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Abstract. Various distance functions for evaluating the differences be-
tween gene expression profiles have been proposed in the past. Such a
function would output a low value if the profiles are strongly correlated—
either negatively or positively—and vice versa. One popular distance
function is the absolute correlation distance, da = 1 − |ρ|, where ρ is
some similarity measures, such as Pearson or Spearman correlation. How-
ever, absolute correlation distance fails to fulfill the triangular inequality,
which would have guaranteed better performance at vector quantization,
allowed fast data localization, as well as sped up data clustering. In this
work, we propose dr =

√
1− |ρ| as an alternative. We prove that dr

satisfies the triangular equality when ρ represents Pearson correlation,
Spearman correlation, or Cosine similarity. We empirically compared dr
with da in gene clustering and sample clustering experiment, using real
biological data. The two distances performed similarly in both gene clus-
ter and sample cluster in hierarchical cluster and PAM cluster. However,
dr demonstrated more robust clustering. According to bootstrap experi-
ment, the number of times where dr generated more robust sample pair
partition is significantly (p-value < 0.05) larger. This advantage in ro-
bustness is also supported by the class “dissolved” event.

Keywords: Correlation · distance · triangular inequality · cluster · gene
expression analysis.

1 Introduction

In biological data analysis we are frequently required to evaluate how similar two
genetic expression profiles are. For example, when identifying gene expression
patterns across different conditions, when clustering genes of similar functions
[6,10], when detecting the gene temporal profile of relevant functional categories
by time-series data clustering [8], when measuring similarity between genes in
microbial community [5], and when inferring gene regulatory network [20].
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2 Chen et al.

Several distance functions are currently used to evaluate this similarity—the
most prominent one being the absolute correlation distance. The function re-
gards positive correlation and negative correlation equally, giving a value of zero
to highly correlated profiles (whether positively or negatively correlated), and
a value of one to uncorrelated profiles. More precisely, the absolute correlation
distance is defined as da = 1−|ρ|, where ρ can be Pearson correlation, Spearman
correlation, uncentered Pearson correlation (which is equivalent to Cosine simi-
larity), or Kendell’s correlation. Profiles which are highly correlated have ρ = 1
or ρ = −1, and hence resulting in da = 0; profiles which are unrelated have
ρ = 0, hence resulting in da = 1. The absolute correlation distance is widely
used, for example, in measuring the co-expression similarity between the profiles
of genes in WGCNA [18], clustering of gene expressions [4], and in defining the
abundance similarity between OTUs in microbiome area [5]. However, in spite of
its widespread usage, it has been noted that most variants of the measure, with
the exception of the absolute Kendall’s correlation, suffer from the drawback of
not satisfying the triangular inequality [8, 12].

A distance measure d which (1) satisfies the triangular inequality and (2)
has d(x, y) = 0 when x = y, is called a metric [1, 21]. Researchers have ob-
served that the performance of vector quantization improves when the measure
used is a metric [23]. A measure which fulfills triangular inequality would allow
faster data localization as well as speed up data clustering [1,22]. Many cluster-
ing algorithms, such as k-means [7] and DBSCAN [17], can exploit triangular
inequality to achieve better performance. For instance, a distance calculation
can be skipped as soon as it is found to exceed lower or upper bounds esti-
mated through triangular inequality [7]. The same strategies cannot be applied
on distance measures that violate triangular inequality without compromising
the quality of the clustering [1].

Variants of the absolute correlation distance are not the only distance mea-
sure used in gene expression analysis that violate triangular inequality. Prasad
et al. [24] compiled a list of distance measures for analysis on gene expression
profiles. Many of the measures in the list do not fulfill triangular inequality.
These include the Harmonically summed euclidean distance, Bray-Curtis dis-
tance, Pearson correlation distance, absolute Pearson correlation distance, un-
centered correlation distance, absolute uncentered correlation distance, Pearson
linear dissimilarity, Spearman correlation distance, absolute Spearman rank cor-
relation, and the Cosine distance.

In this work, we propose an alternative dr to the absolute correlation dis-
tance, defined as dr =

√
1− |ρ|, where ρ can be Pearson correlations, Spearman

correlations, or uncentered Pearson correlation (or Cosine similarity). We show
that dr, unlike da, satisfies the triangular equality for all of these correlations.

