhomogeneous replica-
tion kinetics [46, 47], probabilistic models of origin firing [48–50] and stochastic hybrid
models [51, 52]. Using a model of DNA replication in HeLA cells that incorporates
domino-like replication progression and random loop folding of chromatin, Löb et al.
[53] were able to reproduce experimentally observed patterns in 3D. More recently, Ar-
bona et al. [54] have modeled DNA replication as a spatio-temporal process, showing
that the diffusion of firing factors alone is sufficient to account for characteristic replica-
tion kinetics captured by the probability of firing an origin per unit time and length of
unreplicated DNA I(t), a function that forms the basis of many mathematical models
of DNA replication [44, 55, 56].

In this work, we set out to further elucidate the interplay between linear DNA replication,
protein mobility dynamics and spatial chromatin structure. We present an integrated
model for DNA replication that exploits three-dimensional genome structure and origin
location data as derived by chromatin conformation experiments to simulate the spatio-
temporal dynamics underlying origin firing. By explicitly modeling nuclear protein mo-
bility, probabilistic origin firing and linear replication fork progression, we incorporate
diffusion and binding dynamics to mechanistically describe the stochastic foundations of
DNA replication. Analysis of a large number of in silico replication profiles enables the
assessment of model parameter sensitivity and reveals spatial patterns that were inde-
pendently validated in vivo. In summary, our model provides a framework to realistically
simulate DNA replication across a complete genome, and to investigate the relationship
between three-dimensional chromatin conformation and DNA replication timing.
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2 Results

2.1 A stochastic, three-dimensional model of DNA replication

We present a spatio-temporal model of DNA replication that incorporates both protein
and replisome movement within the nucleus to capture the stochastic nature of DNA
replication timing. The model consists of two main modules: a particle-centric mod-
ule that models the mobility of firing factors within the nucleus, and an origin-centric
module that captures origin firing and linear progression of replisomes along the genome.
Both modules are characterized by hybrid dynamics (e.g., continuous movement of repli-
cation forks, discrete binding/unbinding events) and stochasticity (e.g., firing factor dif-
fusion, origin firing). Similar to the work by Arbona et al. [54], our model does not
require experimentally derived origin efficiencies as input, but explicitly models origin
firing as the interaction between firing factors and origin sites.

The spatio-temporal model simulates DNA replication at a whole-genome level and is
tailored to the case of fission yeast, exploiting recent three-dimensional genome struc-
tures derived by chromosome conformation capture experiments [43, 57]. A graphical
summary of the model is given in Fig. 1, and a full mathematical description is given
in Supplementary Methods Section S1. A number of experimentally derived input pa-
rameters are required (Fig. 1A), such as the nuclear size and the replication fork speed.
Provided that this information is available, the model can be extended to any eukaryotic
organism. Model simulations yield in silico DNA replication profiles and allow the ex-
ploration of DNA replication dynamics for different hypotheses and/or parameter values.
By repeatedly sampling from multiple independent simulations, both system-global and
origin-specific statistics can be computed.

Nuclear architecture The processes and interactions described in both modules of our
model take place within the nucleus (Fig. 1B - right). Following the work of [43, 57], the
fission yeast nucleus is modeled as a three-dimensional spherical domain with imperme-
able boundaries excluding the nucleolus, the region containing ribosomal DNA repeats.
The spindle-pole body (SPB), a nuclear sub-domain of special interest containing the
centromeres [58, 59], is localized at the nuclear periphery, diametrically opposite of the
nucleolus. Spatial origin coordinates were estimated by mapping the experimentally
determined base-pair coordinates of Heichinger et al. [24] onto the three-dimensional
whole-genome coordinates of Grand et al. [57] and Pichugina et al. [43].

