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12 Abstract

13 Novel infectious diseases continue to emerge within human populations. Predictive studies 

14 have begun to identify pathogen traits associated with emergence. However, emerging 

15 pathogens vary widely in virulence, a key determinant of their ultimate risk to public health. 

16 Here, we use structured literature searches to review the virulence of each of the 214 known 

17 human-infective RNA virus species. We then use a machine learning framework to determine 

18 whether viral virulence can be predicted by ecological traits including human-to-human 

19 transmissibility, transmission routes, tissue tropisms and host range. Using severity of clinical 

20 disease as a measurement of virulence, we identified potential risk factors using predictive 

21 classification tree and random forest ensemble models. The random forest model predicted 

22 literature-assigned disease severity of test data with 90.3% accuracy, compared to a null 

23 accuracy of 74.2%. In addition to viral taxonomy, the ability to cause systemic infection, 

24 having renal and/or neural tropism, direct contact or respiratory transmission, and limited (0 < 

25 R0 ≤ 1) human-to-human transmissibility were the strongest predictors of severe disease. We 

26 present a novel, comparative perspective on the virulence of all currently known human RNA 

27 virus species. The risk factors identified may provide novel perspectives in understanding the 

28 evolution of virulence and elucidating molecular virulence mechanisms. These risk factors 

29 could also improve planning and preparedness in public health strategies as part of a 

30 predictive framework for novel human infections.

31
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32 Author Summary

33 Newly emerging infectious diseases present potentially serious threats to global health. 

34 Although studies have begun to identify pathogen traits associated with the emergence of 

35 new human diseases, these do not address why emerging infections vary in the severity of 

36 disease they cause, often termed ‘virulence’. We test whether ecological traits of human 

37 viruses can act as predictors of virulence, as suggested by theoretical studies. We conduct 

38 the first systematic review of virulence across all currently known human RNA virus species. 

39 We adopt a machine learning approach by constructing a random forest, a model that aims to 

40 optimally predict an outcome using a specific structure of predictors. Predictions matched 

41 literature-assigned ratings for 28 of 31 test set viruses. Our predictive model suggests that 

42 higher virulence is associated with infection of multiple organ systems, nervous systems or 

43 the renal systems. Higher virulence was also associated with contact-based or airborne 

44 transmission, and limited capability to transmit between humans. These risk factors may 

45 provide novel starting points for questioning why virulence should evolve and identifying 

46 causative mechanisms of virulence. In addition, our work could suggest priority targets for 

47 infectious disease surveillance and future public health risk strategies.

48

49 Blurb

50 Comparative analysis using machine learning shows specificity of tissue tropism and 

51 transmission biology can act as predictive risk factors for virulence of human RNA viruses.
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52 Introduction 

53 The emergence of novel infectious diseases continues to represent a threat to global public 

54 health. Emerging pathogens have been defined as those newly recognised infections of 

55 humans following zoonotic transmission, or those increasing in incidence and/or geographic 

56 range [1]. High-profile examples of emerging pathogens include the discovery of the novel 

57 MERS coronavirus from cases of respiratory illness in 2012 [2], and the expansion of the 

58 range of Zika virus across the South Pacific and the Americas [3]. The emergence of 

59 previously unseen viruses means that the set of known human viruses continually increases 

60 by around 2 species per year [4,5]. Initial comparative studies identified trends among 

61 emerging human pathogens, for example, increased risk of emergence for pathogens with 

62 broad host ranges, and RNA viruses [6–9]. However, more recent comparative analyses have 

63 focused on risk factors for specific pathogen traits, such as transmissibility [10–12]. Here, we 

64 focus on understanding the ecological determinants of pathogen virulence, using all currently 

65 recognised human RNA viruses as a study system.

66

67 Emerging RNA viruses vary widely in their virulence, with some never having been associated 

68 with human disease at all. For example, Zaire ebolavirus causes severe haemorrhagic fever 

69 with outbreaks, including the 2014 West African outbreak showing case fatality ratios of ~60% 

70 or more [13,14]. In contrast, human infections with Reston ebolavirus have never exhibited 

71 any evidence of disease symptoms [15]. Applying the comparative approach to understand 

72 the ecology of virulence could offer valuable synergy with studies of emergence, towards 

73 prioritisation and preparedness in the detection of potential new human viruses [16]. 
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74

75 Few comparative analyses have addressed the risk factors driving human pathogen virulence 

76 to date (but see [17–19]), and none have exhaustively investigated virulence across the 

77 breadth of all currently recognised human RNA viruses. Several hypotheses regarding how 

78 pathogen ecology affects virulence have been derived from theoretical models of evolution. 

