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16School of Archaeology and Ancient History, University of Leicester, Leicester, United Kingdom.25

17Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.26

18Broad Institute of Harvard and MIT, Cambridge, MA, USA.27

19Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.28

20Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean29

21Laboratory of Genetics, NIA, NIH, Baltimore, MD, USA.30

22Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.31

˚These authors contributed equally to this work.32

:Corresponding authors.33

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2019. ; https://doi.org/10.1101/583104doi: bioRxiv preprint 

https://doi.org/10.1101/583104
http://creativecommons.org/licenses/by/4.0/


2

Abstract34

Recent ancient DNA studies of western Eurasia have revealed a dynamic history of admixture,35

with evidence for major migrations during the Neolithic and Bronze Age. The population of the36

Mediterranean island of Sardinia has been notable in these studies – Neolithic individuals from37

mainland Europe cluster more closely with Sardinian individuals than with all other present-day38

Europeans. The current model to explain this result is that Sardinia received an initial influx39

of Neolithic ancestry and then remained relatively isolated from expansions in the later Ne-40

olithic and Bronze Age that took place in continental Europe. To test this model, we generated41

genome-wide capture data (approximately 1.2 million variants) for 43 ancient Sardinian individu-42

als spanning the Neolithic through the Bronze Age, including individuals from Sardinia’s Nuragic43

culture, which is known for the construction of numerous large stone towers throughout the is-44

land. We analyze these new samples in the context of previously generated genome-wide ancient45

DNA data from 972 ancient individuals across western Eurasia and whole-genome sequence data46

from approximately 1,500 modern individuals from Sardinia. The ancient Sardinian individuals47

show a strong affinity to western Mediterranean Neolithic populations and we infer a high degree48

of genetic continuity on the island from the Neolithic (around fifth millennium BCE) through49

the Nuragic period (second millennium BCE). In particular, during the Bronze Age in Sardinia,50

we do not find significant levels of the “Steppe” ancestry that was spreading in many other parts51

of Europe at that time. We also characterize subsequent genetic influx between the Nuragic52

period and the present. We detect novel, modest signals of admixture between 1,000 BCE and53

present-day, from ancestry sources in the eastern and northern Mediterranean. Within Sardinia,54

we confirm that populations from the more geographically isolated mountainous provinces have55

experienced elevated levels of genetic drift and that northern and southwestern regions of the56

island received more gene flow from outside Sardinia. Overall, our genetic analysis sheds new57

light on the origin of Neolithic settlement on Sardinia, reinforces models of genetic continuity on58

the island, and provides enhanced power to detect post-Bronze-Age gene flow. Together, these59

findings offer a refined demographic model for future medical genetic studies in Sardinia.60
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Introduction61

The whole-genome sequencing of Ötzi, a Neolithic individual who was preserved in ice for over62

5,000 years near the Italo-Austrian border, revealed a surprisingly high level of shared ancestry63

with present-day Sardinian individuals (Ermini et al., 2008; Keller et al., 2012; Sikora et al.,64

2014). Subsequent work on genome-wide variation in ancient Europeans expanded upon this65

observation, finding that many “early European farmer” individuals have their highest genetic66

affinity with present-day Sardinian individuals, even when from geographically distant locales67

(e.g. from Hungary, Germany, Spain, Sweden) (e.g. Skoglund et al., 2012, 2014).68

Accumulating ancient DNA (aDNA) results have provided a potential framework for un-69

derstanding how early European farmers, such as Ötzi, show such genetic affinity to modern70

Sardinians. In this framework, Europe was first inhabited by Paleolithic hunter-gatherer groups.71

Then, starting about 7,000 BCE, farming peoples arrived from the Middle East as part of a Ne-72

olithic transition (Ammerman and Cavalli-Sforza, 2014; Lazaridis et al., 2014), spreading73

through Anatolia and the Balkans (Hofmanová et al., 2016; Mathieson et al., 2018) while74

progressively admixing with local hunter-gatherers (Lipson et al., 2017). Subsequently, major75

movements from the Eurasian Steppe, beginning about 3,000 BCE, resulted in further admixture76

throughout Europe (Allentoft et al., 2015; Haak et al., 2015; Olalde et al., 2018, 2019).77

These events are typically modeled in terms of three ancestry components, hunter-gatherers78

(and more specifically western hunter gatherers, “WHG”), early European farmers (“EEF”),79

and Steppe pastoralists (“Steppe”). Within this broad framework, the island of Sardinia is80

thought to have received a high level of EEF ancestry early on in its history and subsequently81

remained relatively isolated from the admixture occurring on mainland Europe (Keller et al.,82

2012; Sikora et al., 2014). However, this specific model for Sardinian population history has83

not been tested with genome-wide aDNA samples from the island.84

The oldest known human remains on Sardinia have been dated to be „ 20, 000 years old85

(Melis, 2002), implying that humans first reached the island during the Paleolithic Age. Ar-86

chaeological evidence suggests that the island was not densely populated in the Mesolithic, with87

only irregular and episodic settlements, mostly concentrated near the coast (Lugliè, 2018). The88

archaeological record shows that a population expansion coincided with a Neolithic transition in89

the sixth millennium BCE (Francalacci et al., 2013). At the same time, the early Neolithic90

“Cardial Impressed Ware” culture was spreading across the western Mediterranean (Barnett,91

2000), with radio-carbon dates indicating a rapid maritime expansion about 5,500 BCE (Zilhão,92

2001; Martins et al., 2015). Obsidian originating from Sardinia is found throughout many93

western Mediterranean archaeological sites associated with the middle Neolithic (Tykot, 1996),94

indicating that the island was integrated into a maritime trade network. In the middle Bronze95

Age, about 1,600 BCE, the “Nuragic” culture emerged that derives its name from thousands of96

distinctive stone towers, Nuraghi, constructed across Sardinia’s landscape and in many instances97

still well preserved. More recently, the archaeological and historical record shows the influence98

of several major Mediterranean groups, such as Phoenicians, Carthaginians, the Roman and99

Byzantine empires, and later with North Africa, Tuscany, Genoa, Catalonia, Spain, Southern100

France, and Piedmont (Ortu, 2011; Mastino, 2005).101

The population genetics of Sardinia has long been studied (e.g. see Calò et al., 2008) in102

part because of its importance as a population for medical genetics (Lettre and Hirschhorn,103

2015). Pioneering studies, using classical genetic loci such as G6PD, HBB, and HLA and later104

maps of linkage disequilibrium, revealed that Sardinia is a genetic isolate with heterogeneous105

population sub-structure (e.g. Siniscalco et al., 1966; Contu et al., 1992; Barbujani and106

Sokal, 1990; Eaves et al., 2000; Zavattari et al., 2000; Cavalli-Sforza, 2005; Sidore et al.,107

2015). Recently, Chiang et al. (2018) analyzed the whole genome sequences of 3,514 individuals108
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from Sardinia to investigate the population genomic history of the island in finer resolution. In109

line with previous studies, they found substructure in which the mountainous Ogliastra region110

of central/eastern Sardinia carries a signature of relative isolation, presumably due to restricted111

gene flow across the rugged terrain. They also used a small sample of continental European112

aDNA to show suggestive evidence for differential contributions of ancestry from WHG, EEF,113

and Steppe to Sardinian genetic variation. This initial observation and the increased resolution114

of temporal, geographic, and cultural sampling in aDNA prompted us to investigate aDNA from115

Sardinia to gain further understanding.116

Four previous studies have analyzed aDNA to provide an initial view of the genetics of pre-117

historic Sardinia, in each case, using mitochondrial DNA. Ghirotto et al. (2009) contrasted118

patterns of continuity between Ogliastra (the mountainous and historically isolated central re-119

gion) and Gallura (a region in northern Sardinia with cultural and linguistic connections to120