Particle-centric module The particle-centric module of our model represents the be-
havior of the firing factors (hereafter referred to as particles) within the nucleus, based
on previous work [60, 61]. Candidate proteins for this role are all molecular partners
participating in origin firing via the formation of the pre-IC (e.g., Cdc45, Sld2 and Sld3).
We collectively represent them as one class of particles, and assume that their count is
fixed throughout S-phase. Each particle is characterized by three states: a continuous
state representing the position of the particle in the nucleus, a discrete binary state
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Figure 1: (A) Overview of the DNA replication model. Simulations of the DNA repli-
cation model with the required inputs (top: model parameters, left: experimentally-
derived inputs) give rise to in silico DNA replication timing profiles. (B) Schematic
representation of the two modules. Right: Firing factor particles, found at dif-
ferent discrete states, diffuse and bind within the nucleus. Left: An unbound and
activated particle enters the attraction sphere (dotted circle) of a licensed replication
origin, initiating firing and changing the discrete origin state to actively replicating.
Two replication forks emanate and move along the linear DNA sequence in opposite
directions, thereby replicating the genome. The particle splits into two monomers
that travel along with the replication forks. Licensed origins that do not have the
chance to fire before a fork passes through switch state to passively replicated. When
forks moving in opposite directions collide, they merge and the newly-formed particle
dimer is released to freely diffuse and potentially fire other licensed origins.
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representing its binding status, and a discrete binary state representing its activation
status (Fig. 1B - right and Fig. S1A). Particles diffuse freely in the nucleus if not bound
to an origin. Particle diffusion is described by a stochastic differential equation and as-
sumed to be isotropic, space-homogeneous and effective. The latter implicitly accounts
for biophysical interactions, such as collisions with macromolecules or transient binding
to DNA. Particles that attempt to diffuse out of the nucleus are reflected back using
a boundary reflection scheme akin to [62]. A particle switches from inactivate to acti-
vate through phosphorylation by different kinases in the SPB (e.g., CDK, DDK), and
between the free and bound states through its interaction with replication origins.

Origin-centric module The origin-centric module of our model is largely based on the
stochastic hybrid model of Lygeros et al. [51]. Briefly, a replication origin can be in one
of the following discrete states at any time: Pre, RB, RL, RR, Post, or Pass (Fig. S1B).
Initially, all origins are assumed to be licensed and begin in the Pre (pre-replicative)
state. Upon firing, replication forks start traveling in either direction, and the origin
enters the RB state (replicating bidirectionally). Based on experimental evidence, the
fork speed is assumed to be a constant of vfork = 50 bases per second [24, 63]. When a
fork collides with an incoming fork emanating from another origin, the initiating origin
changes state from RB to RL or RR (replicating to the left / right) depending on whether
the left or right fork is still active. Once both forks have collided and stopped replicating,
the initiating origin switches to the Post (post-replicative) state and does not contribute
to the replication process anymore. If a replication fork passes through an Pre origin
that has not fired yet, it is blocked from future firing to prevent re-replication of DNA
and enters the Pass (passively replicated) state. Replication is complete when all origins
are in the Pass or Post state, which implies that all forks have either merged or reached
the end of a chromosome.

Particle-origin interaction The crosstalk between the two modules is an essential as-
pect of our model and is orchestrated by particle-origin interactions (Fig. 1B - left). For
origin firing to occur, an unbound and activated particle must diffuse into the attraction
sphere of a Pre-state origin and bind to it (Fig. S1C). To capture the inherent stochas-
ticity of this process, a parameter Pbind is introduced, representing the probability of
a particle binding to an origin when it is within range. Upon firing, the particle splits
into two monomers that travel along the genome with the replisomes. Upon fork conver-
gence, the reassembled dimer is released to freely diffuse in the nucleus and potentially
fire other origins (Fig. S1D). Particle state transitions are governed by stochastic dy-
namics, apart from the bound → free transition, which occurs when forks merge and
is thus deterministic given the time of firing. Origin state transitions are governed by
deterministic dynamics, apart from the Pre → RB transition, which is governed by the
stochastic dynamics of particle binding. The tight interplay between the two modules
is thus executed through these interlinked transitions, with particle dynamics affecting
origin dynamics and vice versa.
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Model variations To examine how nuclear architecture affects the replication process,
we conducted multiple simulations under the following conditions:

1. Random origin positioning: The model is instantiated with genome structures
that lie within the nuclear domain boundary, but were not fitted to proximity
ligation data or other biological constraints [57, “confined” model]. Particles are
initialized uniformly in the nucleus in the activated state, ready to bind to origins.

2. Uniform particle initialization: To examine whether origin localization within
the nucleus affects the replication process, three-dimensional genome structures
generated from genome conformation capture experiments are used as input [57,
“interactions” model]. Particles are initialized as in model variation 1.

3. SPB-mediated particle activation: Experiments have shown that DNA closer
to the SPB tends to replicate earlier [43]. The activation of firing factors in the
SPB region has been hypothesized as a mechanistic explanation for these findings,
as origins near the SPB would be the first exposed to firing factors [43]. In this
model variation, the model is instantiated similarly to model variation 2, but with
all particles in the inactivated state. To model the described behavior, particles are
activated probabilistically upon diffusion into the SPB region, accounting for the
stochastic nature of the underlying biochemical process. For each diffusion step
within the SPB region, there is a probability of activation (Pact) if the particle has
not yet been activated. SPB-mediated particle activation slowly introduces active
particles to the nucleus and is equivalent to modeling an influx of particles from
outside the nucleus through the SPB.