We compared the performance of dr to da in biological data clustering. The
clustering method includes hierarchical clustering and PAM (partitioning around
medoids) [16]. For ρ we used Pearson correlation, Spearman correlation, and
Cosine similarity. As data we used 16 normalized time-series datasets and cancer
samples cluster in 35 expression datasets. Performances for the sample cluster
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tests were evaluated with adjusted Rand index (ARI) [25], while those for the
gene cluster tests were evaluated with functional analysis.

Our result shows the two distance measures led to identical hierarchical clus-
ter partition in complete linkage and single linkage, but different in average
linkage. In the gene cluster experiment, dr outperformed da in 10, 9, and 10
datasets among 16 datasets for average linkage hierarchical cluster, and 9, 12,
7 for PAM experiment. In sample cluster experiment, da and dr obtained the
same ARI in at least 27 datasets among all 35 sample cluster dataset. The two
distances have comparable performances in real gene cluster and sample cluster,
although the clustering performed with dr are more robust than those with da.
When tested with multiple bootstrap test, dr outperformed da at robustness.
dr led to more robust clusters than da in both hierarchical cluster, when con-
sidering internal nodes, and PAM cluster when any of the correlations is used
as ρ. For PAM clustering with Pearson correlation used as ρ, in more than 34
datasets, dr generated significantly (p-vlaue < 0.05) more robust sample pair
partition than da. Similar results were obtained when ρ is Spearman correlation
and Cosine similarity. The robustness of dr is also supported by statistics on the
time a class “dissolved”.

We also compare dr to other variants of da where ρ is squared [27], that is,

ds =
√

1− ρ2. Our results showed dr to have better performance at clustering.

2 Method

2.1 Prove triangular inequality of the transformation on Pearson
correlation

The original absolute correlation distance da = 1 − |ρ| dissatisfy triangular in-
equality. We propose a new measure dr, as

dr(X,Y ) =
√

1− |ρ(X,Y )|

where X and Y are expression profiles, and ρ can be any one of Pearson corre-
lation coefficient, Spearman correlation, or uncentered Pearson correlation.

We first show that dr is a metric. Take X=(x1, x2, ..., xn), Y=(y1, y2, ..., yn)
and Z=(z1, z2, ..., zn), then the triangular inequality can be written as

dr(X,Y ) + dr(Y,Z) ≥ dr(X,Z) (1)

This demonstrates that dr satisfies the triangular inequality, when ρ is Pear-
son correlation coefficient, Spearman correlation or the uncentered Pearson cor-
relation, according to the details in the supplementary material.

2.2 Evaluation

To compare our modified absolute Pearson correlation distance dr(X,Y ) =√
1− |ρ(X,Y )| to the original absolute Pearson correlation distance da(X,Y ) =
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4 Chen et al.

1 − |ρ(X,Y )|, we performed clustering experiment on real microarray datasets,
including 16 gene time-series profile datasets [15] and 35 datasets for clustering
of cancer samples [26]. The clustering algorithms for the test include hierarchical
clustering and PAM. The input of a clustering task is a distance matrix and the
output is a partitioning which gives the clusters. We performed clustering by
both gene and sample.

For the sample clusters, we selected the number of clusters, k, according to
benchmark. We evaluated the clustering result by examining how consistent the
clusters are with the benchmark by ARI [25]. A greater ARI value indicates
higher concordance between the cluster partition and the benchmark partition.
Given a partition u and a reference partition v,

ARI =
a− (a+b)(a+c)

(a+b+c+d)

(a+b)(a+c)
2 − (a+b)(a+c)

(a+b+c+d)

, (2)

where a refers to the total number of sample pairs belonging to the same cluster
in both u and v, b refers to the total number of sample pairs in the same cluster
in u but in different clusters in v, c is the total number of sample pairs that are
in different clusters in u but in the same clusters in v, and d refers to the total
number of sample pairs that are in different clusters in both u and v.

For the gene clusters, we evaluated clustering performance by gene functional
analysis [14]. The number of clusters was determined according to Calinski-
Harabasz Index (CHindex) [2] as follows. The CHindex is given as

CHindex =
SSB
SSW

× N − k
k − 1

, (3)

where k is the number of clusters, and N is the total number of samples, SSW is
the overall within-cluster variance, SSB is the overall between-cluster variance.
A higher CHindex value implies a better solution. We used the value of k which
corresponds to the peak or at least an abrupt elbow on the line-plot of CHindex

value.
After obtaining the clusters, we performed GO enrichment for each generated

cluster with R package [3, 9, 13]. For each cluster generated by da, we got a set
of significant GO terms with p-value < 0.05, denoted as r1. Similarly, for cluster
generated by dr, we got a set of significant GO term r2. After that, for two
result list r1 and r2, we counted the number of times that the GO term of r1 has
smaller p-value than that of r2, denoted as 6= (r1 < r2), and the number of times
that GO term of r2 has smaller p-value than it of r1, denoted as 6= (r2 < r1).
Then we calculated

comparison(r1, r2) = log(
6= (r1 < r2)

6= (r2 < r1)
). (4)

Positive values of comparison(r1, r2) imply that r1 is better than r2, and neg-
ative values imply the opposite. So the negative values mean dr wins da in this
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dataset. If we change the order of the results under comparison (r1,r2) or (r2,r1),
it will only change the sign of the result, but not its absolute value.