Corsica), finding evidence for more genetic turnover in Gallura. Modi et al. (2017) provided121

the first complete mitogenomes of two Mesolithic individuals and found support for a model in122

which Mesolithic ancestry on the island was replaced by incoming populations in the Neolithic.123

Olivieri et al. (2017), in a companion project to the work described here, analyzed 21 an-124

cient mitogenomes from Sardina as well as 3,491 mitogenomes from contemporary Sardinians125

and estimated the coalescent times of Sardinian-specific mtDNA haplogroups finding support for126

most of them originating in the Neolithic or later, but with a few coalescing earlier. Finally,127

Matisoo-Smith et al. (2018) analyzed mitogenomes in a Phoenician colony on Sardinia and128

found evidence of continuity and exchange between the colony and broader Sardinia. Despite129

the initial insights these studies reveal, none of them analyze genome-wide autosomal data, which130

has proven to be of great use for studies of population history (Pickrell and Reich, 2014).131

To provide a more detailed perspective on Sardinian population history, we generated genome-132

wide data from the skeletal remains of 43 Sardinian individuals radiocarbon dated to between133

4,100-1,000 BCE. We analyzed their genetic variation in the context of reference panels of ancient134

and contemporary individuals. Our goal was to investigate three aspects of Sardinian popula-135

tion history: First, the ancestry of Neolithic Sardinian individuals (ca. 5,700-3,400 BCE) – who136

were the early peoples expanding onto the island at this time? Second, the genetic structure137

through the Sardinian Chalcolithic (i.e. Copper Age, ca. 3,400-2,300 BCE) to the Bronze Age138

(ca. 2,300-1,000 BCE) – were there genetic turnover events through the different cultural tran-139

sitions observed in the archaeological record? And third, the post-Bronze Age contacts with140

major Mediterranean civilizations and more recent Italian populations – have they resulted in141

detectable gene flow? Our results revealed insights about each of these three periods of Sardinian142

history.143

Results144

Ancient DNA from Sardinia145

We organized a collection of skeletal remains from: 1) previously excavated samples throughout146

Sardinia, in part drawing from samples initially used for isotopic analysis in Lai et al. (2013,147

Supp. Info. 1), and 2) the Seulo caves of central Sardinia (Skeates et al., 2013, Supp. Info. 2).148

We generated and sequenced DNA libraries enriched for reads overlapping the complete mito-149

chondrial genome as well as a targeted set of 1.2 million single nucleotide polymorphisms (SNPs)150

(Fu et al., 2015; Haak et al., 2015; Mathieson et al., 2015). After applying several standard151

ancient DNA quality control filters, we arrived at a final set of 43 individuals with an average152

coverage of 1.31ˆ (ranging from 0.04ˆ to 5.39ˆ per individual) and a median number of 715,737153

sites covered at least once per individual. We obtained age estimates for each individual by either154
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direct radiocarbon dating (n “ 29), using previously reported radiocarbon dates (n “ 10), or155

using a combination of archaeological context and radiocarbon dates from the same burial site156

(n “ 4, Fig. 1). The estimated ages in our sample range from 4,100 years BCE to 1,000 years157

BCE (Fig. 1, Supp. Mat. 1A). To facilitate analyses of temporal structure within ancient Sar-158

dinia, we pragmatically grouped the data into three broad periods: Neolithic and Early Copper159

Age (‘Sar-NECA’, 4,100-3,000 BCE, n “ 4), Early Middle Bronze Age (‘Sar-EMBA’, 2,500-1,500160

BCE, n “ 24) and Nuragic (‘Sar-Nur’, 1,500-1,000 BCE, n “ 15). Figure 1 provides an overview161

of the sample.162

Ancient Sardinian Individuals

n=43

A

B n=972

Neolithic / Early Copper Age Early Middle Bronze Age Nuragic

Figure 1: Average depth, sampling locations and ages of ancient individuals. A: The
number of SNPs covered at least once and age (mean of 2σ radio-carbon age estimates) for the
43 ancient Sardinian individuals. B: The sampling locations of ancient Sardinian individuals and
a reference dataset of 972 ancient individuals collected across western Eurasia, spanning a broad
temporal period.

Uniparentally inherited markers163

We were able to infer mitochondrial haplogroups for all 43 ancient Sardinian individuals (Supp. Mat. 1E),164

including a subset (n “ 10) previously reported by Olivieri et al. (2017). We confirm the obser-165

vation that ancient Sardinian mtDNA haplotypes belong almost exclusively to macro-haplogroups166

HV (n “ 16), JT (n “ 17) and U (n “ 9), a composition broadly similar to other European167
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Neolithic populations.168

Our genome-wide data allowed us to assign Y haplogroups for 25 ancient Sardinian individ-169

uals. More than half of them consist of R1b-V88 (n “ 10) or I2-M223 (n “ 7) (Sup. Fig. 3,170

Supp. Mat. 1B). In our reference data set, these two Y-haplogroups appear first in Balkan171

hunter-gatherer and Balkan Neolithic individuals, and also in more recent western Neolithic172

populations. Francalacci et al. (2013) identified three major Sardinia-specific founder clades173

based on present-day variation within the haplogroups I2-M26, G2-L91 and R1b-V88, and here174

we found each of those broader haplogroups in at least one ancient Sardinian individual. Two175

major present-day Sardinian haplogroups, R1b-M269 and E-M215, are absent (Sup. Fig. 3).176

Compared to other Neolithic and present-day European populations, the number of identified177

R1b-V88 carriers is relatively high (Supp. Info 4, Supp. Fig. 4). However, we observed cluster-178

ing of haplogroups by sample location, consistent with substructure (Supp. Mat. 1B); therefore179

some caution should be exercised with interpreting our results as estimates for island-wide Y180

haplogroup frequencies (see Supp. Mat. 1C).181

Results from genome-wide aDNA182

We then assessed the relationship of the ancient Sardinian individuals to other ancient and183

present-day west Eurasian populations using autosomal DNA data. For this purpose, we used:184

1) a subset of the Human Origins array dataset from contemporary human individuals (n “185

1, 963, Lazaridis et al., 2014), 2) an extensive panel of genomic capture data from previously186

published ancient individuals (n “ 972, Mathieson et al., 2015; Lazaridis et al., 2016, 2017;187

Mathieson et al., 2018, 2017; Lipson et al., 2017; Olalde et al., 2018), and 3) a large sample188

of contemporary Sardinian individuals from our previous studies (n “ 1, 577, Sidore et al.,189

2015; Chiang et al., 2018). For some analyses, we grouped these individuals into those from the190

more isolated Sardinian province of Ogliastra (‘Sar-Ogl’,n “ 419) and the remainder (‘Sar-non191

Ogl’,n “1,158). For other analyses, we subset Sardinia into 8 geographic regions (see inset in192

panel C of Figure 2 for listing and abbreviations, also see Supp. Mat. 1G). Unless otherwise193

specified (see Materials and Methods), we refer to particular samples of individuals using the194

group labels used in the datasets they were derived from. As with other human genetic variation195

studies, consideration of the population annotations is important to consider in the interpretation196

of results.197

Similarity to western mainland Neolithic populations198

Importantly, we found low levels of differentiation between Neolithic Sardinian individuals and199

several Neolithic western mainland European populations, in particular, Cardial Ware-associated200

groups from Spain (Iberia-EN) and southern France (France-N). When projecting ancient indi-201

viduals onto the top two principal components (PCs) defined by modern variation, the Neolithic202

(and also later) ancient Sardinian individuals sit between early Neolithic Iberian and later Copper203

