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Abstract  
 
High-throughput CRISPR/Cas9 knockout screens using a tiling-sgRNA design permit in situ 
evaluation of protein domain function. To facilitate de novo identification of essential protein 
domains from such screens, we developed ProTiler, a computational method for the robust 
mapping of CRISPR knockout hyper-sensitive (CKHS) regions, which refers to the protein regions 
that are associated with strong sgRNA dropout effect in the screens. We used ProTiler to analyze 
a published CRISPR tiling screen dataset, and identified 175 CKHS regions in 83 proteins. Of 
these CKHS regions, more than 80% overlapped with annotated Pfam domains, including all of 
the 15 known drug targets in the dataset. ProTiler also revealed unannotated essential domains, 
including the N-terminus of the SWI/SNF subunit SMARCB1, which we validated experimentally. 
Surprisingly, the CKHS regions were negatively correlated with phosphorylation and acetylation 
sites, suggesting that protein domains and post-translational modification sites have distinct 
sensitivities to CRISPR/Cas9 mediated amino acids loss. 
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Introduction 
 
Functional screens using CRISPR/Cas9 techniques facilitates the identification of essential genes 
on a genome-wide scale1-4. To fully define the function of protein-coding essential genes, it is 
necessary to distinguish essential protein domains that directly contribute to cellular phenotypes. 
In a CRISPR/Cas9 knockout experiment, the sgRNAs that target DNA sequences coding for 
essential protein domains often result in more significant dropout phenotype compared to other 
sgRNAs that target the same gene5. This is likely because CRISPR/Cas9 introduces small indels 
that create frameshift or in-frame mutations in a stochastic manner. Frameshift indels tend to 
abolish protein function, whereas in-frame indels, which result in the gain or loss of amino acids, 
may or may not impact function depending on where they occur. Proteins with small, in-frame 
indels in nonessential regions are likely to retain function. In contrast, proteins with indels in 
essential domains may display compromised protein function due to the disruption of an important 
structural motif or functional conformation (Fig. 1a). Therefore, a domain-focused CRISPR/Cas9 
knockout screen has been proposed to evaluate the functional importance of individual domains, 
leading the way for in situ protein functional studies5.  
 
In a pooled high-throughput CRISPR/Cas9 knockout screen, an sgRNA library contains tens of 
thousands of sgRNAs. This depth of coverage facilitates a tiling-sgRNA design that allows the 
investigation of domain functions across the entire protein for more than 100 protein-coding genes 
in a single experiment. Munoz et al. performed the first high-throughput tilling-sgRNA screen on 
159 genes, and confirmed that the sgRNAs that target pharmaceutically important protein domains 
are associated with stronger knockout effects6. Recently, a method combining tiling-sgRNA 
screens with positive selections has been developed to identify small-molecule drug target sites7. 
A computational pipeline, CRISPRO, maps functional scores of tiling sgRNAs to genomes, 
transcripts, protein coordinates and structures, providing general views of structure-function 
relationships at discrete protein regions8. 
 
Despite these advances, pooled high-throughput CRISPR/Cas9 screens are subject to inactive 
sgRNAs, off-target effects, and high noise-to-signal ratios, posing computational challenges to 
robust identification of essential domains. To address these challenges, we developed ProTiler, a 
computational method for the mapping of protein regions that are associated with strong sgRNA 
dropout effect in the screens, termed CRISPR knockout hyper-sensitive (CKHS) regions. We 
applied ProTiler to the dataset published by Munoz et al., aiming at a systematic evaluation of 
tiling-sgRNA screens for in situ protein functional analysis, as well as the potential for novel 
domain discovery.   
 
Results 

Essential protein domains are hyper-sensitive to CRISPR/Cas9 induced in-frame indels 
 
The basis of using tiling-sgRNA screens for protein domain analysis relies on an in-frame indel 
model, as shown in Fig. 1a. Recently, several laboratories showed that CRISPR/Cas9 indel patterns 
and in-frame mutational probabilities are predictable from sgRNA-targeted DNA sequences9, 10. 
Taking advantage of these findings, we first examined if the model is applicable to Munoz data. 
We used inDelphi11 to measure the in-frame probabilities for 28,951 sgRNAs, corresponding to 
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108 essential protein-coding genes. The median in-frame probability is 0.29, suggesting 
incomplete protein knockout in approximately half of diploid cells. To ensure robustness against 
prediction error, we selected the sgRNAs that were predicted to be very likely (top 5%, in-frame 
probability > 0.60, “high in-frame”) or very unlikely (bottom 5%, in-frame probability < 0.129, 
“low in-frame”) to create in-frame mutations (Fig. 1b). Consistent with the model, the “low in-
frame” sgRNAs showed greater dropout effect compared to the “high in-frame” sgRNAs (p=4.85e-
76, Supplementary Fig. 1). To assess whether the difference between two categories is associated 
with the functional essentiality of protein domains, we examined 15 domains targeted by small-
molecule compounds that have either been FDA-approved or advanced to clinical trials 
(Supplementary Table 1). Among the sgRNAs that target DNA sequences coding for these 
domains, no significant difference was observed between the “high in-frame” and the “low in-
frame” categories (p=0.358). In contrast, sgRNAs associated with the regions outside annotated 
domains showed significant difference (p=2.30e-11, Fig. 1c). These results indicate that the 
essential domains are hyper-sensitive to CRISPR/Cas9 induced in-frame indel mutations, 
supporting the underlying rationale of using tiling-sgRNA screens to predict domain essentiality.  
 