Implementation and simulations The numerical implementation and simulation of the
continuous model was executed through a discrete approximation scheme [60] by gridding
time and space according to a spatial resolution parameter h (Supplementary Methods
Section S2). Previous work [62] has demonstrated that, under this scheme, as h → 0,
the approximate process converges in distribution to the original, continuous process.
The joint model was implemented in a highly parallelized and modular fashion using
C++ and MPI, with various optimizations to further increase simulation throughput.
Visualizations of exemplary simulations can be found in the Supplementary Material;
the source will be made publicly available upon publication.

2.2 Analysis of in silico replication profiles

To assess the validity of hypotheses and effects of parameter values in DNA replication
timing, an initial set of Monte Carlo simulations was conducted for all model varia-
tions and a broad range of non-probabilistic parameter values. For model variation 1
(random origin positioning), 100 out of the 1000 genome structures from Grand et al.
[57, “confined” model] were selected at random. For model variations 2 (uniform parti-
cle initialization) and 3 (SPB-mediated particle activation), three-dimensional genome
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Figure 2: Comparison of completion time distributions for different model variants
and simulation parameters. All sub-figures capture the complete set of simula-
tions, as described in the main text, with varying values for all parameters. (A) Sim-
ulated completion times for the three model variants across a wide range of number of
particles N . (B) Simulated completion times for three different attraction radii rattr.
(C) Simulation completion times for three different effective diffusion coefficients D.

structures generated from genome conformation capture experiments were used [43, 57].
Out of the available 1000 structures, a subset of 217 structures was selected to represent
a population of fission yeast cells as detailed in Supplementary Methods Section S3. The
parameter values examined were the following:

Number of particles (N) {50, 100, 150, 200, 400, 600, 800, 1000}
Origin attraction radius (rattr) {0.015µm, 0.025µm, 0.035µm}
Effective diffusion coefficient (D) {0.5µm2s−1, 2.0µm2s−1, 3.5µm2s−1}

Parameter values for the origin attraction radius rattr were estimated based on crystal
structures of the origin recognition complex [64] and the MCM2-7 double hexamer [65].
The particle binding and activation probabilities were set to Pbind = Pact = 1. To
account for the stochastic nature of the replication process, five iterations were performed
for each structure and parameter combination, resulting in a total number of 192,240
individual simulations. Simulations were performed on an IBM Power System S822LC,
with individual execution times largely dependent on the parameter choices. For each
simulation, origin firing times and total time until completion were recorded.
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DNA replication completion time

Because the time until completion of DNA replication time has been experimentally es-
tablished in fission yeast [66], it is an important indicator of the model’s ability to reflect
biological reality. The results of the initial simulation runs show that the completion
time is largely dominated by the number of particles present in the nucleus (Fig. 2).
With 50 particles, most replication cycles complete in 45 to 50 minutes, a number which
decreases exponentially as N increases. Notably, at high N , the completion time con-
verges to the minimum theoretical completion time of 652.92 seconds, equivalent to the
time needed to replicate the maximum inter-origin distance from Heichinger et al. [24].
From all tested values of number of particles, simulations with N = 150 achieved the
reported completion time of 20 minutes in fission yeast [66].

The effect of the diffusion coefficient and attraction radius on the distribution of comple-
tion times was negligible when N was held constant (Fig. 2), despite the exploration of a
broad range of plausible values for both parameters. Similarly, the model variant did not
have a significant impact on the completion time. Replication utilizing SPB-mediated
activation of particles tended to take slightly longer than the other two variants, as ap-
parent for low numbers of N . This result is expected, because particles must diffuse to
the SPB to be activated before binding to origins. However, the impact on completion
time is minimal, indicating empirically that the timescale of particle diffusion throughout
the nucleus is much shorter than that of replication forks moving along DNA strands.