Age Iberian populations, roughly on an axis that differentiates WHG and EEF populations and204

embedded in a cluster that additionally includes Neolithic British individuals (Fig. 2). This result205

is also evident in terms of absolute genetic differentiation, with low pairwise FST « 0.005˘0.002,206

Fig. 3) between Neolithic Sardinian individuals and Neolithic western mainland European popu-207

lations. Pairwise outgroup-f3 analysis shows a very similar pattern, with the highest values of f3208

(i.e. most shared drift) being with Neolithic and Copper Age Iberia (Fig. 3), gradually dropping209

off for temporally and geographically distant populations.210

In explicit admixture models (using qpAdm, see Methods) the southern French Neolithic211

individuals (France-N) are the most consistent with being a single source for Neolithic Sardinia212
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(p « 0.074 to reject the model of one population being the direct source of the other); followed by213

other populations associated with the western Mediterranean Neolithic Cardial Ware expansion214

(Supp. Tab. 3). As we discuss below, caution is necessary for interpreting the result as there is215

a lack of aDNA from other relevant populations of the same period (such as neighboring islands216

and mainland Italian Cardial Ware cultures).217

Constancy of Western Hunter Gatherer ancestry218

Similar to western European Neolithic and central European Late Neolithic populations, ancient219

Sardinian individuals are shifted towards WHG individuals in the top two PCs relative to early220

Neolithic Anatolians (Fig. 2). Admixture analysis using qpAdm infers that ancient Sardinian221

individuals harbour HG ancestry (« 17%) that is higher than early Neolithic mainland popu-222

lations (including Iberia, « 8%), but lower than Copper Age Iberians (« 25%) and about the223

same as Southern French Middle-Neolithic individuals (« 21%) (Tab. 1, Supp. Fig. 9). A null224

model of a two-way admixture between WHG and Neolithic Anatolian populations is inferred to225

be consistent with our data (p « 0.22, Tab. 1). This p-value, describing the power to reject the226

null model of two-way admixture, is similar to the value observed for other western European227

populations of the early Neolithic (Supp. Tab. 2).228

Continuity from the Sardinian Neolithic through the Nuragic229

We found several lines of evidence supporting genetic continuity from the Sardinian Neolithic230

into the Bronze Age and Nuragic times. Importantly, we observed low genetic differentiation231

between ancient Sardinian individuals from various time periods. We estimated FST to be232

0.0027 ˘ 0.0014 between Neolithic and late Bronze Age (mostly Nuragic) Sardinian individuals233

(Fig. 3). Furthermore, we did not observe temporal substructure within the ancient Sardinian234

individuals in the top two PCs – they form a coherent cluster (Fig. 2). In stark contrast,235

ancient individuals from many mainland geographic regions, such as central Europe, show larger236

movements over the first two PCs from the Late Neolithic to the Bronze Age, and also have237

higher pairwise differentiation (FST “0.0194˘ 0.0003).238

In the presence of significant influx, differential genetic affinity of a test population x would239

cause f4 statistics of the form f(Sard Period 1 - Sard Period 2; Pop x - Ancestral Allele) to240

be non-zero (where “Ancestral Allele” is an inferred ancestral allelic state from a multi-species241

alignment). However, we observe that no such statistic differs significantly from zero for all test242

populations x (Supp. Mat. 2D). A qpAdm analysis, which is based on simultaneously testing243

f -statistics with a number of outgroups and adjusts for correlations, cannot reject a model of244

Neolithic Sardinian individuals being a direct predecessor of Nuragic Sardinian individuals either245

(p “ 0.54, Supp. Tab. 3). Our qpAdm analysis further shows that the WHG ancestry proportion,246

in a model of admixture with Neolithic Anatolia, remains stable at „17% throughout three247

ancient time-periods (Tab. 1A). When using a three-way admixture model, we do not detect248

significant Steppe ancestry in any ancient Sardinian individual, as is inferred, for example, in249

later Bronze Age Iberians (Tab. 1B, Supp. Fig. 9).250

From the Nuragic to present-day Sardinia251

Our results demonstrate that ancient Sardinian individuals are genetically closest to contem-252

porary Sardinian individuals among all the ancient individuals analyzed (Fig. 3), and relative253

to other European populations, there is lower differentiation between present-day and ancient254

individuals (Supp. Fig. 7). However, we also find multiple lines of evidence for appreciable gene255

flow into Sardinia after the Nuragic period.256
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A Ancient Sardinian Individual
Ancient Individual

A Modern Group (median)

D

EEF

WHG

Steppe Modern Groups

Olbia-Tempio (n=18)
Sassari (n=87)
Nuoro (n=75)
Oristano (n=84)
Ogliastra (n=419)
M. Campidano (n=72)
Cagliari (n=289)
Carbonia-I. (n=41)
Unknown (n=492)

B D

100020003000400050006000
Age [years BCE]

Sardinia
(Neolithic to Nuragic)

Sardinia
(Contemporary)

Ancient Groups

C

Figure 2: Principal Components Analysis based on the Human Origins dataset. A: Projection of ancient
individuals’ genotypes onto principal component axes defined by modern Western Eurasians (gray labels). B:
Zoom into the region most relevant for Sardinian individuals. Each projected ancient individual is displayed as a
transparent colored point in panel A or a three-letter abbreviation in panel B, with the color determined by the
age of each sample (see panel D for legend). In panel B, median PC1 and PC2 values for each population are
represented by larger three-letter abbreviations, with black or gray font for moderns and color-coded font based
on age for ancient populations. Ancient Sardinian individuals are plotted as circles with edges, and color-coded
by age. The full set of labels and abbreviations are described in Sup. Mat. 1F and 1G. C: Geographic legend of
present-day individuals from the Human Origins and our Sardinian reference dataset. D: Timeline of selected
ancient groups. Note: The same geographic abbreviation can appear multiple times with different colors to
represent groups with different median ages.
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Figure 3: Genetic similarity matrices. We calculated FST (upper panel) and outgroup-f3 (lower
panel) of ancient Sardinian and modern Sardinian individuals (grouped into within and outside
the Ogliastra region) with each other (left), various ancient (middle), and modern populations
(right) of interest.

A B C

Ancient individuals
(Neolithic to Nuragic)

Figure 4: Present-day genetic structure in Sardinia reanalyzed with aDNA. A: Scatter plot of
the first two principal components trained on 1577 present-day individuals with grand-parental
ancestry from Sardinia. Each individual is labeled with a location if at least 3 of the 4 grandpar-
ents were born in the same geographical location (“small” three letter abbreviations); otherwise
with “x” or if grand-parental ancestry is missing with “?”. We calculated median PC values for
each Sardinian province (large abbreviations). We also projected each ancient Sardinian indi-
vidual on to the top two PCs (gray points). B/C: We plot f -statistics that test for admixture of
modern Sardinian individuals (grouped into provinces) when using Nuragic Sardinian individuals
as one source population. Uncertainty ranges depict one standard error (calculated from block
bootstrap). Karitiana are used in the f -statistic calculation as a proxy for ANE/Steppe ancestry
(Patterson et al., 2012).
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Firstly, present-day Sardinian individuals are shifted from the ancients towards more eastern257

Mediterranean populations on the western Eurasian PCA (Fig. 2). We observe a corresponding258

signal in our f4 analysis, in that we see significantly higher affinity of many present-day and some259

ancient populations to modern Sardinian versus Nuragic Sardinian individuals (f4 of the form260

f(Mod Sard - Ancient Sard; Pop x - Ancestral Allele), see Fig. 4 and Supp. Mat. 2D). Similarly,261

f3 statistics that directly test for admixture of present-day Sardinians, with Nuragic Sardinian262

individuals as one source, yield highly significant negative values, indicating admixture (Fig. 4).263