2.3 Robustness test

To test the robustness of cluster with different distance measures, we performed
bootstrap experiments on the 35 microarray datasets in clustering cancer sam-
ples, and investigated the “dissolved” [11] event for class given by different cluster
processes. For each dataset, we first obtained an original partition po from the
original dataset. Then, for each dataset, suppose there are n samples in total,
we bootstraped 100 times. For each time, we randomly selected n samples with
replicate from the original dataset, and performed clustering on the resampled
data to get a resulting partition pi. We compared pi with po. Denote coj as class
j in po, cik as class k in pi. For each i, we calculated the Jaccard similarity,
Jijk, between each coj and all cik. Then we calculated Jij = max(Jijk). After
repeating 100 times, for each coj in po, we obtained 100 similarity values, re-
spectively denoted Jij for each of the bootstraps. If Jij < 0.5, we take coj as
having “dissolved” in bootstrap i. We counted the number of times the class coj
dissolved in 100 bootstrap. If this frequency is larger than 40, we regard coj as
being dissolved in the experiment. We repeated the bootstrap process for mul-
tiple iterations. We tested the robustness of the class by comparing the times it
dissolved in multiple iterations. Finally, we compared the performance of da and
dr by comparing the robustness of the classes they generated.

We also investigated sample pairs for robustness. We selected sample pairs
that are clustered together to see whether they are consistently clustered together
across multiple runs, in which case, the result for the sample pair is robust.
Similarly we examined sample pairs that are not clustered together to see if
they are consistently placed in different classes. For each sample pair i and j
in one dataset, we counted the number of times n1 they are sampled together
in 100 bootstraps, the number of times n2 they are clustered in the same class,
and the number of times n3 they are clustered in different classes. If n2 >
n3, then this pair is decided as consistently clustered, otherwise they are not
consistently clustered. For each sample pair, we calculated the ratios n2/n1 as
well as the median value mtogether for all the non-zero ratio values. This is
repeated for n3/n1 and their median, mnotTogether. Then we calculated υ =
mtogether∗mnotTogether. A larger υ implies a more robust clustering. We recorded
this as a “win” event for dr if υr > υa. For 35 files, we got a list of υ for dr and
da. We did Wilcox test for the list of υr and υa with alternative hypothesis as
true location shift is not equal to 0.To see wether υ for dr is significantly larger
than υ for da.

3 Results

3.1 Performance in gene cluster

First, we evaluated the performance of dr =
√

1− |ρ| and the da = 1−|ρ| on gene
clustering. As data we used 16 time-series profile datasets with normalization
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6 Chen et al.

from a previous work [15]. For each dataset we calculated the distances dr and
da for pairwise gene profiles, resulting in the distance matrices Mr and Ma.
Then, we applied hierarchical clustering and PAM for each distance matrix,
estimating the number of cluster k by CHindex. Since the data sets do not have
a reference partition for genes, we evaluated the performance with biological
functional analysis [14]. The clustering result with a higher scored GO term is
considered as the better solution. For the hierarchical clusters, we tested three
modes, namely complete linkage, single linkage, and average linkage. Clustering
using either dr or da led to identical dendrograms in complete linkage hierarchical
clustering as well as in single linkage.

Fig. 1. Result of comparing dr and da in gene clustering. Each column cor-
responds to one time-series profile dataset. Each row corresponds to one comparison
between dr and da while ρ is different correlation in certain clustering method. Color
refers to the value of comparison(r1, r2). Negative value implies that dr is better than
da, and positive values implies the opposite. For each comparison combination, there
is a barplot on the right side on the corresponding row. The x-axis of the barplot refers
to comparison(r1, r2).