Spatial organization of origin firing

To examine the spatial organization of replication timing in the nucleus, relative radial
kernel density estimates (KDEs) were calculated for experimentally derived origin effi-
ciencies [24] and for the average simulated origin efficiencies from the three model variants
(Supplementary Methods Section S4.1). Two types of KDE plots were computed. The
KDEs of average origin efficiencies and activation times across all simulations and struc-
tures is shown in Fig. 3. Due to variety in structure data, we also found it illuminating to
compute a per-structure average KDE from the same data (included in Supplementary
Fig. S3) to provide the most detailed view of the relationship between origin location
and firing. In the efficiency KDE plots in Fig. 3A, the SPB-mediated particle activa-
tion model variant shows a pattern of efficiencies most similar to the experimental data:
efficient origins tend to co-locate with the SPB, whereas inefficient origins tend to be
located near the periphery, far from the SPB. KDE plots of origin firing times (Fig. 3B)
also show similarities between SPB-mediated particle activation and experimental data,
with early-firing origins located close to the SPB and late-firing origins close to the pe-
riphery and nucleolus. KDE plots of average efficiencies and firing times for individual
structures rather than an average over all simulations, shown in Fig. S3, reveal efficient
yet late-firing origins near the nucleolus in addition to those near the SPB, suggesting
a wave-like origin firing behavior. As expected, the random origin positioning variant
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Figure 3: Spatial organization of average origin efficiency and firing times. (A) Rela-
tive radial kernel density estimates of inefficient (lower quartile efficiencies, top row),
intermediate (Q1 < efficiency < Q3, middle row), and efficient (upper quartile efficien-
cies, bottom row) origins. (B) Relative radial kernel density estimates of early-firing
(firing time < Q1, top row), intermediate (Q1 < firing time < Q3, middle row),
and late-firing (firing time > Q3, bottom row) origins. (C) Evolution of replicated
DNA over time for Chromosome 1 and all three model variants (top: random origin
positioning, middle: uniform particle initialization, bottom: SPB-mediated particle
activation). The red line corresponds to mean fraction of replicated DNA across all
five single-structure simulations and the shaded area to the corresponding standard
deviation. Color bars show experimental origin efficiency, local origin efficiency (Sup-
plementary Methods Section S4.2), and SPB proximity at a given coordinate (lighter
color . . . higher efficiency / closer to SPB).
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shows a uniform, random distribution of efficient and inefficient origins, as well as early
and late-firing origins, with no discernible pattern. Surprisingly, uniform particle ini-
tialization using experimentally derived genome structures results in inefficient origins
in the SPB region. This is likely the result of a higher density of origins near the SPB
in the underlying structure.

Next, to elucidate the dynamic evolution of DNA replication progresses with respect to
nuclear organization, we computed the fraction of replicated DNA over time for single-
structure simulations and all model variants (Fig. 3C). In contrast to the random origin
and uniform particle initialization variants, where DNA replication initiation appears
random and shows high variability across simulations, SPB-mediated particle activation
leads to consistent early replication of the SPB region, as shown for Chromosome 1 in
Fig. 3C. These early peaks of replicated DNA coincide with the two previously reported
most efficient regions of the chromosome [24], and additionally correlate strongly with
SPB proximity. The timing of replication for other regions of the chromosome depends
on the underlying 3D structure, as regions closer to the SPB tend to replicate first.

2.3 In vivo exploration of spatial organization

Since the SPB-mediated particle activation model variant best fits the experimental
data, we set out to independently validate our conclusions in vivo. Based on our in
silico predictions, replication initiates with a higher probability from SPB-proximal ori-
gins, which are more accessible to freely diffusing activated particles. To monitor early
replication events in vivo, we performed immunofluorescence against the thymidine ana-
log BrdU, which marks nascent DNA, in fission yeast cells arrested in early S phase
using hydroxyurea (HU). The strain bares also the centromeric protein Mis6 tagged
with GFP. We observed a strict BrdU incorporation pattern surrounding centromeres in
early S phase (Fig. 4A), confirming the model prediction. Upon centromere clustering
disruption (Csi1∆), the BrdU/Hoechst ratio increases significantly (p-value = 1.5·10−4),
indicating a more dispersed incorporation pattern (Fig. 4A, B) and suggesting that in-
deed the SPB acts as a positive pole for replication initiation.