Using qpAdm we find that models of continuity from Nuragic Sardinia to present-day Sardinian264

populations (e.g. Cagliari) without influx are rejected (p ă 10´40, Tab. 1C). Moreover, genetic265

differentiation between the Nuragic and present is higher than across ancient periods (between266

Nuragic and present-day non-Ogliastra individuals pairwise FST “ 0.00695˘ 0.00041; compared267

to FST “ 0.0027˘ 0.0014 between Late Neolithic and Nuragic individuals.)268

Second, we find many populations that can produce significant f4 and f3 statistics consistent269

with admixture (Supp. Mat. 2C and D). Many of these populations carry high levels of Ances-270

tral North Eurasian (ANE) ancestry, and likely serve as a proxy for ancient Eurasian ancestry271

that entered Europe after the Neolithic with Steppe expansions, as similarly observed for many272

present-day mainland Europeans (Patterson et al., 2012).273

ADMIXTURE analysis gives further insight into this signal of gene flow. While contemporary274

Sardinian individuals show the highest affinity towards EEF-associated populations among all of275

the modern populations, they also display membership with other clusters (Fig. 5). In contrast276

to ancient Sardinian individuals, present-day Sardinian individuals carry a modest “Steppe-like”277

ancestry component (but generally less than continental present-day European populations),278

and an appreciable broadly “eastern Mediterranean” ancestry component (also inferred at a279

high fraction in other present-day Mediterranean populations, such as Sicily and Greece).280

To further characterize signatures of admixture, we used qpAdm to test the fit of a model281

of present-day Sardinian populations as a simple two-way admixture between Nuragic Sardinian282

individuals and potential other source populations (Table 1D, Supp. Tab. 4). A model of admix-283

ture with modern Sicilians (p “ 0.031) had the best support, followed by Maltese (p “ 0.0128),284

Turkish (p “ 0.0086) and Greeks (p “ 0.00071). For the model of a mixture of Sicilians and285

ancient Sardinian individuals, we infer an admixture proportion of 43.5 ˘ 2.1 percent Sicilian286

admixture (Tab. 1, Sup. Tab. 4, Supp. Fig. 10).287

We also considered three-way models of admixture with qpAdm to further refine the geo-288

graphic origins of this recent admixture signal (Supp. Info 6). Indeed, we find models with ad-289

mixture between Nuragic Sardinia, one northern Mediterranean source and one eastern Mediter-290

ranean source fit well (p ą 0.01 for several combinations, Table 1E,F). For a representative291

sample from Sardinia (Cagliari), across various proxies (excluding Sicily and Malta) the ad-292

mixture fractions range 10-30% for the “northern Mediterranean” component, 13-33% for the293

“eastern Mediterranean”, with the remaining 52-57% coming from Nuragic Sardinia. For models294

with Sicilian or Maltese as proxy sources, the estimates of ancestry for the N. Mediterranean295

component shrink to small values (8.6% and 6.5% for Sicilian and Maltese, respectively), essen-296

tially bringing the fitted parameters towards the two-way mixture models. Maltese and Sicilian297

individuals appear to reflect a mixture of N. Mediterranean and E. Mediterranean ancestries,298

and as such they can serve as single-source proxies in two-way admixture models with Nuragic299

Sardinia (Table 1D).300

Caution is warranted when interpreting inferred admixture fractions with each of these simple301

models; however, the signal across multiple analyses indicates that complex post-Nuragic gene302

flow, partly from sources originating in the eastern Mediterranean and partly from the northern303

Mediterranean, has likely played a role in the population genetic history of Sardinia.304
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Figure 5: Admixture coefficients estimated by ADMIXTURE (K “ 4). Each stacked bar rep-
resents one individual and color fractions depict the fraction of the given individual’s ancestry
coming from a given “cluster”. For K “ 4 (depicted here), ancient Sardinian individuals share
similar admixture proportions as other western European Neolithic individuals. Present-day Sar-
dinian individuals additionally have elevated Steppe-like ancestry (but less than other European
populations), and an additional ancestry component prevalent in Near Eastern / Levant popula-
tions. ADMIXTURE results for all K=2,. . . ,11 are depicted in the supplement (Supp. Fig. 14)

.

Fine-scale structure in contemporary Sardinia305

Ancient DNA can shed new light on present-day genetic variation. We, therefore, re-assessed306

spatial substructure previously observed in a dense geographic modern sampling (1,577 whole307

genome sequences) from Sardinia (Chiang et al., 2018).308

In a PCA of the modern Sardinian variation, individuals from Ogliastra fall furthest away309

from the ancient Sardinian individuals (Chiang et al., 2018) (Fig. 4). In stark contrast, in the310

PCA of modern Western Eurasian variation, the pattern reverses: Ogliastra is placed closest311

of all provinces to the ancient Sardinian individuals (Fig. 2). Direct tests for admixture using312

f3 statistics with Nuragic Sardinian individuals as one source yielded highly significant results313

for all present-day provinces except Ogliastra (Fig. 4). The non-significant value of Ogliastra314

can have two causes: An actual lack of admixture or high levels of drift that mask admixture315

f3. However, the f4 statistics and admixture proportions of qpAdm are robust to recent drift316

of the admixed population, and in both analyses Ogliastra shows an admixture signal that is317

only slightly weaker than most other provinces (Fig. 4, Supp. Fig. 12). Together, these results318

suggest high levels of drift specific to Ogliastra (likely also driving the first two PCs of present-day319

Sardinian variation), but simultaneously also less admixture than other Sardinian provinces.320

In the previous section, we reported finding that many non-Sardinian modern populations321

have a higher affinity to present-day Sardinian individuals than to Nuragic Sardinian individuals322

(using a f4 statistic of the form f4(Mod. Sard Pop y - Sar-Nur; Pop x - Ancestral Allele) where323

x are test non-Sardinian modern populations, Fig. 4, Sup. Mat. 2D). Interestingly, the northern324

province Olbia (north-east) and to some degree also Sassari (north-west) have the highest affinity325

to most tested populations (Fig. 4). A three-way admixture model fit with qpAdm finds a similar326

signal. In a model with Tuscan as a proxy for northern Mediterranean immigration and Lebanese327
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as a proxy for a second additional, more eastern Mediterranean source, the inferred admixture328

fractions vary across Sardinia, with the highest eastern Mediterranean ancestry in the southwest329

(Carbonia, Campidano) and the highest northern Mediterranean ancestry in the northeast of330

the island (Olbia, Sassari, Supp. Fig. 12). In addition, we observed a marked shift of individuals331

from Olbia and Sassari towards continental populations in the PCA (Fig. 4).332
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Proxy Source Populations Admixture Fractions Standard Error

Target a b c p-value a b c a b c

A Sar-NECA WHG Anatolia-N - 0.677 0.173 0.827 - 0.014 0.014 -
Sar-EMBA WHG Anatolia-N - 0.062 0.163 0.837 - 0.007 0.007 -
Sar-Nur WHG Anatolia-N - 0.182 0.166 0.834 - 0.009 0.009 -

B Sar-NECA WHG Anatolia-N Steppe 0.588 0.172 0.824 0.003 0.016 0.023 0.026
Sar-EMBA WHG Anatolia-N Steppe 0.041 0.163 0.837 0.000 0.009 0.012 0.014
Sar-Nur WHG Anatolia-N Steppe 0.123 0.167 0.833 0.000 0.010 0.014 0.016
Iberia-EN WHG Anatolia-N Steppe 0.276 0.081 0.919 0.000 0.013 0.017 0.019