79 For example, the trade-off hypothesis was developed based on the assumption that rate of 

80 transmission between individuals may increase as a function of virulence, but there will be a 

81 consequential increase in host mortality (or decrease in host recovery as the inverse of 

82 mortality). As a result, pathogen fitness will be subject to trade-off between virulence and 

83 transmissibility over a longer infectious window [20,21]. The trade-off hypothesis is highly 

84 debated as it is difficult to empirically characterise due to dependency on many other aspects 

85 of host-pathogen coevolution [22,23]. However, comparative analysis has been suggested as 

86 one method to assess evidence for a virulence-transmission trade-off [22]. Based on these 

87 core principles, we hypothesised that limited capability to transmit between humans may act 

88 as a predictive risk factor for virulence. We also note that evolutionary trade-offs will only 

89 apply to coevolved host-virus relationships and that many human viruses result from zoonotic 

90 cross-species transmission without onward transmission or adaptation. In these cases, 

91 ‘coincidental’ non-adapted virulence may result [24,25], and as above, we hypothesised that 

92 limited human-to-human transmissibility may predict higher virulence.

93

94 Transmission route may also influence the evolution of virulence. Ewald [18] suggested that 

95 vector-borne pathogens should be less constrained by costs of virulence, i.e. morbidity and 
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96 immobilisation of the vertebrate host does not impede transmission if it occurs through an 

97 arthropod vector. We therefore hypothesised a vector-borne transmission route would predict 

98 higher virulence. 

99

100 Several studies have also suggested a link between host range and virulence. Assuming an 

101 evolutionary trade-off exists between virulence and transmission rate, higher virulence may 

102 result in pathogens with narrower host ranges following selection pressures to increase 

103 transmission rate within the specialist host(s) [19]. Furthermore, the degree of virulence in 

104 experimental infections with Drosophila C virus was more similar between closely related 

105 hosts [26]. Though similar ideas have not yet been formally tested for human infections, 

106 parasite infectivity correlates with phylogenetic relatedness among primates [27]. We 

107 hypothesised infection of non-human primates as a specific related host taxon would predict 

108 higher virulence. Finally, although yet unexplored via theoretical models, it may be an intuitive 

109 expectation that systemic infections present with more severe disease than local infections. A 

110 broader tissue tropism could therefore also predict higher virulence.

111

112 We aimed to determine patterns of virulence across the breadth of all known human RNA 

113 viruses. We then aimed to use predictive machine learning models to ask whether ecological 

114 traits of viruses can act as predictive risk factors for virulence in humans. Specifically, we 

115 examined hypotheses that viruses would be more highly virulent if they: lacked transmissibility 

116 within humans; had vector-borne transmission routes; had a narrow host range including non-

117 human primates; or had greater breadth of tissue tropisms. 
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118 Results

119 Virulence of Human RNA Viruses

120 Following [5], as of 2015 there were 214 RNA virus species containing viruses capable of 

121 infecting humans, spanning 55 genera and 21 families (with one species unassigned to a 

122 family). Using a two-category system, 58 of these were rated as causing ‘severe’ clinical 

123 disease and 154 as ‘nonsevere’ following systematic literature review (Fig 2, see also S1 

124 Table, S2 Table). Two virus species could not be assigned a disease severity rating and were 

125 excluded from all analyses (Hepatitis delta virus, which is reliant on Hepatitis B virus 

126 coinfection; and Primate T-lymphotropic virus 3, which may be associated with chronic 

127 disease like other T-lymphotropic viruses, but has not been known in humans long enough for 

128 cohort observations). Disease severity differed between viral taxonomic families (Fisher’s 

129 exact, 1000 simulations, p < 0.001), with Arenaviridae, Filoviridae and Hantaviridae having 

130 the highest fractions of severe-rated virus species (Fig 2). Fatalities were reported in healthy 

131 adults for 64 viruses and in vulnerable individuals only for an additional 26 viruses, whilst 8 

132 viruses rated ‘nonsevere’ had severe strains, 6 of which belonged to the family 

133 Picornaviridae.

134

135 Classification Tree Risk Factor Analysis

136 To find predictive risk factors for virulence, we firstly divided the 212 virus species into a 

137 training set (n = 181) and test set (n = 31) based on taxonomy and severity in order to 

138 minimise potential biases from trait imbalances. Using the training set, we then constructed a 

139 single classification tree that aimed to optimally classify viruses in virulence based on their 
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140 ecological traits. The final pruned classification tree included variables relating to 

141 transmissibility, tissue tropism and taxonomy (Fig 2). Severe disease was predicted by the 

142 model for four generalised groups: i) viruses with a neural or systemic primary tropism with 

143 limited human-to-human transmissibility (excluding orthomyxoviruses, phenuiviruses and 

144 reoviruses); ii) viruses known to have a renal tropism (primary or otherwise); iii) hantaviruses; 

145 and iv) retroviruses with sustained human-to-human transmissibility.