To investigate the correlation between distance from SPB and origin efficiency more
thoroughly, we tagged one efficient and one inefficient origin [24] in each chromosome
using the lacO-lacI system in Mis6-mCherry background fission yeast strains (Fig. 4C).
The three-dimensional Euclidean distance between the SPB and the origin was mea-
sured microscopically for each individual tagged origin and plotted for each chromosome
(Fig. 4D). In agreement with the simulated data for the SPB-mediated particle activation
model, the efficient origins (orange) are positioned more proximally to the centromeres-
SPB structure compared to the inefficient ones (blue) (p-values = 5.6 · 10−6, 5.3 · 10−7,
and 6.3·10−8 for origin pairs in Chromosomes 1, 2, and 3, respectively). The efficiency of
each origin was independently verified by real-time quantitative PCR (qPCR, Fig. 4E).
All p-values were computed using a standard Mann-Whitney statistical test.
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Figure 4: In vivo exploration of spatial organization. (A) Immunofluorescence against
BrdU in Mis6-GFP wild type and Mis6-GFP Csi1∆ fission yeast cells arrested in early
S using HU. Mis6 marks the centromeres (green), BrdU the stains for nascent DNA
(red) and Hoechst stains the whole nucleus (blue). (B) BrdU/Hoechst area ratio (in
percent), plotted for wild type and Csi1∆ cells. (C) Tagging of specific origins using
the lacO-lacI system in a Mis6-mcherry background strain. A representative image is
shown. (D) For each chromosome, the 3D distance to the centromeres/SPB structure
for one efficient (orange) and one inefficient (blue) origin was measured microscopically.
(E) The efficiencies of the respective origins were validated by real-time qPCR.
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Figure 5: Sensitivity analysis of model probabilities. Mean completion time (in minutes)
for various combinations of model parameters and number of particles N , shown on
a diverging color scale centered on the desired completion time of 20 minutes.

2.4 Exploration of model probabilities

The number of particles N has been shown to be an influential parameter, and both our
in vivo and in silico analyses indicated that SPB-mediated particle activation produces
the most realistic results out of all model variants. Therefore, a second set of simulations
was conducted to explore N in more detail as well as to observe the effect of different
values of the binding and activation probabilities. Structures and constants were left
unchanged from the previous set of simulations, and the origin attraction radius and
the effective diffusion coefficient were set to rattr = 0.025µm and D = 0.5µm2s−1,
respectively. Only model variation 3 (SPB-mediated particle activation) was considered,
and all combinations of the following parameter values were examined:

Number of particles (N) {150, 200, 250, 300, 350, 400, 450, 500}
Particle binding probability (Pbind) {0.1, 0.01, 0.001, 0.0005}
Particle activation probability (Pact) {0.01, 0.001, 0.0003, 0.0001}

Sensitivity analysis

We first examined the effect of different model probabilities on the DNA replication
completion times for various values of the number of particles N , shown as heatmaps
in Fig. 5 (for brevity, heatmaps are not shown for all values of N). Completion times
ranged from 12 minutes to about half an hour. For the parameter sets shown, there are
many combinations that achieve the desired completion time of 20 minutes, generally
showing a trade-off between binding probability and activation probability to maintain
the same completion time. As expected, decreasing Pbind or Pact increases the overall
completion time, so the completion time is highly tunable for any value of N .
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Figure 6: Summary of replication kinetics for different parameter values. In all sim-

ulations, N = 300, rattr = 0.025µm, and D = 0.5µm2s−1. (A) Left: Effect of Pbind

on mean replication rate (Pact = 0.01). Right: Effect of Pact on mean replication
rate (Pbind = 0.1). (B) Left: Average number of origins in each model state over the
course of replication for a single parameter set (Pbind = 0.001, Pact = 0.0001). Right:
The corresponding average number of free and bound particles.

DNA replication kinetics

We next assessed how model probabilities affect the kinetics of DNA replication in terms
of mean replication rate (Supplementary Methods Section S4.3). As shown in Fig. 6A,
binding probability primarily affects mid to late S phase. High values of Pbind lead
to almost immediate binding of nearly all particles to origins within the first couple
of minutes and result in a relatively constant and high replication rate, that abruptly
decreases shortly before the end of replication. Conversely, low values of Pbind delay the
particles from binding to origins and increase the pool of free particles. This slows down
the replication kinetics, significantly reduces the maximum replication rate reached and
results in a more gradual rather than sharp decline. Similarly to Pbind, high values of
Pact lead to a sharply increasing and high replication rate. However, decreasing Pact

has a more prominent effect in the beginning of S phase. Low Pact will both delay and
decrease the maximum replication rate: a lower Pact slows down the particles’ activation
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Figure 7: Probability of initiating an origin per unit time and per length of un-
replicated DNA I(t). Mean I(t) for a variety of parameter sets, obtained from
500 simulations for each curve, resembling the characteristic bell shape observed in
eukaryotes [67]. In all simulations, rattr = 0.025µm and D = 0.5µm2s−1.

rate that subsequently need more time to bind to and fire the origins. As indicated in the
plots, a Pact of 0.0003 will lead to a peak around 10 minutes, which would approximately
correspond to mid S phase.