Iberia-BA WHG Anatolia-N Steppe 6.0 ¨ 10´3 0.239 0.689 0.072 0.010 0.014 0.016
CE-EN WHG Anatolia-N Steppe 0.663 0.046 0.954 0.000 0.007 0.010 0.012
CE-LBA WHG Anatolia-N Steppe 0.079 0.128 0.403 0.469 0.008 0.011 0.013

C Sar-EMBA Sar-NECA - - 0.548 - - - - - -
Sar-Nur Sar-EMBA - - 0.385 - - - - -

Cagliari Sar-Nur - - 3.2 ¨ 10´37 - - - - -

D Cagliari Sar-Nur Sicilian - 0.031 0.565 0.435 - 0.021 0.021 -
Cagliari Sar-Nur Maltese - 0.013 0.590 0.410 - 0.022 0.022 -

Cagliari Sar-Nur Tuscan - 2.8 ¨ 10´6 0.540 0.460 - 0.026 0.026 -

Cagliari Sar-Nur Lebanese - 1.2 ¨ 10´6 0.724 0.276 - 0.016 0.016 -

Cagliari Sar-Nur Spanish - 8.0 ¨ 10´26 0.680 0.320 - 0.027 0.027 -

E Cagliari Sar-Nur N Mediterranean Turkish-Jew 0.186 0.529 0.212 0.259 0.023 0.043 0.035
Cagliari Sar-Nur N Mediterranean Libyan-Jew 0.086 0.532 0.272 0.196 0.024 0.039 0.028
Cagliari Sar-Nur N Mediterranean Maltese 0.07 0.562 0.086 0.351 0.027 0.074 0.060
Cagliari Sar-Nur N Mediterranean Tunisian-Jew 0.064 0.515 0.285 0.200 0.023 0.037 0.029
Cagliari Sar-Nur N Mediterranean Sicilian 0.06 0.546 0.065 0.389 0.024 0.068 0.060
Cagliari Sar-Nur N Mediterranean Moroccan-Jew 0.05 0.536 0.247 0.217 0.024 0.044 0.033
Cagliari Sar-Nur N Mediterranean Lebanese 0.049 0.571 0.269 0.160 0.026 0.040 0.023
Cagliari Sar-Nur N Mediterranean Druze 0.04 0.562 0.260 0.178 0.024 0.040 0.025
Cagliari Sar-Nur N Mediterranean Cypriot 0.024 0.538 0.270 0.192 0.023 0.037 0.027
Cagliari Sar-Nur N Mediterranean Jordanian 0.018 0.563 0.291 0.146 0.025 0.037 0.022
Cagliari Sar-Nur N Mediterranean Palestinian 0.014 0.563 0.301 0.135 0.026 0.037 0.020

Cagliari Sar-Nur N Mediterranean Turkish 8.6 ¨ 10´3 0.668 0.089 0.243 0.037 0.074 0.042

Cagliari Sar-Nur N Mediterranean Tunisian 1.0 ¨ 10´4 0.547 0.375 0.079 0.028 0.034 0.014

F Cagliari Sar-Nur E Mediterranean Lombardy 0.186 0.529 0.259 0.212 0.023 0.035 0.043
Cagliari Sar-Nur E Mediterranean Greek 0.153 0.560 0.165 0.274 0.020 0.054 0.057
Cagliari Sar-Nur E Mediterranean Tuscan 0.115 0.544 0.215 0.241 0.022 0.048 0.056
Cagliari Sar-Nur E Mediterranean French 0.094 0.573 0.321 0.105 0.021 0.028 0.024
Cagliari Sar-Nur E Mediterranean Basque 0.066 0.548 0.337 0.115 0.023 0.026 0.026
Cagliari Sar-Nur E Mediterranean Spanish 0.052 0.555 0.309 0.137 0.022 0.030 0.032

Table 1: Results from fitting models of admixture with qpAdm. A) Two-way models of admixture for
ancient Sardinia using Western Hunter-Gatherer (WHG) and Neolithic Anatolia (Anatolia-N) individuals as
proxy sources. B) Three-way models of admixture for ancient Sardinia using Western Hunter-Gatherer (WHG),
Neolithic Anatolia (Anatolia-N), and Early Middle Bronze Age Steppe (Steppe-EMBA, abbreviated Steppe in
table), individuals as proxy sources. C) Single-source models to assess continuity of each Sardinian period
with the previous one (see main text for guide to abbreviations). E) Results of three-way models showing
multiple eastern Mediterranean populations that can produce viable models (Results shown with individuals
from Lombardy [Bergamo in the HOA dataset] as one of several possible proxies for north Mediterranean
ancestry, see part F). F) Results of three-way models showing multiple north Mediterranean populations that
can produce viable models (Results shown with Jewish individuals from Turkey [‘Turkish-Jew’ in the HOA
dataset] used as one of several possible proxies for east Mediterranean ancestry, see part E). As a visual aid,
p-values greater than 0.01 are bolded. Full results are reported in Supp. Info. 6.
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Discussion333

Our analysis of genome-wide data from 43 ancient Sardinian individuals generated new direct334

evidence regarding the population history of Sardinia and the Mediterranean. Importantly,335

we detected a strong genetic affinity of Neolithic Sardinian individuals to other early Neolithic336

western Mediterranean populations. This signal is especially interesting in light of archaeological337

evidence for a rapid maritime spread of Neolithic Cardial Impressed Ware culture through the338

western Mediterranean occurring around 5,500 BCE (Zilhão, 2001; Martins et al., 2015).339

While we lack aDNA data from Neolithic mainland Italy, a putative center of this spread to340

Sardinia, we find that Neolithic Sardinian individuals are closely related to other hypothesized341

populations of this initial wave, in particular, Neolithic Spanish and southern French populations.342

This new evidence points towards Neolithic Sardinian individuals descending principally from343

mainland Neolithic populations. This hypothesis is also consistent with a signal of population344

turnover associated with the Neolithic transition observed in Sardinian ancient mtDNA (Modi345

et al., 2017), and with a gap in the Sardinian archaeological record before its Neolithic transition346

(Lugliè, 2018).347

Neolithic Sardinian individuals fit well as a two-way admixture between EEF and WHG348

sources, similar to other EEF populations including Linear Pottery and Cardial cultures. Recent349

evidence based on aDNA indicates that traces of WHG ancestry were already part of the initial350

wave of the Mediterranean Neolithic transition and that similar to other EEF populations, subse-351

quent local admixture increased WHG ancestry substantially over time in Iberia (Lipson et al.,352

2017). In stark contrast, in Sardinia, we observed remarkable constancy of WHG ancestry close353

to 20% throughout our sampling periods, well into the second millennium BCE. This reflects the354

continuity of Sardinia through this time period and is consistent with a model of a low density355

or even absence of local Mesolithic hunter-gatherers at the time of arrival of EEF individuals356

(Lugliè, 2018). However, we can not rule out a model with an initial pulse of local admixture.357

Genome-wide data from a Mesolithic or a very early Neolithic individual from Sardinia could358

help settle this question.359

Additional insight into the origins of Neolithic populations of Sardinia comes from Y chro-360

mosome variation in the ancient samples. We detected Y haplogroups R1b-V88 and I2-M223 in361

the majority of the ancient Sardinian males. In our reference dataset, both haplogroups appear362

earliest in Mesolithic hunter-gatherers and then Neolithic groups of the Balkans (Mathieson363

et al., 2018) and also EEF Iberians, but not in Neolithic Anatolians or more western WHG364

individuals. Further sampling is necessary, but the current data are consistent with hypotheses365

of the expansion of Cardial Impressed Ware related cultures through the Mediterranean via the366

