
A Systematic Evaluation of Single Cell
RNA-Seq Analysis Pipelines
Library preparation and normalisation methods have the biggest impact on
the performance of scRNA-seq studies

Beate Vieth1,*, Swati Parekh2, Christoph Ziegenhain3, Wolfgang Enard1, Ines

Hellmann1,+

1 Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians University,

Munich, Germany
2 Max Planck Institute for Biology of Ageing, Cologne, Germany
3 Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden

* vieth@bio.lmu.de
+ hellmann@bio.lmu.de

Abstract

The recent rapid spread of single cell RNA sequencing (scRNA-seq) methods has created

a large variety of experimental and computational pipelines for which best practices

have not been established yet. Here, we use simulations based on five scRNA-seq

library protocols in combination with nine realistic differential expression (DE) setups

to systematically evaluate three mapping, four imputation, seven normalisation and four

differential expression testing approaches resulting in ∼ 3,000 pipelines, allowing us to

also assess interactions among pipeline steps.

We find that choices of normalisation and library preparation protocols have the

biggest impact on scRNA-seq analyses. Specifically, we find that library preparation

determines the ability to detect symmetric expression differences, while normalisation

dominates pipeline performance in asymmetric DE-setups. Finally, we illustrate the

importance of informed choices by showing that a good scRNA-seq pipeline can have

the same impact on detecting a biological signal as quadrupling the sample size.

Introduction 1

Many experimental protocols and computational analysis approaches exist for single 2

cell RNA sequencing (scRNA-seq). Furthermore, scRNA-seq analyses can have different 3

goals including differential expression (DE) analysis, clustering of cells, classification of 4

cells and trajectory reconstruction1. All these goals have the first analysis steps leading 5

to a filtered and normalised count matrix in common. Here, we focus on these important 6

first choices made in any scRNA-seq study. As of now, benchmarking studies exist only 7

separately for each analysis step, which are library preparation protocols2,3, alignment 8

4,5, annotations6, preprocessing7,8 and normalisation9. However, the impact of the 9

combined choices of the separate analysis steps on overall pipeline performance has not 10

been quantified. In order to achieve a fair and unbiased comparison of computational 11

pipelines, simulations of realistic data sets are necessary. This is because the ground 12
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truth of real data is unknown and alternatives, such as concordance analyses are bound 13

to favour similar and not necessarily better methods. 14

To this end, we integrated popular methods for each analysis step into our simulation 15

framework powsimR10. As the basis for simulations, powsimR uses raw count matrices 16

to describe the mean-variance relationship of gene expression measures. This includes 17

the variance introduced during the experiment itself as well as extra variance due to the 18

first to computational steps of expression quantification. Adding differential expression 19

then provides us with detailed performance measures based on how faithfully DE-genes 20

can be recovered. 21

One main assumption in traditional DE-analysis is that differences in expression are 22

symmetric. This implies that either a small fraction of genes is DE while the expression 23

of the majority of genes remains constant or similar numbers of genes are up- and 24

down-regulated so that the mean total mRNA content does differ between groups11. 25

This assumption is no longer true when diverse cell types are considered. For example, 26

Zeisel et al.12 found up to 60% DE genes and differing amounts of total mRNA levels 27

between cell types. This issue of asymmetry is conceptually one of the characteristics 28

that distinguishes single cell from bulk RNA-seq and has not been addressed so far. 29

Therefore, we simulate varying numbers of DE-genes in conjunction with small to large 30

differences in mRNA content including the entire spectrum of possible DE-settings. 31

Realistic simulations in conjunction with a wide array of scRNA-seq methods, allow 32

us not only to quantify the performance of individual pipeline steps, but also to quantify 33

interdependencies among the steps. Moreover, the relative importance of the various 34

steps to the overall pipeline can be estimated. Hence, our analysis provides sound 35

recommendations regarding the construction of an optimal computational scRNA-seq 36

pipeline for the data at hand. 37

Results 38

The starting point for our comprehensive pipeline comparison is a representative selection 39

of scRNA-seq library preparation protocols (Figure 1A). Here, we included one full- 40

length method (Smart-seq213) and four UMI methods14,15,2,16, combined with three 41

mapping approaches17,18,19 and three annotation schemes20,21,22 resulting in 37 distinct 42

raw count matrices (Online Methods). We simulated 27 distinct DE-setups per matrix, 43

each with 20 replicates, resulting in a total of 19,980 simulated data sets (Figure 1 B). 44