For hierarchical clustering with average linkage, dr outperformed da in 10,
9, and 10 datasets among 16 datasets when ρ is any of Pearson correlation,
Spearman correlation, and Cosine similarity respectively (see Fig. 1). In PAM
experiments, dr outperformed da in 9, 12, 7. The two measures outperformed
each other for nearly equal number of times.
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3.2 Performance in sample cluster

To compare the performance of da and dr in sample clusters, we used 35 datasets
from a previous work [26]. The samples in each dataset is assigned a label such as
disease or healthy. We applied normalization to each dataset by scaling each gene
to the standard normal distribution. We then performed hierarchical clustering
and PAM, with the number of clusters k set as the number of the unique labels
in each dataset. We evaluated the performance by ARI [25], which measures the
consistency between cluster partition and benchmark labels.

For hierarchical cluster, the complete and single mode resulted in identical
dendrograms. When ρ is Pearson correlation, the hierarchical cluster in average
mode using both da and dr resulted in similar ARI across all 31 datasets (see
Fig. 2). When ρ is Spearman correlation or uncentered Pearson correlation, both
da and dr resulted in the same ARI in at least 27 datasets, for both methods of
clustering. For those datasets with different ARI in comparison, the number of
times dr outperforms da is close to the number of times da outperforms dr. As an
example, in PAM dr outperformed da 5 times while da outperformed dr 3 times
when ρ is Spearman correlation. These results show that they have comparably
good performance in our sample cluster experiment.

Fig. 2. Result of comparing dr and da in sample clustering. For each subfigure,
x-axis refers to different datasets, y-axis refers to the ARI value. A larger ARI implies
a better partitioning.

3.3 Detailed analysis with an example

To see how dr and da lead to different cluster results, we used one dataset as an
example and observed the clustering process. We used the 18-th dataset [19] in
the sample cluster experiment, performing hierarchical clustering, using Pearson
correlation as ρ.
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8 Chen et al.

In the beginning, the distance matrices Mr and Ma calculated according
to dr and da are the same in rank, in the sense that if we sort the values in
Mr and Ma increasingly, the two lists will have the same order. For hierarchical
clustering with the complete linkage and single linkage, dr and da led to the same
resultant dendrogram because they only take maximum or minimum distance
value when calculating the distance between cluster, thus introducing no new
value of distance during the entire clustering process. For hierarchical cluster
with average linkage, the same two samples are merged at the first step, thus
the smallest distances are combined into one cluster. Since an average distance
is computed of the newly generated cluster, a difference in rank emerges. In
Fig. 3A, the circle network shows the pairs which are different in the ranks of
the distance sets generated by da and dr in step 2 to step 6. In this dataset, da
and dr led to the same ARI even though the resultant dendrograms are different
in structure. The dendrogram for da is shown in Fig. 3B and that for dr in
Fig. 3C. The difference between the two dendrograms is colored in red. Fig. 3D
shows the distribution of the ranks which are different.

From step 2 to step 52, there exist different ranks in the distance of pairs in
two distance experiments. However, the pairs of rank 1 are the same, showing
that both da and dr led to the same two samples being merged into a new cluster.
In step 53, the pair of rank 1 started to differ, showing that different samples
in two distance experiments have been selected. This difference is reflected in
the resultant dendrogram. As shown in Fig. 3B and Fig. 3C, for da, c42 and
“PT1022” have been merged, while for dr, c42 and c51 have been merged (c
represents the internal node in the dendrogram).

In the sample cluster experiment, due to scarcity in the number of pairs (the
maximum number of samples in a single dataset is 248 among datasets in this
sample cluster experiments), the difference in ARI only occurred in 4 out of 35
datasets. In gene cluster experiment, the boosted number of pairs enlarged the
differences in the dendrogram, hence the partition is different in all 16 time-series
datasets.

3.4 Robustness test

We compared the methods’ robustness with bootstrap experiments in cluster-
ing cancer samples on 35 microarray datasets. This is done by examining the
number of sample pairs that are consistently clustered across 20 iterations. In
each iteration, we resampled 100 times for each dataset. For PAM, dr displayed
more robust clustering than da. Fig. 4A, B, C and D are for comparing dr and
da through PAM clustering using Pearson correlation as ρ. Fig. 4A shows the
number of times dr achieved a win over 20 iterations in each dataset. dr achieved
more win in 34 datasets among 35 datasets (see Fig. 4B). Fig. 4C shows the box
plot for υ over 20 iterations and 35 datasets.