Balkans. Future studies, including ancient DNA from early Neolithic sites in mainland Italy, will367

help to further resolve details of these putative migrations.368

From the Neolithic onwards, Sardinia appears to have been relatively isolated until at least369

the late second millennium BC, unlike many other parts of Europe which had experienced sub-370

stantial gene flow from central Eurasian Steppe ancestry starting about 3,000 years BCE (Haak371

et al., 2015; Allentoft et al., 2015). While we cannot exclude influx from genetically similar372

populations such as early Iberian Bell Beakers, the absence of Steppe ancestry suggests genetic373

isolation from many Bronze Age mainland populations - including later Iberian Bell Beakers,374

who would already have carried substantial Steppe ancestry (Olalde et al., 2018). As fur-375

ther support, the Y haplogroup R1b-M269, the most frequent present-day western European376

haplogroup and the haplogroup associated with expansions that brought Steppe ancestry into377

Britain (Olalde et al., 2018) and Iberia (Olalde et al., 2019) about 2,500-2,000 BCE, remains378

absent in our sample of ancient Sardinian individuals through the end of our sampling period379

(1,200-1,000 BCE).380
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The genetic continuity inferred throughout our ancient sampling period does not continue381

fully into the present. Previously, admixture tests based on f -statistics did not provide significant382

evidence for gene flow (Chiang et al., 2018), likely because no suitable proxy for the Nuragic383

Sardinian ancestry component was available. Here, including direct aDNA data increased the384

power of admixture tests, which resulted in uncovering multiple lines of evidence of moderate385

gene flow into Sardinia. This post-Nuragic admixture likely brought additional Y chromosome386

haplotype diversity to Sardinia (Sup. Fig. 3), such as R1b-M269 and also E-M215 (now prevalent387

in northern Africa).388

We find evidence for at least two phases of post-Nuragic gene flow. First, there is a general389

shift towards central and eastern Mediterranean sources, demonstrated by the direction of the390

overall change in the PCA and ADMIXTURE, and the results of modeling population relation-391

ships using qpAdm. Second, we detected variation in the signals in the PCA and qpAdm analysis392

suggesting that the northern provinces of Olbia, and to a lesser degree Sassari, have received393

more northern Mediterranean immigration after the Bronze Age than the other provinces; mean-394

while the southwestern provinces of Campidano and Carbonia show more eastern Mediterranean395

ancestry. Together, these signals suggest temporally and geographically complex post-Nuragic396

gene flow into Sardinia. Ultimately, aDNA data from these historical periods will be needed to397

clarify and refine the interpretation.398

A preliminary hypothesis would be that an influx from eastern Mediterranean sources is399

overlayed by more recent influx from the Italian mainland. Historically, both of these seem400

plausible. Sardinia hosted major Phoenician colonies in the first millennium BCE, principally401

along the south and west coasts of the island, and previous studies based on uni-parentally402

inherited markers have found evidence for Phoenician contact and gene flow (Zalloua et al.,403

2008; Matisoo-Smith et al., 2018). Sardinia was also an important Roman province and then404

was later under occupation by the Vandals and the Byzantine Empire. There are also more recent405

sources of immigration in the last few hundred years from Italy, Spain, and Corsica. Shepherds406

from Corsica immigrated to occupy large pastures left largely empty since the late Middle Ages,407

bringing an Italian-Corsican dialect (Gallurese) now prevalent in the northeastern part of Sardinia408

(Lannou, 1941). The differing historical impacts of these external contacts in different regions409

of Sardinia is supported in the patterns we observe, with more northern Mediterranean ancestry410

inferred in the north (where Gallurese is prevalent), eastern Mediterranean ancestry inferred in411

the south and west of Sardinia (where more Punic colonies existed), and more isolation in central412

regions of Ogliastra and Nuoro.413

The evidence for gene flow after the second millennium BCE seems to contradict previous414

models emphasizing Sardinian isolation, but we confirm that contemporary Sardinian individuals415

have retained an exceptionally high degree of EEF ancestry (Haak et al., 2015). Compared to416

other European populations, Sardinia experienced relative genetic isolation through the Bronze417

age, and our models also fit the majority of modern Sardinian ancestry being retained from the418

Nuragic period. The subsequent post-Nuragic admixture appears to derive from Mediterranean419

sources that have relatively little Steppe ancestry (Sarno et al., 2017; Lazaridis et al., 2017).420

Therefore, contemporary Sardinians still cluster with several mainland European Copper Age421

individuals such as Ötzi (Sikora et al., 2014), even as they are shifted from ancient Sardinian422

individuals of a similar time period (Fig. 2).423

The history of gene flow into Sardinia is also relevant to understanding its relationship to424

the Basque populations of Iberia. Previous studies have suggested both present-day and ancient425

Basque individuals share a genetic connection with modern Sardinian individuals (Günther426

et al., 2015; Chiang et al., 2018). We detected a similar signal, with modern Basque having, of427

all modern samples, the largest pairwise outgroup-f3 with Sardinians in each of our time periods428

(Fig. 3). A plausible explanation arises from the observation that both Basque and Sardinians429
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have remained relatively isolated since the Neolithic transition (e.g. see Olalde et al., 2019,430

for novel aDNA evidence on the Basque). While both Basque and Sardinians have received some431

immigration, apparently from different sources, both populations also retained an exceptionally432

high fraction of EEF ancestry (e.g., Fig. 5). This shared ancestry component likely contributes433

to the high pairwise outgroup-f3 (Fig. 3) between Basque and Sardinians, and explains how both434

populations share a genetic affinity despite their geographic separation.435

Overall, we find that genome-wide ancient DNA provides unique insights into the population436

history of Sardinia. We do not detect any significant admixture from the the Neolithic period437

of Sardinia through the Nuragic. From the Nuragic to the present we observe a significant shift438

in ancestry tied to northern and eastern Mediterranean sources. Genetic analyses that include439

Sardinian individuals spanning the post-Nuragic period to the present, as well as individuals from440

plausible sources of this gene flow, such as Punic, Roman, and other Mediterranean groups, will441

help to more precisely date these events and to relate them to the historical and archaeological442

record. Ultimately, having a more refined model of post-Nuragic demographic history will provide443

a better framework to understand the evolutionary history of genetic disease-variants prevalent444

in Sardinia and throughout the Mediterranean, such as beta-thalassemia and G6PD deficiency.445
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Materials and Methods446

Archaeological sampling447

The archaeological samples used in this project derive from two major collection avenues. The448

first was a sampling effort led by co-author Luca Lai, leveraging a broad base of samples from449

different existing collections in Sardinia, a subset of which were previously used in isotopic analy-450

ses to understand dietary composition and change in prehistoric Sardinia (Lai et al., 2013). The451

second was from the Seulo Caves project (Skeates et al., 2013), an on-going project on a series452

of caves that span the Middle Neolithic to late Bronze Age near the town of Seulo. The project453

focuses on the diverse forms and uses of caves in the prehistoric culture of Sardinia. All samples454

were handled in collaboration with local scientists and with the approval of the local Sardinian455

authorities for the handling of archaeological samples (Ministero per i Beni e le Attivita Cultur-456

ali, Direzione Generale per i beni Archeologici, request dated 11 August 2009; Soprintendenza457

per le Beni Archeologici per le province di Sassari e Nuoro, prot. 12278 dated 05 Dec. 2014;458

Soprintendenza ai Beni Archeologici per le Province di Cagliari e Oristano, prot. 62, dated 08459

Jan 2015; Soprintendenza Archeologia, Belle arti e Paesaggio per le provincie di Sassari, Olbia-460