ProTiler enables fine-mapping of protein regions hyper-sensitive to CRISPR/Cas9 
knockouts 
 
We developed ProTiler, a computational method for the mapping of protein regions that are 
associated with CRISPR knockout hyper-sensitivity (CKHS). Fig. 1d outlines the major steps in 
ProTiler, exemplified by tiling-sgRNA screen data for SMC2, a component of the condensin 
complex. ProTiler first maps sgRNA dropout signals to the amino acids of the target proteins. The 
data points with weaker dropout effects compared to their neighbors are likely to be associated 
with inactive sgRNAs (Supplementary Fig. 2), thus are removed. The “outliers” in the remaining 
data points can be caused by non-Gaussian variations or additive off-target effects. We adjusted 
their values based on the mean and variation of the surrounding signals. To partition the protein 
into regions corresponding to different viabilities, we applied Tail-Greedy Unbalanced Haar 
(TGUH) transformation, a wavelet-based changing point detection algorithm with proven high 
accuracy and robustness under noisy conditions11. Each region is assigned a viability score to be 
the average of the data points in that region. Finally, an iterative algorithm classifies the regions 
into CKHS and non-CKHS categories. For SMC2, ProTiler detected three CKHS regions, 
corresponding to the N-terminus, C-terminus and the middle hinge domain. These CKHS regions 
are highly consistent with a model of condensin structure, in which SMC2 and SMC4 form a 
heterodimer via their hinge domains and their ATPase head domains are associated with kleisin 
subunits to create a ring-like structure12 (Fig. 1e). 
 
Among 108 essential proteins in the Munoz data, ProTiler identified 175 CKHS regions in 83 
proteins. 82.3% of these regions overlapped with Pfam annotated protein domains (Fig. 1f , 
Supplementary Table 3). At the amino acid (AA) level, 64.2% of the AAs in the CKHS regions 
are within Pfam domains, compared to 30.0% for non-CKHS regions (Fig. 1g). All of the 15 
previously mentioned drug target domains were identified (Supplementary Table 1), suggesting 
high sensitivity. To estimate the resolution, we aligned the borders of ProTiler-defined CKHS 
regions  to the boundaries of Pfam domains. The borders CKHS regions were enriched within 20 
AAs from domain boundaries and slightly outside the domains, suggesting that small deletions of 
AAs adjacent to the domains may also compromise protein function (Fig. 1h). Taken together, 
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these lines of evidence indicate high performance of ProTiler, in specificity, sensitivity, and 
resolution.  
 
CKHS mapping facilitates discovery of novel essential domains 
 
Among the ProTiler-identified CKHS regions, 17.7% did not overlap with any annotated Pfam 
domains, which may be associated with novel or previously undefined domains. Indeed, some of 
these regions have been functionally characterized but remain unannotated in the Pfam database. 
For example, a small CKHS region in the transcriptional coactivator YAP1 (AA 86-99) perfectly 
matches a twisted-coil structure, one of the three independent interfaces that interacts with TEAD1 
(Fig. 2a). Consistent with previous findings, our results showed the importance of YAP1-TEAD1 
interaction for cell viability, where the region of AA 86-99 is the most critical interaction site13 
(Fig. 2b). ProTiler also identified a CKHS region in the N-terminus (AA 55-184) of MPS1/TTK, 
which contains three tetratricopeptide repeat domains that govern localization of the protein to 
either the kinetochore or the centrosome14 (Supplementary Fig. 3) 
 