Fig. 4D shows the results where we evaluated robustness through the number
of times a class is “dissolved”. The number of classes dissolved through da is
larger than it in dr in all 20 iterations. Hence, dr led to more robust clustering
results, consistent with our earlier results in Fig. 4A, B, C. Similar results are
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Fig. 3. An example for average linkage hierarchical cluster with da and dr.
A. The circle networks show the pairs where the distance is different in the ranks
generated by da and dr in step 2 to step 6. Nodes in network refer to samples for
clustering. Edges refer to the distance where two sample are different in rank in da
and dr. c1 refers to the the class generated in step 1, c2 refers to the class generated in
step 2. B. Dendrogram for da. C. Dendrogram for dr. The difference between the two
dendrograms is colored in red. D. Distribution of ranks which are different in da and
dr. E. Zoom in for the top 100 rank for Figure 3D.

obtained when ρ is Spearman correlation and Cosine similarity, as shown in
Fig. 4E and Fig. 4F.

For the hierarchical cluster, we examined all the internal nodes for the number
of times those class dissolved for each dataset. Fig. 4G shows the number of
datasets where dr achieved a win. Fig. 4H shows the comparison according to
each dataset. Both figures show that dr achieved a win for more times than da.
Across 20 iterations, the average number of times when dr wins is larger than
the time da wins. In summary, the use of dr resulted in more robust clustering
than da in both hierarchical and PAM clustering.

4 Discussion

Failure in satisfying the triangular inequality is a severe problem in absolute cor-
relation distance. We show how frequently this violation occurs in the 35 sample
cluster datasets [26] (see Fig.S1 in supplementary material). The distributions
differ across datasets, with fewer violations after normalization. The number of
violations also appear to decrease during the merge process in average linkage
hierarchical cluster. More violations (of up to 40%) appeared in the 16 gene
cluster dataset, as shown in Fig.S1D.

Besides, we also compare dr to squared correlation distance. In [27], two

variants of the absolute correlation were proposed, namely do =
√

1
2 (1− ρ) and

ds =
√

(1− ρ2), where Pearson correlations is used as ρ. These efforts would
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Fig. 4. Result for robustness test on da and dr. A,B,C,D. Results obtained using
Pearson correlation as ρ on PAM. A. The number of times dr win over 20 iterations in
each dataset. Each row corresponds to one dataset. B. p-values in testing the difference
between the number of times dr wins in all 35 datasets. Each point corresponds to
one dataset. C. Each box represents one υ value over 20 iterations per dataset. We
compared the box plot for da and dr in each dataset. The datasets in C have been
reordered to fit the decrease of y value to show the trend more clearly. D. The number
of classes ”dissolved” in da and dr across all 20 iterations. E. Result for Spearman
correlation as ρ in PAM clustering. F. Result for Uncentered Pearson correlation as ρ
in PAM clustering. G, H Results for Pearson correlation as ρ in hierarchical clustering,
considering all internal nodes as classes, G. Result for comparing da and dr by the
number of times classes ”dissolved” in 35 datasets over 20 iterations. The number of
times dr win, lose, or is equal to da. The green horizontal line represents the average
number across all the iterations where dr wins. The red horizontal line represent the
average number across all the iterations where dr lose. H. Result for comparing da and
dr per dataset.
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result in metric distances. The first variant, do, has a range of 0 to
√

2, which
results in inconsistencies with da, thus limiting its use. The squared correlation
distance, ds, on the other hand, is analytically less sensitive than dr in respond-
ing to changes in ρ. This observation is confirmed by our empirical tests using
hierarchical clustering (see Fig.S2 in supplementary material). In the tests, dr-
based clustering outperformed ds in 15 datasets, while losing out to ds in only
8.

5 Conclusion

The absolute correlation distance da = 1 − |ρ| is widely used in biological data
clustering in spite of its shortcoming of not satisfying the triangular inequality.
In this paper we proposed an alternative, dr, that does. Our comparison of dr
and da on gene clustering using 16 normalized time-series datasets and sam-
ple cluster in 35 expression datasets shows that the two distance measures led
to identical clusters in hierarchical clustering with complete linkage and single
linkage. The two distances have comparable performances in both gene cluster
and sample cluster, using both hierarchical as well as PAM cluster, although
dr-based clustering led to more robust clustering. The robustness of dr-based
clustering is also supported by evaluation based on the number of times that a
class ”dissolved”.
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Supplementary material