Tempio e Nuoro, prot. 4247 dated 14 March 2017: Soprintendenza per i Beni Archeologici per le461

Province di Sassari e Nuoro, prot. 12930 dated 30 Dec. 2014: Soprintendenza Archeologia, belle462

arti e paesaggio per le province di Sassari e Nuoro, prot. 7378 dated 9 May, 2017: Soprintendenza463

Archeologia, belle arti e paesaggio per le province di Sassari e Nuoro, prot. 16258 dated 26 Nov.464

2017). For more, detailed description of the sites please see Supplemental Information Sections465

1 and 2.466

Initial sample screening and sequencing467

The ancient DNA (aDNA) workflow was implemented in dedicated facilities at the Palaeogenetic468

Laboratory of the University of Tübingen and at the Department of Archaeogenetics of the Max469

Planck Institute for the Science of Human History in Jena. The only exception was for four sam-470

ples from the Seulo Cave Project which had DNA isolated at the Australian Centre for Ancient471

DNA and capture and sequencing carried out in the Reich lab at Harvard University. Different472

skeletal elements were sampled using a dentist drill to generate bone and tooth powder respec-473

tively. DNA was extracted following an established aDNA protocol (Dabney et al., 2013) and474

then converted into double-stranded libraries retaining (Meyer and Kircher, 2010) or partially475

reducing (Rohland et al., 2015) the typical aDNA substitution pattern resulting from deami-476

nated cytosines that accumulate towards the molecule’s termini. After indexing PCR (Meyer477

and Kircher, 2010) and differential amplification cycles, the DNA was shotgun sequenced on Il-478

lumina platforms. Samples showing sufficient aDNA preservation where captured for mtDNA and479

« 1.24 million SNPs across the human genome chosen to intersect with the Affymetrix Human480

Origins array and Illumina 610-Quad array (Fu et al., 2015). The resulting enriched libraries481

were also sequenced on Illumina machines in single-end or paired-end mode. Sequenced data482

were pre-processed using the EAGER pipeline (Peltzer et al., 2016). Specifically, DNA adapters483

were trimmed using AdapterRemoval v2 (Schubert et al., 2016) and paired-end sequenced li-484

braries were merged. Sequence alignment to the mtDNA (RSRS) and nuclear (hg19) reference485

genomes was performed with BWA (Li and Durbin, 2009) (parameters –n 0.01, seeding disabled),486

duplicates were removed with DeDup (Peltzer et al., 2016) and a mapping quality filter was487

applied (MQě 30). For genetic sexing, we compared relative X and Y-chromosome coverage to488

the autosomal coverage with a custom script. For males, nuclear contamination levels were esti-489

mated based on heterozygosity on the X-chromosome with the software ANGSD (Korneliussen490

et al., 2014). Data originating from mtDNA capture was processed with schmutzi (Renaud491
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et al., 2015), which jointly estimates mtDNA contamination and reconstructs mtDNA consen-492

sus sequences that were assigned to the corresponding mtDNA haplogroups using Haplofind493

(Vianello et al., 2013) (Supp. Mat. 1D). We applied several standard ancient DNA quality494

control metrics: We retained endogenous DNA content in shotgun sequencing ą0.2%, evidence495

of an average damage pattern present at the molecule termini, mtDNA contamination ă4%496

(average 1.6%) and nuclear contamination ă6% (average 1.1%).497

We next generated genotype calls that were used for downstream population genetic analyses.498

To account for sequencing errors we first removed any reads that overlapped a SNP on the capture499

array with a base quality score less than 20. We also removed the last 3-bp on both sides of500

every read to reduce the effect of DNA damage on the resulting genotype calls (Al-Asadi501

et al., 2018). With these filtered aligned reads in hand, we used custom python scripts (https:502

//github.com/mathii/gdc3) to generate pseudo-haploid genotypes by sampling a random read503

for each SNP on the capture array and setting the genotype to be homozygous for the allele504

present on the randomly sampled read.505

Merging newly generated data with published data506

Ancient DNA datasets from Western Eurasia. To provide context for the study of an-507

cestry of the ancient individuals from Sardinia, we downloaded and processed several ancient508

datasets from continental Europe and the Middle-east (Mathieson et al., 2015; Lazaridis509

et al., 2016, 2017; Mathieson et al., 2018, 2017; Lipson et al., 2017; Olalde et al., 2018).510

To minimize technology-specific batch effects in genotype calls and thus downstream population511

genetic inference, we focused on previously published ancient samples that had undergone the512

capture protocol on the same set of SNPs targeted in our study. We processed these samples513

through the same pipeline and filters described above, resulting in a dataset of 972 ancient sam-514

ples. Throughout our analysis, we used a subset of n “1,013,439 variants that was created by515

removing SNPs missing in more than 80% of all ancients individuals (Sardinian and reference516

dataset) with at least 60% of all captured SNPs covered.517

This ancient dataset spans a wide geographic distribution and temporal range. Ancient518

individuals are associated with a variety of different cultures, which provides rich context for519

interpreting downstream results. Our reference ancient dataset is comprised of many individuals520

sampled from a particular geographic locale, such as Germany or Hungary, in a transect of521

multiple cultural changes through time (Fig. 2). For the PCA (Fig. 2), we additionally included522

a single low-coverage ancient individual (label “Pun”) dated to 361-178 BCE from a Punic523

necropolis on the west Mediterranean island of Ibiza (Zalloua et al., 2018).524

We merged individuals into groups (Supp. Mat. 1F,G). For ancient samples, these groups were525

chosen manually, trying to strike a balance between reducing overlap in the PCA and keeping526

culturally distinct populations separate. We used geographic location to first broadly group527

samples into geographic areas (such as Iberia, Central Europe and Balkans), and then further528

annotated each of these groups by different time periods.529

Contemporary DNA datasets from Western Eurasia. We downloaded and processed the530

Human Origins dataset to characterize a subset of Eurasian human genetic diversity at 594,924531

autosomal SNPs (Lazaridis et al., 2014). To be consistent with previous studies (Lazaridis532

et al., 2014; Mathieson et al., 2015), we focused on a subset of 777 individuals from Western533

Eurasia.534

Contemporary DNA dataset from Sardinia. We merged in a whole-genome sequence535

dataset which was described and previously analyzed by Chiang et al. (2018). It consists of536
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1,577 unrelated individuals, grouped into multiple geographic regions within Sardinia (Fig. 2C).537

Principal Components Analysis538

We performed Principal Components Analysis (PCA) on two large-scale datasets of modern539

genotypes from Western Eurasian (777 individuals from the Human Origins dataset) and Sardinia540

(1,577 individuals from the SardiNIA project). For both datasets, we normalized the genotype541

matrix by mean-centering and scaling the genotypes at each SNP using the inverse of the square-542

root of heterozygosity (Patterson et al., 2006). We additionally filtered out rare variants with543

minor allele frequency (pmin ă 0.05).544

To assess population structure in the ancient individuals, we projected them onto our pre-545

computed principal axes using only the non-missing SNPs via a least-squares approach, and546

correcting for the shrinkage effect observed in high-dimensional PC score prediction (Reich547

et al., 2008; Lee et al., 2010). More details on how we corrected the biased PC scores are548

discussed in Supp. Info. 8.549

We also projected a number of out-sample sub-populations from Sardinia onto our PCs.550

Reassuringly, these out-of-sample Sardinian individuals project very close to Humans Origins551

Sardinian individuals (Fig. 2). Moreover, the test-set Sardinia individuals with grand-parental552

ancestry from Southern Italy cluster with reference individuals with ancestry from Sicily.553

ADMIXTURE Analysis554

We applied ADMIXTURE to an un-normalized genotype matrix of ancient and modern samples555