Inspired by these examples, we sought to identify novel essential domains within newly identified , 
but unannotated CKHS regions. After careful inspection, we focused on SMARCB1, one of the 
core subunits of the SWI/SNF chromatin remodeling complex, for further validation. ProTiler 
identified a CKHS region (AA 24-53) in the N-terminus of SMARCB1, in addition to the well-
characterized ATP-binding domain. We chose to examine this region because it habors recurrent 
missense mutations (P48L, R53L, E31L) and frameshift deletions (G29, S30) that have been 
identified in cancer patients15 (Fig. 2c). An earlier in vitro study showed that the N-terminus of 
SMARCB1 forms a putative DNA-binding structure16, but its function has not been investigated 
in situ. To validate the function of this region, we constructed vectors expressing either a full-
length or an N-terminally-truncated form of SMARCB1 (Fig. 2d, Supplementary Fig. 4). In the 
constructs, we introduced synonymous mutations to the ATP-binding domain, such that the 
knockouts with sgRNAs targeting the mutated sites would affect only the endogenous SMARCB1 
without compromising the expression of exogenous proteins. The vectors were lenti-viral 
introduced into DLD-1, a colon cancer line expressing a wild-type SMARCB1. Consistent with 
the screen data, CRISPR-mediated  knockouts of SMARCB1 hampered the growth of DLD-1 cells 
(Fig. 2e), which could be completely rescued by exogenous expression of the full-length protein , 
but not the truncated protein (Fig. 2f). Collectively, these lines of evidence confirmed the essential 
role of the CKHS region in the N-terminus of SMARCB1. 
 
CKHS profiling of multi-domain proteins reinforces recent findings in the literature 
 
Proteins containing multiple functional domains often have complex cellular roles, thereby posing 
challenges to their molecular characterization. A tiling-sgRNA screen can facilitate the assessment 
of domain functions in a high-throughput manner. We explored the CKHS profiles of 51 multi-
domain proteins in the Mounz dataset. Domains in these proteins are associated with a wide range 
of functions, including catalysis, protein-protein interactions, and DNA/RNA binding. For these 
51 proteins, 62.1% of the domains were marked with CKHS regions (Supplementary Table 4). 
Catalytic domains had the highest likelihood (93.2%) of  being essential, compared to the others 
(55.0%, p=3.71e-07, Fig. 3a). Although it is beyond the scope of this study to elucidate the 
mechanism underlying the domain essentiality for each protein, we sought to link  CKHS profiles 
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to recent findings in the literature, as a proof of value for novel protein functional discovery. Here, 
we present three examples. 
 
BRD4 is an acetyl-lysine reader known for its function as a transcriptional co-activator17. It is also 
a major target of several BET inhibitors that have progressed to clinical trials18. BRD4 contains 
two bromodomains (BD1 and BD2), an extra-terminal domain (ET), and a C-terminal 
domain(CTD). Despite high sequence similarity between BD1 and BD2, only BD1 showed hyper-
sensitivity to CRISPR knockouts (Fig. 3b). In line with this observation, an earlier investigation 
reported that inhibition of BD2 inhibition had a milder effect on BRD4-dependent gene 
transcription than BD1 inhibition19. Recently, several laboratories reported a BD1-dependent role 
of BRD4 in the DNA damage response pathway, raising additional concerns regarding BRD4 
function involved in the viabilities of normal and cancer cells20-22. To this end, our results 
highlighted the importance of bromodomain selectivity in the functional analysis and drug 
discovery regarding BRD4 inhibition.  
 
CTCF is a DNA-binding protein critical for maintaining high-order chromatin conformations23. It 
has 11 adjacent zinc-finger domains (ZF1-ZF11) that bind to DNA. Its CKHS profile showed that 
only ZF2-ZF9 are hyper-sensitive, suggesting that individual ZFs have unequal contributions to 
CTCF function (Fig. 3c). Recently, a crystal structure of CTCF-DNA interaction was released, 
which showed that ZF2-ZF9 are required for the binding to the full nucleotide motif sequence24 
(Fig. 3d). Thus, our high-resolution CKHS map is supported by this structure model, and in turn 
reinforces the new structural model in situ.  
 
CBP, a paralog of p300, is a transcriptional co-activator that has been extensively studied over the 
last two decades25. It has a catalytic core containing a HAT domain, a bromodomain, and a CH2 
region26. All the three regions were found to be CKHS in our results (Fig. 3e). Two protein-
interacting domains, TAZ1 and TAZ2, were also sensitive to CRISPR knockouts but to a lesser 
degree. In addition to these well-characterized domains, a ZZ-type zinc finger domain adjacent to 
the HAT domain is also in the CKHS region. Recently, the ZZ domain was characterized to be an 
acetyl-reader of histone H3, which modulates CBP/p300 enzymatic activity and their associations 
with chromatin27. Therefore, the CKHS profile of CBP further supports the critical role of the ZZ 
domain. 
  
Taken together, these examples indicate that the CKHS profiles can be used either to infer a new 
functional model, or to validate an existing model. Potential applications include, but are not 
limited to, prediction of potent inhibitor targets, discovery of alternative protein functions, in situ 
validation of protein structure, and identification of novel domain function. 
 