A detailed view of DNA replication kinetics combining probabilistic activation and bind-
ing (Pact = 0.0001, Pbind = 0.001) is shown in Fig. 6B. Tracking the number of origins in
each model state provides insight into replication kinetics. The number of origins in the
Pre state steadily decreases from 893 to 0 throughout replication. The number of origins
in the RB state peaks before the number in RL or RR, as expected because forks do not
begin to collide until a few minutes after origins begin firing. Most passive replication
occurs during mid S phase, when the overall replication rate is at a maximum, whereas
the transition from RL or RR to Post occurs primarily during mid to late S phase, when
the replication rate is decreasing. The number of bound particles, which is proportional
to the replication rate, exhibits a bell-shaped profile with a gradual rise and fall and a
peak in mid S phase, agreeing with experimental evidence [63].

Probability of initiating an origin per unit time and length of unreplicated DNA

The “probability of initiating an origin per unit time and per length of unreplicated
DNA” introduced by Herrick et al. [67] forms the basis of many mathematical models of
DNA replication [44, 55, 56]. This function, denoted I(t), where t is the time since the
start of S phase, resembles a universal bell-curve shape in eukaryotes, peaking in mid- to
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late- S phase. Goldar et al. developed a mathematical model postulating the presence of
a limiting factor that binds to unreplicated locations of the DNA initiating replication
and is released upon fork convergence [44]. Arbona et al. [54] demonstrated that a bell-
shaped I(t) arises from a DNA replication model incorporating a fixed number of firing
factors that bind to origins, move along the DNA, and release upon fork collision.

Because our stochastic hybrid model is similar to the model used by Arbona et al., we
were able to reproduce the characteristics of their simulated I(t) profile for a variety
of parameter sets. Briefly, I(t) is a fraction with the probability of initiating an origin
per unit time in the numerator (proportional to number of free particles × number
of Pre-state origins) and the length of unreplicated DNA in the denominator. Since
in our model we actively track both particles and origins at different states, the in
silico I(t) profile can be computed in a straightforward way (Supplementary Methods
Section S4.4). I(t) profiles of simulations with varying parameters are shown in Fig. 7,
capturing the characteristic peak behavior and, as expected, bearing a high resemblance
to the results of Arbona et al. [54]. From early until mid S phase, I(t) decreases slightly
due to both the number of free particles and pre-replicative origins decreasing. After
mid S phase, fork collisions lead to an increasing number of free particles. Together with
the decreasing amount of unreplicated DNA in the denominator, they lead to a sharp
increase and peak of I(t). At the end of replication, the number of pre-replicative origins
tends to zero, causing a rapid decline of I(t).

This qualitative behavior of I(t) is not sensitive to parameter changes within the pa-
rameter sets we explored, though Arbona et al. showed that extreme parameter values
distort the curve [54]. We thereby confirm their conclusion that the bell-shaped I(t)
curve arises from a limited number of particles in conjunction with recycling of firing
factors upon fork collision.

2.5 Origin firing concurrence

Recent experimental evidence has reported the presence of clusters of fired origins in
late S phase, organized in nuclear replication foci [63]. To assess this effect is silico, we
computed the tendency of all pairs of origins across the genome to fire concurrently (Sup-
plementary Methods Section S4.5). The results across the whole genome for large (A)
and small (B) values of the binding probability are visualized using heatmaps (Fig. 8),
where pairs of origins that fire together in the same replication cycle are shown in blue,
and pairs with a competitive relationship are shown in red. As can be easily assessed,
most pairs of origins are uncorrelated with each other, but patterns emerge near the
diagonal of the matrix, representing origins that are close to each other on the linear
DNA sequence.