Genome-mapping quantifies more genes with high accuracy 45

We first investigated how expression quantification is affected by different alignment 46

methods. For each of the three following strategies we picked one the most popular 47

methods (Supplementary Figure S2): 1. alignment of reads to the genome using 48

splice-aware alignment (STAR17), 2. alignment to the transcriptome (BWA18) and 3. 49

pseudo-alignment of reads guided by a transcriptome (kallisto23).We then combined 50

these with three annotation schemes including two curated schemes (RefSeq20 and Vega 51

22) and the more inclusive GENCODE21 (Supplementary Table S2). 52

First, we assessed the performance by the number of reads or UMIs that were aligned 53

and assigned to genes (Figure 2A and Supplementary Figure S3). Generally, STAR 54

in combination with GENCODE aligned (82-86%) and assigned (40-63%) the most reads. 55

2/18

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 19, 2019. ; https://doi.org/10.1101/583013doi: bioRxiv preprint 

https://doi.org/10.1101/583013
http://creativecommons.org/licenses/by-nc-nd/4.0/


Effect size Sample size

50 vs 200

96 vs 96

384 vs 384

50 96 20
0

38
4

76
8

Cells

N(µ = 1, σ = 0.1)

0.6 0.8 1.0 1.2 1.4

Sequencing Depth 
Scale Factor (sf)

A

C

B

X
gn

Cell 
1

Cell 
2

Cell 3 Cell n

Gene 1 0 80 0 10

Gene 2 10 0 5 0

Gene 3 25 65 39 0

Gene g 0 0 54 24

Simulate
Expression

  
 powsimR

Preprocess
counts

NormaliseDifferential
Testing

Evaluate

Gene-wise count matrices
per Protocol, Aligner, Annotation

Confusion Matrix, Library 
Size Estimation, Variance 
explained

ZingeR, 
limma, MAST, 
T-test

scran, SCnorm, 
Linnorm, Census, 
MR, TMM

Filtering, DrImpute, 
scone, SAVER

bwa, STAR, kallisto
using gencode, refseq, 
vega annotation

Quantify 
Expression

Library Preparation 
Protocol

SCRB-seq, Smart-seq2, 
CEL-seq2, Drop-seq,
10X Genomics

0

5000

10000

5 % 20 % 60 %

G
en

es

Symmetric Asymmetric Completely
Asymmetric

−2 0 2 −2 0 2 −2 0 2

0

1

 Log2 Fold Change

D
en

si
ty

Figure 1. Study Overview
A) The data sets yielding raw count matrices. We use scRNA-seq data sets from Ziegenhain
et al.2 and Zheng et al.16 representing 5 popular library preparation protocols. For each data set, we
obtain multiple gene count matrices that result from various combinations of alignment methods and
annotation schemes (see also Supplementary Figure S1 and S2, and Supplementary Table S1 and S2).
B) The Simulation setup. Using powsimR Vieth et al.10 distribution estimates from real count
matrices, we simulate the expression of 10,000 genes for two groups with 384 vs 384, 96 vs. 96 and 50 vs.
200 cells, where 5%, 20% or 60% of genes are DE between groups. The magnitude of expression change
for each gene is drawn from a narrow gamma distribution (X ∼ Γ(α = 1, β = 2)) and the directions
can either be symmetric, asymmetric or completely asymmetric. C) The analysis pipeline. The
simulated data sets are then analysed using combinations of four preprocessing, seven normalisation
and four DE approaches. The evaluation of these pipelines focuses on the outcome of the confusion
matrix and its derivatives (TPR, FDR, pAUC, MCC), deviance in library size estimates (RMSE) and
computational run time.
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BWA assigned a slightly lower fraction of reads (33-44%), but - suspiciously - these were 56

distributed across more UMIs. As reads with the same UMI are more likely to originate 57

from the same mRNA molecule and thus the same gene, the average number of genes 58

with which one UMI sequence is associated, can be seen as a measure of false mapping. 59