CKHS regions are negatively correlated with phosphorylation and acetylation sites  
 
Despite the consistency between CKHS regions and essential domains in CBP, we observed that 
a small region in the HAT domain (AA1550-1618) was insensitive to CRISPR knockouts. This 
region matches the auto-acetylation sites that are known to regulate the catalytic activity of CBP28 
(Fig. 4a). Similarly, a cluster of phosphorylation sites between the kinase domain and the RAS-
binding domain of BRAF also showed hypo-sensitivity despite of their critical role in regulating 
BRAF activity29. Another group of phosphorylation sites near AA600 of BRAF is in the CKHS 
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region, but showed lesser sensitivity compared to the adjacent kinase domain (Fig. 4b). Indeed, 
when we mapped the post-translational modification (PTM) sites onto our data, we found 
phosphorylation and acetylation sites were significantly depleted inside CKHS regions compared 
to outside CKHS regions (Fig. 4c). Therefore, the sensitivity to CRISPR knockouts is negatively 
correlated with phosphorylation and acetylation sites. Since those PTMs are often clustered to 
modulate protein conformation via electric charges, a possible explanation to this observation is 
that, a CRISPR/Cas9 mediated small deletion of amino acids near PTMs does not significantly 
reduce charges in a local region, which in turn has weaker impact on protein conformation and 
phenotype. Additionally, methylation and ubiquitination are also statistically associated with 
CKHS regions, but the explanations for these associations are yet elusive. Collectively, these 
observations indicate that protein domains and PTM sites have distinct sensitivities to 
CRISPR/Cas9 mediated amino acids loss, thus a careful inspection on PTM annotations will be 
helpful for the interpretation of tiling-sgRNA screen data.  
 
A proteome-wide prediction of CKHS regions for the rational design of CRISPR libraries 
 
The sgRNA knockout effects are associated with both the level of amino acid sequence 
conservation and the secondary structure of target protein regions8. CRISPRO introduced a 
machine-learning approach for the prediction of CRISPR/Cas9 knockout effect, using the features 
related to protein function and sequence-specific sgRNA activity. Consistently, we found that 
CKHS regions are associated with highly conserved regions (SIFT score) and molecular secondary 
structures (Fig. 4d, e). Since the tiling screen data are available for only a limited number of 
proteins, we sought to predict CKHS regions based on protein features in a proteome-wide scale. 
Recently, several variants of the CRISPR system have been developed for genome editing30-32, 
each associated with a unique sequence preference for sgRNA activity. Therefore, we aimed at a 
predictive model based on protein features alone, such that the predicted CKHS regions would be 
independent of the sgRNA target sequences and could be used for different CRISPR techniques.  
 
Using a bagging Support Vector Machine (bagging SVM)33 and a “leave-one-gene-out” cross-
validation strategy, we first examined the predictive power of individual features. The SIFT score 
showed the highest power (AUC=0.713), followed by domain (AUC=0.650) and PTM 
(AUC=0.632) annotations (Fig. 4f). As references, transcript variant coverage and AA position in 
relative to protein N- and C-termini have little predictive power, indicating that protein functional 
features are the determinants of CKHS profile. Our model further achieved a higher performance 
when it integrated SIFT score, secondary structure, protein domain and PTM annotations (Fig. 4g). 
Notably, excluding domain annotations did not significantly compromise the prediction, 
suggesting this approach can be applied to the proteins lacking domain information. A proteome-
wide prediction of CKHS regions is available in Supplementary Table 5. Finally, we tested 
whether the predicted CKHS regions can improve the sgRNA design, using two large-scale 
CRISPR/Cas9 screen datasets34, 35. Our results showed that the selection of sgRNAs based on the 
predicted CKHS prediction achieved greater dropout effects for known essential genes, suggesting 
the potential of applying our model to the rational design of CRISPR sgRNA libraries (Fig. 4h and 
Supplementary Fig. 5). 
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Discussion 
 
Essential protein domains are often associated with hyper-sensitivity to CRISPR/Cas9 knockouts, 
permitting in situ analysis of protein functions. Previous applications have mainly focused on the 
validation of annotated or hypothetical domains5, 7. A pooled CRISPR screen allows a tiling-
sgRNA design for more than 100 proteins, holding promise for de novo discovery of essential 
domains. Here, we propose ProTiler for the mapping of CKHS regions from a tiling-sgRNA 
CRISPR screen. The high performance of ProTiler enables the identification of multiple essential 
domains in a protein, exemplified by SMC2, CTCF and CBP in this article. Using ProTiler, we 
identified a novel essential domain in the N-terminus of SMARCB1, which was further 
experimentally validated. To the best of our knowledge, this is the first report of a de novo 
prediction of a novel essential domain from large-scale tiling-sgRNA screens. The CKHS regions 
are highly concordant with essential domains of different types, including those associated with 
catalysis, protein-protein interactions, and DNA or RNA binding. These results established the 
tiling-sgRNA approach as a general method for in situ protein functional studies. Of note, although 
this work is focused on identifying essential domains that contribute to cell viability, our approach 
can also be applied to the screens with other readouts or cell sorting systems to understand domain 
functions associated with various cellular phenotypes.  
 