Since particles are activated in the SPB, we expect that some degree of firing concurrence
will result from the three-dimensional structure of the genome. Nearby origins should
be found together in particle-rich or particle-poor regions, due to genome structure and

17

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 20, 2019. ; https://doi.org/10.1101/583187doi: bioRxiv preprint 

https://doi.org/10.1101/583187


A

B

1
2

3

1 2 3

1
2

3

1 2 3

Figure 8: Neighborhood effects on origin firing. In all parameter sets, N = 150, D =

0.5µm2s−1, rattr = 0.025µm, and Pact = 0.01. (A) Concurrence matrix with inset
showing Chromosome 3 (left) and distributions of firing concurrence for neighboring
origins (right), demonstrating local concurrence when Pbind = 0.1. (B) Concurrence
matrix with inset (left) and distributions of firing concurrence (right), demonstrating
strong local competition when Pbind = 0.0005.

the nature of SPB-mediated particle activation. When Pbind is relatively large (Fig. 8A),
the blue halo around the diagonal in the concurrence matrix indicates that origins in the
same region are likely to fire together, since particles are unlikely to diffuse away before
binding to an origin thus negating structural effects. This is also clear in the boxplots of
firing concurrence, which show that origin firing is correlated within a neighborhood of
about five origins. In contrast to the general firing concurrence within a neighborhood,
adjacent origins exhibit a competitive relationship, obvious from the red super- and sub-
diagonals of the concurrence matrix and the boxplot of the nearest neighboring origin.
The reason for this effect is twofold: passive replication is likely to occur when one
origin fires, thereby prohibiting its neighbors from firing; and origin firing decreases the
concentration of particles in the region because a particle binds to the replicating origin
and cannot fire other, nearby origins.

Conversely, when Pbind decreases (Fig. 8B), the concurrence patterns point to strong
competition in firing within an origin’s neighborhood, indicated by both strong red
around the diagonal of the concurrence matrix and negative firing concurrence values
up to the three nearest neighboring origins. This effect is expected: for low binding
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probabilities, particles are able to diffuse away and explore the nucleus before binding
to an adjacent origin, giving the chance to forks emanating from the fired origin to
passively replicate the neighborhood. To further investigate this effect, we computed
the cumulative frequency of inter-origin distances (IODs), as previously demonstrated
by Kaykov and Nurse [63] (Supplementary Methods Section S4.6). The experimentally
observed clustering effects [63] cannot be explained by structure alone. Indeed, the
opposite effect is observed in silico as shown in Fig. S4: origins tend to fire more sparsely
than they would if randomly distributed, due to competition between neighbors caused
by passive replication.
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3 Discussion

A spatio-temporal model of DNA replication

In this work a particle-based, spatio-temporal model of DNA replication is presented.
Similar to Arbona et al. [54], our model explicitly simulates the diffusion of firing factor
particles within the nucleus, their interaction with replication origins that leads to origin
firing, and the movement of replication forks along the genome. It can thus capture
the complex stochastic hybrid dynamics that govern the DNA replication process, with
discrete dynamics associated with origin and particle states and continuous dynamics
associated with particle diffusion and replication fork movement. Particle dynamics
affect origin dynamics and vice versa, captured by interlinked transitions that represent
stochastic origin firing or deterministic fork collisions.

Our model is tailored to the case of fission yeast; however, it is versatile and can be
adapted to different nuclear geometries and/or experimental inputs, thus easily extended
to more complex eukaryotes. It incorporates a number of parameters, such as the number
or effective diffusion coefficient of particles, and two probabilities that account for the
stochastic nature of particle binding and activation. Three variations of the model
were implemented, corresponding to different hypotheses concerning origin positioning
and particle initialization within the nucleus: origins are positioned either randomly
or at experimentally-derived three-dimensional positions [43, 57]; particles are either
initialized uniformly and already in the activated state, or must diffuse into the SPB
region to get activated. These variations allow us to investigate spatial patterns of DNA
replication and mechanisms concerning origin firing.

Model parameters affecting DNA replication completion

The resulting in silico replication profiles allowed us to gather statistics on DNA repli-
cation timing, such as time until completion of DNA replication. This analysis indicated
that the number of particlesN strongly affects the time needed for a full DNA replication,
with at least 150 particles necessary to complete replication within the experimentally
established 20 minutes limit [66]. The number of particles appears to be rate-limiting,
since, when N increases and reaches the number of origins, the completion time converges
to the minimum time needed to replicate the largest inter-origin distance, indicating im-
mediate firing of all origins. This agrees with extensive experimental evidence from the
literature, reporting that replication factors that participate in origin firing exist in lim-
iting quantities [28, 68–71], and with our prior in silico analysis [51], where the presence
of a limiting factor that is continuously redistributed in origins during replication is a
plausible explanation of the so-called random gap problem [72].
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On the contrary, parameters such as origin attraction radius and effective diffusion coef-
ficient are insignificant to completion time. Even with a low effective diffusion coefficient
of D = 0.5µm2s−1, a particle would traverse the 2.66µm nuclear diameter in about seven
seconds, a much smaller timescale than that of the entire replication process, giving it
enough time to explore the nucleus for origin binding sites. Further, different model vari-
ations indicated negligible effects on completion times, with minimally longer completion
times observed when the SPB-mediation activation variant was simulated, particularly
for small N . This is likely also attributed to the faster timescale of diffusion: even if
particles need to travel to the SPB to get activated, the delay introduced is minimal.