Supplementary figures

Fig. S1. Percentage of pairs which dissatisfies triangular inequality under
da. If the distance between any pair of points fails to observe the triangular inequality
for some third point, we consider the pair to have failed triangular inequality; the
percentage of pairs that do not satisfy triangular inequality is shown. A. Percentage
of pairs which dissatisfies triangular inequality, from step 2 to step 20 in hierarchical
clustering, within the 35 sample cluster datasets without normalization. B. Detailed
view of A. C. Percentage of pairs for the dataset with normalization, with scaling, for
each gene. D. Percentage of pairs in hierarchical clustering in gene clustering.
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Fig. S2. Result for comparing dr and ds. Pearson correlation is used as ρ. A.
Comparison on gene clustering using hierarchical cluster. X-axis refers to the value
of comparison(r1, r2). Negative value implies that dr is better than da, while posi-
tive value implies that ds is better. B. Comparison on gene clustering using PAM. C.
Comparison on sample clustering using hierarchical cluster. Y-axis refers to ARI. D.
Comparison on sample clustering using PAM.
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Proof of dr fulfilling the triangular inequality for Pearson correlation
as ρ

We define the distance of X and Y by dr(X,Y ) =
√

1− |ρ(X,Y )|, where ρ is
the Pearson correlation coefficient.

By the triangular inequality of distance in n-dimensional Euclidean space,
dr(X,Y ) + dr(Y,Z) ≥ dr(X,Z). Take X = (x1, x2, ..., xn), Y = (y1, y2, ..., yn)
and Z = z1, z2, ..., zn) such that∑n

i=1 x
2
i =

∑n
i=1 y

2
i =

∑n
i=1 z

2
i = 1∑n

i=1 xi =
∑n
i=1 yi =

∑n
i=1 zi = 0

(5)

Then the triangular inequality√√√√ n∑
i=1

(xi − yi)2 +

√√√√ n∑
i=1

(yi − zi)2 ≥

√√√√ n∑
i=1

(xi − zi)2 (6)

can be rewritten as√√√√1−
n∑
i=1

xiyi +

√√√√1−
n∑
i=1

yizi ≥

√√√√1−
n∑
i=1

xizi (7)

For data from a sample, the Pearson correlation coefficient can be calculated as
follows

ρXY =

∑n
i=1 xiyi − nx̄ȳ
(n− 1)sXsY

(8)

Since Pearson correlation coefficient is invariant under linear transformation,
which means ρX̃Ỹ =ρXY with X̃ = a(X − x̄) and Ỹ = b(Y − ȳ) satisfying∑n

i=1 x̃
2
i =

∑n
i=1 ỹ

2
i = 1∑n

i=1 x̃i =
∑n
i=1 ỹi = 0

(9)

where x̄ and ȳ are the sample means of X and Y, it can be rewritten as

ρXY = ρX̃Ỹ =

n∑
i=1

x̃iỹi (10)

Without loss of generality, we assume that the samples are normalized (i.e.
satisfying Equation 5).

Therefore, we have the modified Pearson distance

dr(X,Y ) =
√

1− |ρXY | =

√√√√1−

∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ (11)

To prove the triangular inequality of dr, we divide this into eight cases by the
signs of ρ.
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Case I When ρXY ≥ 0, ρY Z ≥ 0, ρXZ ≥ 0,

dr(X,Y ) + dr(Y, Z)− dr(X,Z)

=

√√√√1−
n∑
i=1

xiyi +

√√√√1−
n∑
i=1

yizi −

√√√√1−
n∑
i=1

xizi ≥ 0
(12)

by (7)

Case II When ρXY ≥ 0, ρY Z < 0, ρXZ < 0, take ci = −zi.

dr(X,Y ) + dr(Y,Z)− dr(X,Z)

=

√√√√1−
n∑
i=1

xiyi +

√√√√1 +
n∑
i=1

yizi −

√√√√1 +
n∑
i=1

xizi

=

√√√√1−
n∑
i=1

xiyi +

√√√√1−
n∑
i=1

yici −

√√√√1−
n∑
i=1

xici

≥ 0

(13)

by (7)

Case III The case when ρXY < 0, ρY Z ≥ 0, ρXZ < 0 is equivalent to case II.

dr(X,Y ) + dr(Y,Z)− dr(X,Z) ≥ 0 (14)

holds

Case IV When ρXY < 0, ρY Z < 0, ρXZ ≥ 0, take bi = −yi.

dr(X,Y ) + dr(Y,Z)− dr(X,Z)

=

√√√√1 +
n∑
i=1

xiyi +

√√√√1 +
n∑
i=1

yizi −

√√√√1−
n∑
i=1

xizi

=

√√√√1−
n∑
i=1

xibi +

√√√√1−
n∑
i=1

bizi −

√√√√1−
n∑
i=1

xizi

≥ 0

(15)

by (7)
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Case V When ρXY <0, ρY Z <0, ρXZ <0

dr(X,Y ) + dr(Y,Z)− dr(X,Z)