Indeed, we find that the same UMI is associated with more genes when mapped by BWA 60

than when mapped by STAR (Figure 2B). This indicates a high false mapping rate, 61

that probably inflates the number of genes that are detected by BWA (Figure 2C and 62

Supplementary Figure S4). In contrast, the final UMI count matrix obtained with 63

kallisto is more sparse, assigning the smallest number of reads and detecting 20-25% 64

fewer genes than STAR (Figure 2A,C). 65

This said, it remains to be seen what impact the differences in read or UMI counts 66

obtained through the different alignment strategies and annotations have on the power 67

to detect DE-genes. 68

As already indicated from the low fraction of assigned reads, kallisto has the lowest 69

mean expression and the highest dropout rates (Figure 2D and Supplementary 70

Figure S5) and, as expected from a high fraction of falsely mapped reads, BWA has the 71

largest variance. To estimate the impact that these statistics have on the power to detect 72

DE-genes, we use the mean-variance relationship to simulate data sets with DE-genes 73

(Figure 2D,E). As previously reported2, UMI protocols have a noticably higher power 74

than Smart-seq2 (Figure 2F). Moreover for Smart-seq2, we find that kallisto performs 75

slightly better than STAR, while for UMI-methods STAR performs better (Figure 2F 76

and Supplementary Figure S7). 77

In summary, using BWA to map to the transcriptome introduces noise, thus consid- 78

erably reducing the power to detect DE-genes as compared to genome alignment using 79

STAR or the pseudo-alignment strategy kallisto, but given the lower mapping rate of 80

kallisto STAR with GENCODE is generally preferable. 81

Many asymmetric expression changes pose a problem without 82

spike-in data. 83

The next step in any RNA-seq analysis is the normalisation of the count matrix. The 84

main idea here is that the resulting normalisation factors correct for differing sequencing 85

depths. To begin with, we compare how much the estimated normalisation factors 86

deviate from the truth. As long as there is only a small proportion of DE-genes or if the 87

differences are symmetric, estimated size factors are not too far from the simulated ones 88

and there are no large differences among methods (Figure 3A and Supplementary 89

Figure S8). However with increasing asymmetry, normalisation factors deviate more 90

and more and the single cell methods scran24 and SCnorm25 perform markedly better 91

than the bulk methods TMM26, MR27 and Positive Counts as well as the single cell 92

method Linnorm28. Census29 is an outlier in that it has a constant deviation of 0.1, 93

which is due to filling in 1 when library sizes could not be calculated. 94

To determine the effect of these deviations on downstream analyses, we evaluated the 95

performance of differential expression inference using different normalisation methods 96

(Figure 3B). Firstly, the differences in the TPR across normalisation methods are only 97

minor, only Linnorm performed consistently worse (Supplementary Figures S9). In 98

contrast, the ability to control the FDR heavily depends on the normalisation method 99

(Supplementary Figures S10). For small numbers of DE-genes or symmetrically 100
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Figure 2. Expression Quantification.
A Read alignment and assignment rates per library preparation protocol stratified over aligner and
annotation. The lighter shade represents the percentage of the total reads that could be aligned and
the darker shade the percentage that also was uniquely assigned (see also Supplementary Figure S3).
B Number of genes per UMI with >1 reads for BWA and STAR alignment using the SCRB-seq data
set and GENCODE annotation. Colours denote number bins of UMIs. C Number of genes detected
per Library Preparation Protocol stratified over Aligner and Annotation (i.e. at least 10 % nonzero
expression values) (see also Supplementary Figure S4). D Estimated mean expression, dispersion
and dropout rates for SCRB-seq and Smart-seq2 data using STAR, BWA or kallisto alignments with
GENCODE annotation (see also Supplementary Figure S5). E Mean-dispersion fitting line applying a
cubic smoothing spline with 95% variability bands for SCRB-seq and Smart-seq2 data using STAR,
BWA or kallisto alignments with GENCODE annotation (see also Supplementary Figure S6). F The
effect of quantification choices on the power (TPR) to detect differential expression stratified over library
preparation and aligner. The expression of 10,000 detected genes over 768 cells (384 cells per group)
were simulated given the observed mean-variance relation per protocol. 5% of the simulated genes
are differentially expressed following a symmetric narrow gamma distribution. Unfiltered counts were
normalised using scran. Differential expression was tested using limma-trend (see also Supplementary
Figure S7).
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distributed changes, the FDR is well controlled for all methods except Linnorm. However, 101

with an increasing number and asymmetry of DE-genes, only SCnorm and scran keep 102