(Alexander et al., 2009). ADMIXTURE is a maximum-likelihood based method for fitting the556

Pritchard, Stephens and Donnelly model Pritchard et al. (2000) using sequential quadratic557

programming. We first LD pruned the data matrix based off the modern Western Eurasian558

genotypes, using plink1.9 with parameters [--indep-pairwise 200 25 0.4]. We then ran 5559

replicates of ADMIXTURE for values of K “ 2, . . . , 11. We display results for the replicate that560

reached the highest log-likelihood after the algorithm converged (Supp. Fig. 8).561

Estimation of f-statistics562

We measured similarity between groups of individuals through computing an outgroup-f3 statis-563

tic. The outgroup-f3 statistic can be interpreted as a measure of the internal branch length of a564

three-taxa population phylogeny and thus does not depend strongly on genetic drift or systematic565

error in the focal pair of populations that are being compared (Patterson et al., 2012).566

Here we used the ancestral allelic states as an outgroup, inferred from a multi-species align-567

ment from Ensembl Compara release 59, as annotated in the 1000 Genomes Phase3 sites vcf568

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.wgs.phase3_shapeit2_569

mvncall_integrated_v5b.20130502.sites.vcf.gz) (1000 Genomes Project Consortium570

et al., 2015). We fixed the ancestral allele counts to n “ 106 to avoid finite sample size correction571

when calculating outgroup f3.572

The f3- and f4-statistics that test for admixture were computed with scikit-allel using573

average_patterson_f3 and average_patterson_d. We estimated standard errors with a block574

jack-knife over 1000 markers (blen=1000). When analyzing ancient individuals that were repre-575

sented as pseudo-haploid genotypes, we analyzed only one allele to avoid an artificial appearance576

of genetic drift - that could for instance mask a negative f3 signal of admixture.577
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Estimation of FST -coefficients578

To measure pairwise genetic differentiation between two populations, we estimated average pair-579

wise FST and standard error via block-jackknife over 1000 markers, using average_patterson_fst580

from the package scikit-allel. When analyzing ancient individuals that were represented581

as pseudo-haploid genotypes, we analyzed only one allele to avoid artificial genetic drift. For582

this analysis, we removed first degree relatives within each population. Another estimator,583

average_hudson_fst gave highly correlated results (r2 “ 0.89), differing mostly for populations584

with very low sample size (n ď 5) and did not change any qualitative conclusions.585

Estimation of admixture proportions with qpAdm586

We estimated admixture fractions of a selected target population as well as model consistency for587

one-, two- or three-source models. We used the framework of Haak et al. (2015) as implemented588

in qpAdm, which relates a set of “left” populations (the population of interest and candidate589

ancestral sources) to a set of “right” populations (diverse out-groups). To test the robustness of590

our results to the choice of right populations, we ran one analysis with a previously used set of591

modern populations as outgroup (Haak et al., 2015), and another analysis with a set of ancient592

Europeans that have been previously used to disentangle divergent strains of ancestry present in593

Europe (Lazaridis et al., 2017). The full qpAdm results are discussed in Supp. Info. 7.594

Inference of Y haplogroups595

To determine the haplotype branch of the Y chromosome of male ancient individuals, we analyzed596

informative SNPs on the Y-haplotype tree. For reference, we used markers from https://597

isogg.org/tree/ (Version: 13.238, 2018). We merged this data-set with our set of calls and598

identified markers available in both to create groups of equivalent markers for sub-haplogroups.599

Our targeted sequencing approach yielded calls for up to 32,681 such Y-linked markers per600

individual. As the conventions for naming of haplogroups are subject to change, we annotate601

them in terms of carrying the derived state at a defining SNP. We analyzed the number of602

derived and ancestral calls for each informative marker for all ancient Sardinian individuals, and603

additionally reanalyzed male ancient West Eurasians in our reference data set.604

Data Availability605

The raw reads and aligned sequences of the data generated from this study will available through606

the European Nucleotide Archive (ENA) before publication under accession number [TBD prior607

to publication]. Processed genotype calls will be posted to the Novembre Lab website and on608

Data Dryad. The contemporary Sardinia data used to support this study have allele frequency609

summary data deposited to EGA under accession number EGAS00001002212. The disaggregated610

individual-level sequence data for 1,577 used in this study is a subset of 2,105 samples (adult611

volunteers of the SardiNIA cohort longitudinal study) from Sidore et al (2015) and are available612

from dbGAP under project identifier phs000313 (v4.p2). The remaining individual-level sequence613

data are from a case-control study of autoimmunity from across Sardinia, and per the obtained614

consent and local IRB, these data are only available for collaboration by request from the project615

leader (Francesco Cucca, Consiglio Nazionale delle Ricerche, Italy)616
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Éadaoin Harney, Shop Mallick, and Alan Cooper for contributing to generating the data for the622

four samples processed at the Australian Centre for Ancient DNA and in D.R.’s ancient DNA623

laboratory. We also thank Dan Rice, Chi-chun Liu, and members of the Novembre lab for helpful624

discussion and feedback. This study was supported in part by the National Science Foundation625

fellowship DGE-1746045 and the National Institute of General Medical Sciences under training626

grant award number T32GM007197 to J.H.M. and by funding from the MacArthur Foundation627

to J.N.. The contribution of D.R. to this study was supported by NSF HOMINID grant BCS-628

1032255 and by the Howard Hughes Medical Institute. We also thank Alan Cooper for a role in629

the collection of those 4 samples.630

Author contributions631

We annotate author contributions using the CRediT Taxonomy labels (https://casrai.org/632

credit/). Where multiple individuals serve in the same role, the degree of contribution is633

specified as ‘lead’, ‘equal’, or ‘supporting’.634

• Conceptualization (Design of study) – lead: FC, JN, JK, LL; supporting: CS, CP, DS,635

JHM, GA636

• Investigation (Collection of skeletal samples) – lead: LL, RS; supporting: JB, MGG, CDS,637

CP (minor contribution from CS, JN)638

• Investigation (Ancient DNA isolation and sequencing) – lead: CP, AF; supporting: CDS,639

JK, DR˚, RR640

• Data Curation (Data quality control and initial analysis) – lead: JHM, CP; supporting:641

HR, CS, CC, KD, HA, AO642

• Formal Analysis (General population genetics) – lead: JHM, HR; supporting: TAJ643

• Writing (original draft preparation) – lead: JHM, HR, JN; supporting: CP, RS, LL, FC644

• Writing (review and editing) – input from all authors˚
645

• Supervision – equal: FC, JK, JN646

• Funding acquisition – lead: JK, FC, JN; supporting: RS647

˚: D.R. contributed data for four samples and reviewed the description of the data generation648

for these samples. As he is also senior author on a separate manuscript that reports data on a649

non-overlapping set of ancient Sardinians and his group and ours wished to keep the two studies650

intellectually independent, he did not review any other parts of this manuscript.651

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2019. ; https://doi.org/10.1101/583104doi: bioRxiv preprint 

https://casrai.org/credit/
https://casrai.org/credit/
https://casrai.org/credit/
https://doi.org/10.1101/583104
http://creativecommons.org/licenses/by/4.0/


22

References652

1000 Genomes Project Consortium, et al., 2015 A global reference for human genetic vari-653

ation. Nature 526: 68.654

Al-Asadi, H., K. Dey, J. Novembre, and M. Stephens, 2018 Inference and visualization of655

dna damage patterns using a grade of membership model. bioRxiv : 327684.656

Alexander, D. H., J. Novembre, and K. Lange, 2009 Fast model-based estimation of657

ancestry in unrelated individuals. Genome Research 19: 1655–1664.658
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