We showed that the observation of CKHS regions is a consequence of in-frame indel mutations 
that influce protein domain function (Fig. 1c). It is possible that some protein-independent factors, 
such as transcription variants, reverse transcription, enhancers, and RNA modification sites, also 
contribute to the knockout hyper-sensitivity. By mapping sgRNAs to transcript variants, we 
observed a weak but statistically significant association between the coverage of variants and the 
CKHS regions (Supplementary Fig. 6). On the other hand, neither the variant coverage nor AA 
position had sufficient power to predict the CKHS regions, suggesting protein domain function is 
the major determinant of CKHS regions (Fig. 4f). Nevertheless, it would be helpful to check other 
possible confounding factors when interpreting data arising from a tiling-sgRNA screen.      
 
A typical design of a CRSIPR tiling sgRNA library includes all the target sequences followed by 
a PAM motif. Screens with such an “all-target” library are subject to inactive sgRNAs and off-
target effects. ProTiler addresses these computational challenges by removing weak signals and 
adjustment of outliers. We note that a number of computational tools have been developed to 
predict on-target activities and off-targets36-38. These tools are useful for  designing sgRNA 
libraries for genome-scale screens. However, filtering sgRNAs according to computational 
predictions will compromise the overall resolution of a tiling-sgRNA library, due to a considerable 
number of unavoidable computational false negatives. Similarly, sgRNA selection based on the 
prediction of in-frame probabilities may not be applicable for the design of tiling-sgRNA libraries, 
because only 11.2% of sgRNAs have a predicted in-frame probability greater than 0.5 (Fig. 1b). 
Therefore, an “all-target” or “nearly-all-target” library seems to be more plausible, where 
maximum information content is maintained. At the same time, it is likely that ProTiler can be 
further improved using an algorithm that prioritizes sgRNAs based on such computational 
predictions. 
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Methods  
 
Datasets and external software 
 
The Munoz dataset was retrieved from publication6. The Pfam domain annotation was downloaded 
from Pfam database39 (version 31.0). The PTM annotation was downloaded from PhosphoSitePlus 
database40. The Avana dataset and GeCKO dataset were downloaded from 
https://figshare.com/articles/DepMap_Achilles_19Q1_Public/7655150  and 
https://figshare.com/articles/DepMap_GeCKO_19Q1/7668407, respectively. The transcript 
annotation was downloaded from NCBI CCDS database41. The list of 15 drug targets were 
manually curated in reference to the publications in Supplementary Table 1. The in-frame 
probabilities were computed using inDelphi online version at https://indelphi.giffordlab.mit.edu/. 
The amino acid conservation scores were computed using SIFT42. The protein secondary structures 
were computed using RaptorX43.  
 
Identification of essential genes 
 
The Munoz dataset includes tiling-sgRNA screens on three cell lines (RKO, NCIH1299, and 
DLD1). We computed the average Z-score for each gene in each cell lines. Using a threshold of -
0.4, as suggested in the original publication, we identified 80, 87 and 90 essential genes for RKO, 
NCIH1299 and DLD1 cell lines, respectively (Supplementary Table 2). The union of the three 
consists 108 essential genes. If a gene is essential in more than one cell lines, we averaged the Z-
scores for each sgRNA to increase signal-noise ratio. 
 
The ProTiler algorithm 
 
ProTiler Takes three steps to identify CKHS regions: (1) weak signal removal and outlier 
adjustment; (2) Segmentation using TGUH method; (3) CKHS region calling from segments. 
 
Approximately 1/3 of the sgRNAs with a PAM-appended target are inactive, corresponding to 
weak dropout effects36, 44. To remove weak dropout signals, each sgRNA data point is compared 
to its k neighbors to the left and k neighbors to the right. The data point is removed if the signal is 
weaker than 2/3 of left neighbors and 2/3 of right neighbors. We set k=5, corresponding to an 
average window span of ~30 AAs, the size of the smallest protein domain module. To adjust the 
outliers, we estimate the variation of noise for each protein, by applying Median Absolute 
Deviation (MAD) on the differences between consecutive sgRNA signal. For each data point x, 
we compare it to the median value of its neighbors within a sliding window of size 11. If 𝑥 is larger 
than the median value by more than twice of MAD, 𝑥 is marked to be an outlier and is adjusted to 
be median+2*MAD. The outliers below the median values are detected and adjusted in a similar 
way.  
 