FDR control, provided that cells are grouped or clustered prior to normalisation. In our 103

most extreme scenario with 60% DE-genes and complete asymmetry, all methods except 104

Census loose FDR control. SCnorm, scran Positive Counts and MR regain FDR control 105

with spike-ins for 60% completely asymmetric DE-genes (Supplementary Figure S10). 106

Given similar TPR of the methods, this FDR control determines the pAUC (3B,C). 107

Since in real data it is usually unknown what proportion of genes is DE and whether 108

cells contain differing levels of mRNA, we recommend a method that is robust under all 109

tested scenarios. Thus, for most experimental setups scran is a good choice, only for 110

Smart-seq2 data without spike-ins, Census might be a better choice. 111

Imputation has little impact on pipeline performance. 112

If the main reason why normalisation methods perform worse for scRNA-seq than for 113

bulk data is the sparsity of the count matrix, reducing this sparsity by either more 114

stringent filtering or imputation of missing values should remedy the problem30. Here, 115

we test the impact of frequency filtering and three imputation approaches (DrImpute31, 116

scone32, SAVER33) on normalisation performance. 117

We find that simple frequency filtering has no effect on normalisation results (Figure 118

3D). Performance as measured by pAUC is identical to using raw counts. In contrast, 119

imputation can have an effect on performance and there are large differences among 120

methods. Imputation with DrImpute and scone rarely increased the pAUC and occa- 121

sionally as in the case of SCRB-seq with MR normalisation, the pAUC even decreased 122

by 100% and 76%, respectively due to worse FDR control relative to using raw counts 123

(Supplementary Figure 13). In contrast, these two imputation methods achieved an 124

appreciable increase in pAUC together with scran normalisation, ∼ 28%, 4% and 9% for 125

10X Genomics, SCRB-seq and Smart-seq2 data, respectively. SAVER on the other hand 126

never made things worse, irrespective of data set and normalisation method but was 127

able to rescue FDR control for MR normalisation of UMI data, even in a completely 128

asymmetric DE-pattern. 129

These observations suggest that data sets with a high dropout rate might benefit more 130

from imputation than data sets with a relatively low dropout rate (Supplementary 131

Figure S5). Nevertheless, if a good normalisation method is used to begin with (e.g. 132

scran with clustering), the improvement by imputation remains relatively small. 133

Good normalisation removes the need for specialised single cell 134

DE-tools. 135

The final step in our pipeline analysis is the detection of DE-genes. Recently, Soneson 136

and Robinson30 benchmarked 36 DE approaches and found that edgeR26, MAST34, 137

limma-trend35 and even the T-Test performed well. Moreover, they found that for 138

edgeR, it is important to incorporate an estimate of the dropout rate per cell. Therefore, 139

we combine edgeR here with zingeR36. 140

Both edgeR-zingeR and limma-trend in combination with a good normalisation reach 141

similar pAUCs as using the simulated size factors (Figure 4). However, in the case of 142

edgeR-zingeR this performance is achieved by a higher TPR paid while loosing FDR 143
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Figure 3. Normalisation choices determines DE-analysis performance, not preprocessing.
The data in panels A-C are based on Smart-seq2 data, all panels are based on two groups of 384 cells,
STAR alignment with GENCODE annotation was used for quantification. A The root mean squared
error (RMSE) of estimated scaling factors per normalisation method is plotted for 20% asymmetric DE-
genes (see also Supplementary Figure S8). B The discriminatory ability determined by the partial area
under the curve (pAUC) based on DE testing with limma-trend for normalisation without spike-ins per
DE-pattern. The grey ribbon indicates the pAUC given simulated size factors (see also Supplementary
Figure S9-S11). C Using spike-ins for normalisation for 60% completely asymmetric DE-genes. D Effect
of preprocessing data for 20% asymmetric DE-genes without spike-ins. Counts were either left asis
(’none’) or a preprocessing or imputation was applied prior to normalisation. The derived scaling factors
were then used for normalisation and DE testing was performed on raw counts using limma-trend (see
also Supplementary Figure S12-S14).
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control (see Supplementary Figure S16), even in the case in symmetric DE-settings 144