=

√√√√1 +
n∑
i=1

xiyi +

√√√√1 +
n∑
i=1

yizi −

√√√√1 +
n∑
i=1

xizi
(16)

Take bi = −yi. Therefore we have∑n
i=1 xibi > 0∑n
i=1 bizi > 0∑n
i=1 xizi < 0

(17)

dr(X,Y ) + dr(Y,Z)− dr(X,Z)

=

√√√√1 +
n∑
i=1

xiyi +

√√√√1 +
n∑
i=1

yizi −

√√√√1 +
n∑
i=1

xizi

=

√√√√1−
n∑
i=1

xibi +

√√√√1−
n∑
i=1

bizi −

√√√√1 +
n∑
i=1

xizi

>

√√√√1−
n∑
i=1

xibi +

√√√√1−
n∑
i=1

bizi −

√√√√1−
n∑
i=1

xizi

≥ 0

(18)

by (7)

Case VI When ρXY < 0, ρY Z ≥ 0, ρXZ ≥ 0,

dr(X,Y ) + dr(Y,Z)− dr(X,Z)

=

√√√√1 +
n∑
i=1

xiyi +

√√√√1−
n∑
i=1

yizi −

√√√√1−
n∑
i=1

xizi
(19)

Take ai = −xi,√√√√1 +
n∑
i=1

xiyi +

√√√√1−
n∑
i=1

yizi −

√√√√1−
n∑
i=1

xizi

=

√√√√1−
n∑
i=1

aiyi +

√√√√1−
n∑
i=1

yizi −

√√√√1 +
n∑
i=1

xizi

> 0

(20)

by (18)
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Case VII The case when ρXY < 0, ρY Z ≥ 0, ρXZ ≥ 0, is equivalent to case VI.

dr(X,Y ) + dr(Y,Z)− dr(X,Z) > 0 (21)

still holds.

Case VIII When ρXY ≥ 0, ρY Z ≥ 0, ρXZ < 0,

dr(X,Y ) + dr(Y,Z)− dr(X,Z)

=

√√√√1−
n∑
i=1

xiyi +

√√√√1−
n∑
i=1

yizi −

√√√√1 +
n∑
i=1

xizi

≥ 0

(22)

by (18)

dr(X,Y ) + dr(Y,Z) ≥ dr(X,Z) (23)

holds for any X, Y and Z.

Proof of dr fulfilling the triangular inequality for Spearman
correlation as ρ

We define the distance of X and Y by dr(X,Y ) = 1−
√
|ρ(X,Y )|, where ρ is the

Spearman correlation.
dr(X,Y ) = 1 −

√
|ρ(X,Y )|, when ρ is the Spearman correlation, can be re-

garded as a special case of dr(X,Y ) =
√

1− |ρ(X,Y )|, when ρ is Pearson corre-
lation, where X=(x1, x2, ..., xn), Y=(y1, y2, ..., yn) and x1, x2, ..., xn, y1, y2, ..., yn
are integers. Since the inequality holds for the case of Pearson correlation, the
inequality holds here.

Proof of dr fulfilling the triangular inequality for uncentered Pearson
correlation as ρ

We define the distance of X and Y by dr(X,Y ) =
√

1− |ρ(X,Y )|, where ρ is
the uncentered Pearson correlation coefficient.

Take X = (x1, x2, ..., xn), Y = (y1, y2, ..., yn) and Z = (z1, z2, ..., zn).
Then the triangular inequality

dr(X,Y ) + dr(Y, Z) ≥ dr(X,Z) (24)

For any data from a sample, the uncentered Pearson correlation coefficient
can be calculated as follows

ρXY =
1

n

n∑
i=1

(
xi

σ
(o)
x

)(
yi

σ
(o)
y

) (25)
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where σ
(o)
x =

√
1
n

∑n
i=1 x

2
i , σ

(o)
y =

√
1
n

∑n
i=1 y

2
i .