To segment the protein into regions corresponding to hyper- or hypo- sensitivity, ProTiler uses  a 
Tail-Greedy Unbalanced Haar (TGUH) method, which decomposes noisy 1-D data and detects 
multiple change-points based on wavelet transformation11. Different from regular binary 
segmentation methods that adopt a ‘top-down’ strategy to search for segments, TGUH uses a 
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‘bottom-up’ strategy via a natural unary-binary tree, making it more accurate in recognizing small 
segments. In ProTiler, TGUH is implemented using R package library “breakfast”.  
 
Suppose we have n segments, and the ith segment contains ki data points (i=1, 2, …, n), we 
assigned a score, si, to be the average of data points in the ith segment. The segments are sorted in 
ascending order of scores, such that 𝑠# ≤ 𝑠% ≤ ⋯ ≤ 𝑠'. Since a more negative value corresponds 
to a stronger dropout effect, the sorted list is in descending order of CRISPR knockout sensitivity. 
We iteratively assign the segments to the CKHS category. The pseudo-code of CKHS region 
calling is as follow. 
 
BEGIN 
 assign the first segment to be CKHS 
 for i in 2 to n  
  compute 𝑚)**+,'-. =

#
+0#

𝑠1𝑘1+0#
13#  

  compute 𝑚4')**+,'-. =
#
'0+

𝑠1𝑘1'
13+5#  

  if 𝑠+ < (𝑚)**+,'-. + 𝑚4')**+,'-.)/2  
assign the ith segment to be CKHS 

  else 
   break 
 merge adjacent CKHS segments in the protein into a single CKHS region 
END 
 
Prediction of CKHS region 
 
The protein features were extracted and encoded as follow: 
• Domain annotation: Each AA is assigned 1 if it is within a Pfam domain, otherwise assigned 0. 
• Conservation score: SIFT scores were computed for each amino acid, followed by a Gaussian 
kernel smoothing with bandwidth=10AA. The conservation scores were mean-centered for each 
protein.  
• Secondary structure: The secondary structures were predicted using RaptorX and were mapped 
to each AA. We assigned a code of [1,0] for alpha helix, [0,1] for beta sheet, and [0,0] for 
unstructured. 
• PTM: The annotations of phosphorylation, acetylation, methylation, and ubiquitination were 
mapped to the protein, followed by a Gaussian kernel smoothing with bandwidth=10AA.   
 
A bagging SVM model was implemented for prediction33. The model contains 100 SVMs. In each 
iteration of bootstrapping, 5% of the AAs were randomly selected with replacement from the 
CKHS regions, and the same number of AAs were selected from the non-CKHS regions. The final 
prediction score is the average of the outputs from all SVMs. The SVMs were implemented using 
R-package library “e1071”. 
 
To predict CKHS region in a proteome-wide scale, the bagging SVM model was trained using the 
CKHS regions identified in Munoz dataset, and was applied to all the CDS proteins. Predicted 
CKHS regions were further merged if their distance is less than 3 AAs. To reduce false positives, 
regions shorter than 10 AAs were discarded. In the analysis of Avana and GeCKO datasets, the 
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sgRNA dropout effects were estimated using CERES45, and were averaged across the cell lines. 
212 predefined core essential genes34 were used For Fig. 4h and Supplementary Fig. 5. 
 
Cell culture 
The colon cancer cell line DLD-1 was obtained from ATCC (CCL-221). Cells were maintained in 
RPMI-1640 medium with 10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin. 
Medium was refreshed every 2-3 days. HEK293T cells were cultured with DMEM medium 
supplemented with 10% FBS and 1% Penicillin-Streptomycin. 
 
sgRNA design and nucleotide modification of the ectopic SMARCB1 
The tiling sgRNA sequences of SMARCB1 were obtained from the previous publication6. The top 
three sgRNAs targeting SNF5_2 domain with most negative z-scores were chosen for further 
experiments. To ectopically expression of SMARCB1, the third bases of codons except the bases 
at PAM sites and methionine codon in the sgRNA targeting sequences were switched to other 
bases without coded amino acids changes. The tandem sequences coding Myc and 6xHis tags were 
appended at the 3’ terminus of modified SMARCB1. To generate truncated SMARCB1, the 
nucleotides coding the first 53 amino acids were removed and replaced by start codon on the basis 
of mutant full-length SMARCB1. 
 