(Supplementary Figure S18-S20). 145

Nevertheless, we find that DE-analysis performance strongly depends on the nor- 146

malisation method and on the library preparation method. In combination with the 147

simulated size factors or scran normalisation, even a T-Test performs well. Conversely, in 148

combination with MR or SCnorm, the T-Test has an increased FDR (Supplementary 149

Figure S13). SCnorms bad performance with a T-Test was surprising given SCnorms 150

good performance with limma-trend (Figure 3B). One explanation could be the rela- 151

tively large deviation of SCnorm derived size factors (Figure 3A and Supplementary 152

Figure S8) which inflate the expression estimates. 153

Furthermore, we find that MAST performs consistently worse than the other DE-tools 154

when applied to UMI-based data, but -except in combination with SCnorm- it is doing 155

fine with Smart-seq2 data. 156

In concordance with Soneson and Robinson30, we found that limma-trend, a DE-tool 157

developed for bulk RNA-seq data showed the most robust performance. Moreover, 158

library preparation and normalisation appeared to have a stronger effect on pipeline 159

performance than the choice of DE-tool. 160
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Figure 4. Evaluation of DE tools.
The expression of 10,000 genes over 768 cells (384 cells per group) were simulated given the observed
mean-variance relation per protocol. 20% of the simulated genes are differentially expressed following an
asymmetric narrow gamma distribution. Unfiltered counts were normalised using simulated library size
factors or applying normalisation methods. Differential expression was tested using T-Test, limma-trend,
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Normalisation is overall the most influential step. 161

Because we tested a nearly exhaustive number of ∼3,000 possible scRNA-seq pipelines, 162

starting with the choice of library preparation protocol and ending with DE-testing, 163

we can estimate the contribution of each separate step to pipeline performance for our 164

different DE-settings (Figure 1 B). We used a beta regression model to explain the 165

variance in pipeline performance with the choices made at the seven pipeline steps 1) 166

library preparation protocol, 2) spike-in usage, 3) alignment method, 4) annotation 167

scheme, 5) preprocessing, 6) normalisation and 7) DE-tool as explanatory variables. We 168

used the difference in pseudo-R2 between the full model including all seven pipeline 169

steps and leave-one-out reduced models to measure the contribution of each separate 170

step to overall performance. 171

All pipeline choices together (the full model) explain ∼ 50% and ∼ 60% of the variance 172

in performance, for 20% and 60% DE-genes, respectively (Figure 5A). Preprocessing 173

choices contribute very little (∆R2 <= 1%). The same is true for annotation (∆R2 <= 174

2%) and aligner choices (∆R2 <= 5%). For aligner and annotation, it is important to 175

note that these are upper bounds, because our simulations do not include differences in 176

gene detection rates (Figure 2C). 177

Surprisingly, the DE-tools only matters for symmetric DE-setups (∆R2
DE=0.2 = 15%; 178

∆R2
DE=0.6 = 11%), however the choice of library preparation protocol has an even 179

bigger impact on performance for symmetric DE-setups (∆R2
Symmetric = 17 − 29%) 180

and additionally for 5% asymmetric changes (∆R2
5% Asymmetric = 17%). Normalisation 181

choices have overall a large impact in all DE-settings (∆R2 = 12 − 38%), where the 182

importance increases with increasing levels of DE-genes and increasing asymmetry. 183

Spike-ins are only necessary if many asymmetric changes are expected and have little 184

or no impact if only 5% of the genes are DE or the changes are symmetric (Figure 185

5A). Moreover, for completely asymmetric DE-patterns, the regression model did not 186

converge without normalisation and spike-ins, because their absence or presence alone 187

pushed the MCCs to the extremes. 188

For the best performing pipeline SCRB-seq + STAR + GENCODE + SAVER 189

imputation + scran with clustering + limma-trend, using 384 cells per group instead 190

of 96 improves performance only by 6.5-8%. Sample size is more important if a naive 191

pipeline is used. For SCRB-seq + BWA + GENCODE + no preprocessing + MR + 192

T-Test the performance gain by increasing sample size is 10-12% and even worse, for 193

many asymmetric DE-genes, lower sample sizes occasionally appear to perform better 194