ρXY can be written as cosine similarity,

cosθ =
X · Y
|X||Y |

=

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

, (26)

where θ is the angle between X and Y . Suppose X, Y , and Z are on the same
plane. Let α denote the angle between X and Y , β denote the angle between Y
and Z, such that the angle between X and Z is α + β. To prove the triangular
inequality of Γ , we divide this into multiple cases according to the range of α
and β (sign of cosα and cosβ). Suppose 0 ≤ α ≤ π, 0 ≤ β ≤ π,

Case I 0 ≤ α ≤ π
2 , 0 ≤ β ≤ π

2 , 0 ≤ α+ β ≤ π
2 ,

dr(X,Y ) + dr(Y, Z)− dr(X,Z)

=
√

1− cosα+
√

1− cosβ −
√

1− cos(α+ β)

=
√

2(sin
α

2
(1− cosβ

2
) + sin

β

2
(1− cosα

2
))

≥ 0

(27)

by 1− cosβ2 ≥ 0, 1− cosα2 ≥ 0.

Case II 0 ≤ α ≤ π
2 , 0 ≤ β ≤ π

2 , π
2 ≤ α+ β ≤ π, π

4 ≤
α+β
2 ≤ π

2

dr(X,Y ) + dr(Y, Z)− dr(X,Z)

=
√

1− cosα+
√

1− cosβ −
√

1 + cos(α+ β)

=
√

2(sin
α

2
+ sin

β

2
− cosα+ β

2
)

≥ 0

(28)

can be written as

sin
α

2
+ sin

β

2
≥ cosα+ β

2

sin2
α

2
+ sin2

β

2
+ 2sin

α

2
sin

β

2
≥ 1− sin2α+ β

2

−cos(α+ β) + 2sin
α

2
sin

β

2
(1− cosα+ β

2
) ≥ 0

(29)

holds for 1− cosα+β2 ≥ 0, sinα2 sin
β
2 ≥ 0 and cos(α+ β) ≤ 0

Case III 0 ≤ α ≤ π
2 , π

2 ≤ β ≤ π, π
2 ≤ α+ β ≤ 3π

2
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dr(X,Y ) + dr(Y, Z)− dr(X,Z)

=
√

1− cosα+
√

1 + cosβ −
√

1 + cos(α+ β)

=
√

2(sin
α

2
(1 + sin

β

2
)− cosβ

2
(cos

α

2
− 1))

≥ 0

(30)

by sinα2 ≥ 0, cosβ2 ≥ 0, cosα2 − 1 ≤ 0, 1 + sinβ2 ≥ 0

Case IV π
2 ≤ α ≤ π, 0 ≤ β ≤ π

2 , π
2 ≤ α+ β ≤ 3π

2 and π
4 ≤

α
2 ≤

π
2

dr(X,Y ) + dr(Y, Z)− dr(X,Z)

=
√

1 + cosα+
√

1− cosβ −
√

1 + cos(α+ β)

=
√

2(sin
β

2
(1 + sin

α

2
)− cosα

2
(cos

β

2
− 1))

≥ 0

(31)

for sinβ2 ≥ 0, 1 + sinα2 ≥ 0, cosα2 ≥ 0, cosβ2 − 1 ≤ 0.

Case V π
2 ≤ α ≤ π, π

2 ≤ β ≤ π, π
2 ≤ α+ β ≤ 2π and cos(α+ β) > 0

and π
4 ≤

α
2 ≤

π
2 , π

4 ≤
β
2 ≤

π
2

dr(X,Y ) + dr(Y, Z)− dr(X,Z)

=
√

1 + cosα+
√

1 + cosβ −
√

1− cos(α+ β)

=
√

2(cos
α

2
(1− sinβ

2
) + cos

β

2
(1− sinα

2
))

≥ 0

(32)

by cosα2 ≥ 0, 1− sinβ2 ≥ 0, cosβ2 ≥ 0, 1− sinα2 ≥ 0

Case VI π
2 ≤ α ≤ π, π

2 ≤ β ≤ π, π
2 ≤ α+ β ≤ 2π and cos(α+ β) < 0,

and π
4 ≤

α
2 ≤

π
2 , π

4 ≤
β
2 ≤

π
2

dr(X,Y ) + dr(Y, Z)− dr(X,Z)

=
√

1 + cosα+
√

1 + cosβ −
√

1 + cos(α+ β)

=
√

2sin
α

2
sin

β

2
(
cosα2 + cosβ2
sinα2 sin

β
2

−
cosα2 cos

β
2

sinα2 sin
β
2

+ 1)

≥ 0

(33)

for cosα2 ≥ 0, cosβ2 ≥ 0, sinα2 ≥ 0, sinβ2 ≥ 0

cosα2 ≤ sin
α
2 , cosβ2 ≤ sin

β
2 and

cosα
2

sinα
2
≤ 1,

cos β
2

sin β
2

≤ 1
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