Plasmid construction 
Human mutant full-length and truncated SMARCB1 were synthesized with modified nucleotides 
(Biomatik, USA). To construct overexpression plasmid, the mutant full-length and truncated 
fragments with Myc and His tags were respectively subcloned into pLVX-IRES-tdTomato vector 
(#631238, Clontech, USA) using restriction sites XbaI and BamHI. To knockout endogenous 
SMARCB1, sgRNA oligos were synthesized (VectorBuilder, USA) and cloned into 
lentiCRISPRv2 (#52961, Addgene) according to the protocol from Feng Zhang lab. The sgRNAs 
targeting AAVS1 gene were used as the controls. 
 
Virus packaging and infection 
HEK293T cells (4x106) were seeded into 10 cm cell culture dishes one day before transfection in 
fresh medium. Before transfection, 4 µg target plasmid, 4 µg psPAX2 and 2 µg pMD2.G plasmids 
were added in 1 ml pre-warmed Opti-MEM medium (Gibco, # 31985062), and then mixed with 
24 µl X-tremeGene HP DNA Transfection Reagent (Roche, #6366236001) at room temperature 
for 30 min. The mixture was dropwise added into each 10 cm dish containing HEK293T cells. 
Virus supernatant was collected 48 h after transfection, filtered through a 0.45 µm Acrodisc syringe 
filter, frozen in small volume and stored at -80oC until use. For infection, cells were seeded into 
6-well plates with 5x105 cells/well. After cells attached, lentivirus and 2 µl polybrene (Millipore, 
#TR-1003-G) were added with totally 2 ml medium in each well. Forty-eight hours after infection, 
cells were seeded into 10 cm dishes for Puromycin (2 µg/ml) selection. To determine multiplicity 
of infection (MOI), different volumes of lentivirus were used for infection. Cell survival rate was 
calculated after Puromycin selection. 
 
Knockout and ectopic expression of SMARCB1 
To test the knockout effects of sgRNAs targeting SMARCB1, viral lentiCRISPRv2-AAVS1sg and 
lentiCRISPRv2-SMARCB1sg were used for infection, followed by 3-7 days of Puromycin 
selection. To ectopically express mutant full-length and truncated SMARCB1, DLD-1 cells were 
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infected with lentivirus harboring pLVX-IRES-tdTomato, pLVX-IRES-tdTomato-
mutFullSMARCB1 and pLVX-IRES-tdTomato-mutTruncSMARCB1, cultured for several days 
and then sorted by FACS, respectively. For knockout rescue experiment, the sorted cells were 
infected with viral lentiCRISPRv2-AAVS1sg and lentiCRISPRv2-SMARCB1sg for SMARCB1 
knockout and subsequently selected by Puromycin.  

 
Western blot 
The knockout and overexpression of SMARCB1 were verified by Western blot. Briefly, the cells 
sorted by FACS and one week after lentiCRISPRv2-SMARCB1sg transfection were collected for 
protein extraction. The cells with pLVX-IRES-tdTomato and lentiCRISPRv2-AAVS1sg were 
used as the controls. Proteins were separated by SDS-PAGE and transferred onto PVDF 
membranes by semi-dry transferring system (Bio-rad, USA). After blocking with 5% skimmed 
milk, membranes were incubated with primary antibodies of rabbit anti-SMARCB1 (#A301-
087A-M, Bethyl), anti-His (#12698T, CST) and anti-Myc (2278T, CST) at the concentration of 
1:2000 at 4oC overnight. After TBST washing, secondary anti-rabbit (#NA934, GE) and mouse 
(#NA931, GE) antibodies were used for incubation at 1:10000 for 1-2 h. The bands were visualized 
by ECL reagent (#NEL104001EA, PerkinElmer). b-actin was used as the loading control. 
 
Cell growth assay 
After 3-7 days of Puromycin selection, the cells transfected with lentiCRISPRv2-SMARCB1sg 
were seeded into 96-well plates at the density of 1000 cells/well in 100 µl medium. Cell 
proliferation was determined by CellTiter-Glo assay (Promega, #G7572) daily according to the 
manufacturer’s instructions. Triple independent repeats were conducted.  
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Data availability 
The processed data are available in the Supplementary Tables of this article. The graphic views 
of CKHS profiles of 83 proteins are publicly available at 
https://figshare.com/s/27d52df30b2bcc7a038a. 
 