(Figure 5B and Supplementary Figure S21). 195

In summary, we identify normalisation and library preparation as the most influential 196

choices and the observation that differences in computational steps alone can significantly 197

lower the required sample size nicely illustrates the importance of bioinformatic choices. 198

Discussion 199

Here we evaluate the performance of complete computational pipelines for the analysis of 200

scRNA-seq data under realistic conditions with large numbers of DE-genes and differences 201

in total mRNA contents between groups (Figure 1). Furthermore, our simulations allow 202

us not only to investigate the influence of choices made at each pipeline step separately, 203

but also to estimate the relative importance and interactions between different steps 204
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Figure 5. Evaluation of analysis pipeline. The expression of 10000 genes over 768 cells were
simulated and 5%, 20% or 60% of the genes were differentially expressed following a symmetric or
asymmetric narrow gamma distribution. This simulation setup was applied to protocols, alignments,
annotations, preprocessing, normalisation and DE tools. For each analysis set, the Matthew Correlation
Coefficient was averaged over 20 simulations and rescaled to [0,1] interval. The MCC was used as a
response variable in beta regression models with log-log link function.
A The contribution of each covariate in the full model ( Protocol + Aligner + Annotation + Preprocessing
+ Normalisation + DE-Tool). B Performance according to sample size, 1 good and 1 naive pipeline (see
also Supplementary Figure S21). C Pipeline recommendations for UMI and Smart-seq2 data.
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of an entire scRNA-seq analysis pipeline. We implemented all assessed computational 205

methods and more in powsimR, so that users can easily evaluate pipeline performance 206

given their own data and expected DE-settings. 207

Beginning with the creation of the raw count matrix, we find that transcriptome 208

mapping with BWA18 appears to recover the largest number of genes. However, many 209

of these are probably due to falsely mapped reads, also increase expression variance 210

which ultimately results in a lower sensitivity (Figure 2C-F). In contrast, the pseudo- 211

alignment method kallisto23 appears to assign reads precisely, but looses a lot of reads 212

or UMIs with 3’ UMI-data. One possible explanation is that the 3’end of a gene alone 213

often does not allow to distinguish different transcripts, thus leading to a lower gene 214

detection rate and mean expression. Finally, a genome mapping approach using the 215

splice-aware aligner STAR17 in conjunction with GENCODE annotation recovers the 216

most genes with the highest accuracy (Figure 5C). 217

Concerning the preprocessing step, we found in concordance with Andrews and 218

Hemberg37 that in particular for sparse data such as 10X, SAVER33 imputation before 219

normalisation improves performance, while filtering genes has no effect with our data 220

sets and combinations of normalisation and DE-testing methods. 221

The choice that had the largest impact on performance throughout all tested DE- 222

settings is the choice of normalisation method. Only for symmetric changes, the choice 223

of library preparation protocol had a slightly larger impact than normalisation. In line 224

with Evans et al.11, we found that normalisation performance of bulk methods and also 225

some of the single cell methods declined with asymmetry (Figure 3B). In particular, for 226

60% completely asymmetric DE-genes only Census retained FDR control. Unfortunately, 227

Census is not recommended for the use with UMI-counts. Thus, for UMI-counts and 60% 228

completely asymmetric changes, only the use of spike-ins could restore test performance. 229

Thus, in the debate about the usefulness of spike-ins38,39, we land on the pro side: Our 230

simulations clearly show that spike-ins are useful in DE-testing settings with asymmetric 231

changes which is likely to be a common phenomenon in scRNA-seq data. Due to good 232

performance across DE-settings and its speed (Supplementary Figure S22) we would 233

recommend scran with prior clustering as the best choice for normalisation (Figure 234

5C). 235

The choice in DE-testing method, our final pipeline step had relatively little impact 236

on overall pipeline performance. A good normalisation prior to DE-testing alleviates 237

the need for more complex and thus vulnerable methods, such as for example MASTs 238

hurdle model which implicitly assumes a zero inflated negative binomial distribution 239

of the count data. Indeed, in Vieth et al.10 we showed that also scRNA-seq data fit a 240

negative binomial distribution rather well and that the previously reported zero-inflation 241

in scRNA-seq data is mainly due to amplification noise which is removed in UMI-data. 242