Nuclear organization and DNA replication

Recent evidence pointed to a diffusion-based pattern of origin firing, manifested as a
gradient of origin firing time and efficiency centered at the SPB [43]. Our model is able
to capture this spatial pattern for high binding probabilities when an SPB-mediated
particle activation is assumed. Indeed, in silico profiles corresponding to this variation
indicate that SPB-proximal origins fire early and efficiently, and, as the process continues,
the firing factor particles are released and redistributed to the remaining origins. By the
end of replication, the increased availability of unbound particles leads to the late yet
efficient firing of nucleolus-proximal origins. The SPB-dependent firing pattern observed
in silico was independently assessed in vivo. Immunofluorescence and real-time qPCR
experiments in fission yeast cells validated that, indeed, DNA replication initiates from
SPB-proximal origins, and that this pattern is lost once the nuclear architecture is
distorted. These findings suggest that firing factor particles must diffuse to the SPB to
get activated before they can bind to origins, possibly through their phosphorylation by
different kinases such as CDK or DDK, or, alternatively, that they are introduced in the
nucleus already in the activated state through SPB-specific nuclear pores.

The probabilistic nature of particle-origin interactions

As expected, incorporating probabilistic particle activation and binding extends the time
to completion of DNA replication, with Pact mostly delaying early S phase and Pbind

mostly delaying mid to late S phase. Increasing the number of particles N counteracts
this effect, and multiple combinations of Pact, Pbind and N result in realistic completion
times of 20 minutes, reflecting the model’s adaptability. However, covering a broad
range of parameter values, the number of particles N remained rate-limiting in all cases.
In addition to the correct completion time, exploration of DNA replication kinetics for
different combinations of the model parameters (N,Pact, Pbind) indicated that at least 300
particles would be a more realistic number to reproduce the experimentally observed bell-
curve replication rate [63]. This is consistent with the observation of up to 400 replicons
during replication of the S. pombe genome through DNA combing experiments, which
suggests that at least 400 particles are necessary [63].
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Published models of DNA replication have studied both in vivo and in silico the prob-
ability of initiating an origin per unit time and length of unreplicated DNA (I(t)), and
have reported a profile of I(t) common to many eukaryotes with a peak near the end of
S phase [56]. In agreement with Arbona et al. [54], our simulation results support such a
model, as the characteristic I(t) profile is reproduced: I(t) increases during S phase, at
first slowly and progressively more rapidly, before collapsing near the end. In contrast
to existing work that postulated an increasing availability of the limiting factor coupled
with a binding probability correlated to active fork density to explain the results, in our
case no such assumption is necessary, since the profile can be reproduced assuming only
that the firing factor exists in limiting quantities.

Neighborhood effects

As discussed, our model can reproduce the global spatial pattern of origin firing for high
probabilities. Additionally, a genome-wide analysis of origin firing concurrence indicated
that, for larger values of Pbind, linearly-proximal origins are likely to fire together, since
particles tend to bind to neighboring origins and fire them before they diffuse away.
However, when Pbind is small, particles are able to explore the nucleus before re-binding
to an origin, and as a result the spatial patterns are lost. Neighboring origins appear to
compete in firing, since replication forks emanating from the origin that fired passively
replicate and thus prohibit the neighboring origins from firing. For the same reason, the
presence of replication foci observed in experiment [63] cannot be reproduced.

Therefore, the constant, uniform binding probability used in this model is too simple to
capture more fine, local patterns of DNA replication, and our results suggest that more
complicated mechanisms are probably in place. Origins may start with non-uniform
binding probabilities corresponding to structural characteristics, such as AT content
or intergenic size, which have long been reported to correlate with efficiency [20–24].
Binding probabilities may change over time depending on the progress of replication or
nearby firing events. Alternatively, simulating more than one particle species that diffuse
within the nucleus and progressively bind to and fire origins may be a more realistic
scenario that implicitly reduces each origin’s firing efficiency depending on it’s location.
Last, important limitations are introduced by the experimental structures themselves:
although invaluable for the simulation of such models, they still lack the fine resolution
needed to reproduce local clusters of replication domains. Future extensions of the model
will allow us to investigate these mechanisms.
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