Software code availability 
ProTiler was written in Python (version 2.7) and R package (version > 3.5.0), implemented as open 
source software downloadable from https://github.com/MDhewei/ProTiler-1.0.0. 
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Fig. 1 Mapping CRISPR knockout hyper-sensitive (CKHS) regions with ProTiler.  a) An in-
frame indel model underlying the rationale of domain-associated CKHS regions. b) Distribution 
of in-frame probability of the sgRNAs targeting essential proteins in Munoz data. The probabilities 
were predicted using inDelphi11. The Top 5% and bottom 5% sgRNAs are defined as “high in-
frame” (blue) and “low in-frame” (red), respectively.  c) Box-plots comparing the dropout effects 
between “high in-frame” and “low in-frame” sgRNAs that target proteins containing drug target 
domains. The p-values were computed using the Mann-Whitney test. d) The workflow of ProTiler. 
The dot plots show the dropout effects, in Z-score6 (Y-axis), of sgRNAs targeting the gene coding 
for SMC2. A negative value of the Z-score corresponds to a dropout effect. Each dot represents an 
sgRNA mapped to the amino acid location (X-axis). The grey dots and blue dots represent filtered 
and remaining sgRNAs, respectively. The red line shows the segmented protein regions and their 
dropout signal levels. e) A structural model of condensin complex, in which SMC2 and SMC4 
form a heterodimer via hinge domains, and their ATPase head domains (N and C) are associated 
with kleisin subunits to create a ring-like structure. f) Categorization of CKHS regions based on 
the molecular functions of overlapped protein domains. g) A bar chart showing the proportion of 
AAs in Pfam domains, for CKHS regions and non-CKHS regions respectively. The p-value was 
empirically computed by random simulation. h) Distribution of distances between the borders of 
CKHS regions and domain boundaries as defined in the Pfam database. 
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Fig. 2. CKHS profiling facilitates the identification of unannotated essential domains.  a) The 
CKHS profile and domain annotation of YAP1. b) The 3D structure of the YAP1&TEAD1 
interaction (PDBID: 3KYS). Three interfaces of YAP1 interacts with TEAD1. The CKHS region 
(interface 3) is highlighted in red. c) The CKHS profile and domain annotation of SMARCB1, 
aligned with mutation frequency retrieved from the COSMIC database46. d) A schematic 
representation of exogenous full-length or a truncated form (△AA 2-53) of SMARCB1, as well 
as the endogenous protein. The CKHS region is highlighted in red. A Myc and 6xHis tag sequence 
were appended to the C-terminus of exogenous proteins. Three sgRNAs were designed to target 
the endogenous SMARCB1 DNA sequence coding for the SNF5_2 domain. Synonymous 
mutations were introduced into the exogenous proteins, except the bases at the PAM (red) and 
methionine codon. e) Proliferation of DLD-1 cells after SMARCB1 knockout by CRISPR/Cas9. 
The sgRNAs targeting the AAVS1 locus were used as the controls. All the data points represent the 
average of three biological replicates. *** : p<0.001, T-test. f) Proliferation of DLD-1 cells with 
exogenous expression of full-length or the truncated form of SMARCB1 shown in d), in 
combination of endogenous SMARCB1 knockout. The red and black dash lines represent 
proliferations of vector control cells with or without SMARCB1 knockout, respectively. All the 
data points represent the average of three biological replicates. **: p<0.01. T-test. 
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Fig. 3. The CKHS profiles of multi-domain proteins. a) All the domains in 51 multi-domain 
proteins were categorized based on their molecular functions. The bar chart shows the proportion 
of CKHS-overlapped domains for each category. The p-value was computed based on hyper-
geometric distribution. b) The CKHS profile and domain annotation of BRD4. c) The CKHS 
profile and domain annotation of CTCF.  d) The 3D structure of CTCF (ZF2-ZF9) complexed with 
DNA (PDB IDs: 5UND;5T0U). The DNA binding motif 47 is aligned with the structure. e) The 
CKHS profile and domain annotation of CBP. The ZZ domain is highlighted in red 
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Fig. 4. CKHS regions are associated with post-translational modifications (PTMs) and are 
predictable from protein features.  a) A zoomed-in views of CKHS profile, domain annotation, 
and acetylation sites of CBP (AA 1100-1900). The Y-axis of the PTM profiles represent the 
number of publication references collected at https://www.phosphosite.org. b) The CKHS profile, 
domain annotation, and phosphorylation sites of BRAF. c) A bar chart showing the density of PTM 
sites inside or outside of  the CKHS regions. The p-values were computed based on hypergeometric 
distribution. d) A box-plot showing the association between CKHS regions and amino acids  
conservation (SIFT score). The p-value was computed using the Mann-Whitney test. e) A bar chart 
showing the distribution of secondary structures for CKHS and non-CKHS regions. The p-value 
was computed using the Chi-square test. f) A bar chart showing the predictive power of bagging 
SVM, in ROC-AUC score, using individual protein features. The AA position in the protein and 
the transcript coverage are used as references. g) ROC curves showing the predictive powers using 
all protein features, all features other than domain annotation, and domain annotation alone, 
respectively. h) The sgRNAs targeting core essential genes were categorized based on predicted 
CKHS regions. The cumulative distributions of sgRNA dropout effects in Avana dataset35 are 
shown for each category. The p-values were computed using Kolmogrov-Smirnov test. 
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