Hence, it is not surprising that in concordance with Soneson and Robinson30, we find 243

that relatively straight forward DE-testing methods adapted from bulk RNA-seq perform 244

well with scRNA-seq data. 245

Finally, we want to remark that paying attention to the details in a computational 246

pipeline and in particular to normalisation pays off. The effect of using a good pipeline as 247

compared to a naively compiled one has a similar or even greater effect on the potential 248

to detect a biological signal in scRNA-seq data as an increase in cell numbers from 96 to 249

384 cells per group (Figure 5B). 250
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Online Methods 251

Single Cell RNA-seq Data Sets 252

The starting point for our comprehensive pipeline comparison is the scRNA-seq library 253

preparation (Figure 1 A). In our comparison, we included the gene expression profiles 254

of mouse embryonic stem cells (mESC) as published in2 (Supplementary Figure S1). 255

We selected four data sets for our comparison: Smart-seq213 a well-based full-length 256

scRNA-seq protocol, CEL-seq215 a well-based 3’ UMI-protocol using linear amplification, 257

SCRB-seq a well-based 3’ UMI-protocol with PCR amplification40,2 and Drop-seq 258

14 a droplet-based 3’ UMI-protocol. In addition, 92 poly-adenylated synthetic RNA 259

transcripts of known concentration designed by the External RNA Control Consortium 260

(ERCCs)41 were spiked in for all methods except Drop-seq. All raw cDNA sequencing 261

reads were cut to a length of 45 bases and downsampled to one million cDNA reads per 262

cell (Supplementary Table S1 and Supplementary Figure S1). 263

Finally, due to its popularity, we added a fifth data set from 10X Genomics Support 264

(mouse NIH3T3 cells) generated on the 10X Genomics platform, namely the expression 265

profiles of 1k 1:1 mixture of fresh frozen human (HEK293T) and mouse (NIH3T3) cells 266

generated using the v2 3’ gene expression chemistry16. We proceeded with ∼ 400 mouse 267

cells that had ∼ 60,000 reads/cell on average. These choices of library preparation 268

protocols cover the diversity in current protocols without imposing partiality due to 269

biological differences and technical handling. 270

Gene Expression Quantification 271

For genome mapping and quantification of the UMI-data, we used the zUMIs42 (v.0.0.3) 272

pipeline with STAR17 (v.2.5.3a) and the mouse genome (Mus musculus.GRm38) together 273

with annotation files for GENCODE (vM15), Vega (VEGA68) and RefSeq (Release 85) 274

(Supplementary Table S2). For Smart-Seq2 we use the same pipeline settings as in 275

zUMIs, simply omitting the UMI collapsing step (Supplementary Table S3). 276

For transcriptome alignment, we downloaded transcriptome fasta files for each 277

annotation release. We used BWA18 (v0.7.12) alignment with assignment of reads to 278

features. Here, we define a feature as a gene including all its associated exons. In the 279

next step reads that aligned equally well to multiple different genes were filtered and 280

the remaining reads were tallied up per gene. For UMI data, the reads were collapsed. 281

For kallisto23 (v0.43.1), a transcriptome-guided pseudo-alignment method, we followed 282

the recommended quantification procedure to yield abundance estimates per equivalence 283

class and subsequently back-transformed to estimates per genes using custom R scripts, 284

again filtering out equally good alignments to multiple different genes. For SCRB-seq, 285

CEL-seq2 and Drop-seq libraries, we chose the UMI-aware quantification option. The 286

ERCC spike-in sequences were appended to the genome or transcriptome sequences for 287

quantification. 288

For the 10X data set we did not download the raw reads, but a UMI count matrix 289

were obtained using the Cell Ranger pipeline. This should yield similar results as zUMIs 290

with STAR as alignment method and GENCODE annotation. 291
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Simulations 292

We used powsimR to estimate, simulate and evaluate single cell RNA-seq experiments 293

10. PowsimR has been independently validated for benchmarking DE-approaches30. 294

The gene expression quantification using three different aligners in combination with 295

three annotations per library preparation protocol produced 36 count matrices plus one 296

10X count matrix. These count matrices are the basis for our estimation in powsimR. 297

Genes needed at least one read or UMI count in at least one cell to be considered 298

in the estimation for simulation parameters. To simulate spike-in data, we added an 299

implementation of the simulation framework for pure technical variation of spike-ins 300

described in Kim et al.43 to powsimR. The parameters required for these simulations 301

were estimated from 92 ERCC spike-ins in the SCRB-seq, CEL-seq2 and Smart-seq2 302

data, respectively2. 303

For a detailed evaluation of the pipelines, we simulated two groups of cells for 304

pairwise comparisons with the following three sample size setups: 96 vs. 96, 384 vs. 305

384 or 50 vs. 200 cells (Figure 1B). For simplicity, we kept the number of genes 306

that we simulated constant at 10,000. Furthermore, the two groups of cells can have 307

5%, 20% or 60% differentially expressed genes. To capture the asymmetry of observed 308

expression differences, we considered three setups of DE-patterns: symmetric (50% up- 309

and 50% down-regulated), asymmetric (75% up- and 25% down-regulated) or completely 310

asymmetric (100% up-regulated). The combination of these parameters results in a total 311

of 27 DE-setups that were then applied to the parameter estimates from 37 different 312

count matrices to simulate 20 replicates for each setting, producing a total of 19,980 313

simulated data sets. 314

These data sets were then analysed by a nearly exhaustive number of combinations of 315

five filtering and imputation strategies (gene dropout filtering, scone, SAVER, DrImpute) 316

together with seven normalisation approaches (TMM, MR, Linnorm, Census, Linnorm, 317

scran, SCnorm) with or without spike-ins, depending on library preparation protocol 318

and method (Figure 1C). The derived normalisation scaling factors were then used 319

in conjunction with the raw count matrices for DE-testing using four representative 320

approaches (T-Test, limma-trend, edgeR-zingeR, MAST). The resulting p-values were 321

corrected for multiple testing with Benjamini-Hochberg FDR and we applied a threshold 322

level of 10% to define positive test results. All these steps were seamlessly implemented 323

into powsimR (github: https://github.com/bvieth/powsimR). In total we analysed 2,979 324

different RNA-seq pipelines. 325

Evaluation metrics 326

To evaluate the normalisation results, we determined the root mean squared error 327

(RMSE) of a robust linear model using the difference between estimated and simulated 328

library size factors as response variable in rlm() implemented in R-package MASS44
329

(v.7.3-51.1). 330

All other measures are based on the final results of an entire scRNA-seq pipeline 331

ending with DE-testing. Knowing the identity of the genes that were simulated to show 332

differing expression levels and the results of the DE-testing, we used a number of metrics 333

related to the confusion matrix tabulating the number of true positives, false positives, 334

true negatives and false negatives. We define the power to detect differential expression 335

with the TPR (TPR = TP
TP+FN ). The false discovery rate is defined as FDR = FP

FP+TP . 336
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We combine these two measures in a TPR versus FDR curve to quantify the trade-off 337

between true and false discoveries in a genome-wide multiple testing setup as advocated 338

by45. We then summarise these curves by their partial area under curve (pAUC) of 339

TPR versus observed FDR that still ensures FDR control at the nominal level of 10%. 340

This way of calculating the AUC is ideal for data with relatively high true negative rates 341

as the partial integration does not punish methods that are over-conservative, i.e. that 342

stay way below the nominal FDR. 343

To summarise the whole confusion matrix in one representative value we chose 344

the Matthews Correlation Coefficient (MCC = TP∗TN−FP∗FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

), 345

because it is a balanced measure ensuring a reliable comparison of method performance 346

across all DE-settings45,46. As for the pAUC, we calculated the maximal value of MCC 347

where the cutoff still ensured FDR control at the nominal level of 10%. 348

To quantify the relative contribution of each step in the analysis pipeline, we used the 349

MCC as a response variable in a beta regression model implemented in R-package betareg 350

(v.3.1-1)47 with each individual pipeline step. Because the MCC assumes the extremes 351

of 0 and 1 in some DE-settings, we applied the recommended transformation, namely 352

MCCtransformed = MCC∗(n−1)+0.5
n , where n is the sample size48. The contribution is 353

then given by the difference between the full model pseudo−R2 containing all covariates 354

versus a model leaving one step out at a time. This is then scaled to the total variance 355

explained to give relative ∆R2 percentages. 356
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