146

147 Random Forest Risk Factor Analysis

148 Although the illustrated classification tree identified several risk factors, this represents one of 

149 many possible trees, as tree structure is dependent on the exact sampling partition between 

150 training and test data. We therefore constructed a random forest model containing 5000 

151 individual trees, each built using a bootstrapped sample of the training data and a randomly 

152 restricted subset of predictors. 

153

154 Aggregated over these bootstrapped trees, the most informative predictor variables for 

155 classifying virulence were taxonomic family and primary tissue tropism (Fig 4). However, 

156 transmission route, human-to-human transmissibility level, and having a known neural or 

157 renal tropism were also relatively informative, broadly mirroring the risk factors observed in 

158 the single tree. Host range predictors were generally uninformative.

159

160 To quantify the effects of the most informative risk factors, partial dependences were 

161 extracted from the random forest, describing the marginal predicted probabilities of severe 
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162 virulence associated with each virus trait (Fig 5, S3 Table). Averaging across other predictors, 

163 viruses having tissue tropisms within neural, renal or systemic across multiple organ systems 

164 presented the highest risk of severe virulence, whilst respiratory and gastrointestinal tropisms 

165 presented the lowest risk. An increased probability of severe virulence was also observed for 

166 viruses transmitted by direct contact or respiratory routes, and those with known but limited 

167 human-to-human transmissibility.

168

169 Model Performance in Predicting Viral Virulence

170 Although the single classification tree model predicted the training set well, it did not appear 

171 generalisable to novel data within the test set. The single tree correctly predicted virulence 

172 ratings from literature-based criteria for 24 of 31 viruses in the test set giving a resulting 

173 accuracy of 77.4% (95% confidence interval [CI]: 58.9% - 90.4%), no evident improvement on 

174 the null model assigning all viruses as nonsevere (null accuracy = 74.2%). The random forest 

175 gave better predictive accuracy, correctly predicting virulence ratings for 28 of 31 test set 

176 viruses (accuracy: 90.3%, 95% CI: 74.3% - 98.0%), significantly greater than the null 

177 accuracy (exact binomial one-tailed test, p = 0.025). The random forest also achieved 

178 superior performance when considering sensitivity, specificity, True Skill Statistic, and the 

179 negative predictive value as a performance measure prioritising correct classification of 

180 ‘severe’-rated viruses (Table 1). The random forest also outperformed the classification tree in 

181 AUROC, area under the receiver operating characteristic curve (Table 1, Fig 3).

182 All misclassifications from the random forest occurred within the genus Flavivirus (S2 Table). 

183 Within the test set, there were two flaviruses rated as severe from literature protocols that 
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184 were predicted to be nonsevere (Rio Bravo virus, Yellow fever virus), and one nonsevere 

185 flavivirus predicted to be severe (Usutu virus).

186

187 The observed predictor importances and risk factor directions were robust to constructing 

188 random forest models for subsets of viruses, removing those with low-certainty data or data 

189 from serological evidence only (S1 Fig, S2 Fig), and similar performance diagnostics were 

190 obtained (S5 Table). Redefining our virulence measure to integrate information on known 

191 fatalities and differences with subspecies or strains in an ordinal ranking system (S5 Table) 

192 did not improve predictive performance (S6 Table). Using alternative virulence 

193 measurements, the most informative variables and virus traits predicting severity showed 

194 good agreement with that of the main analysis (S3 Fig, S4 Fig) though when definitions of 

195 ‘severe’ virulence were widened, hepatic tropism became an informative predictor towards 

196 disease severity.
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197 Discussion

198 We present the first comparative analysis of virulence across all known human RNA virus 

199 species to our knowledge. We find that disease severity is non-randomly distributed across 

200 virus families and that beyond taxonomy, severe disease is predicted by risk factors of tissue 

201 tropism, and to a lesser extent, transmission route and level of human-to-human 

202 transmissibility. In both the classification tree and random forest, viruses were more likely to 

203 be predicted to cause severe disease if they caused systemic infections, had neural or renal 

204 tropism, transmitted via direct contact or respiratory routes, or had limited capability to 

205 transmit between humans (0 < R0 ≤ 1). These risk factors were robust to alternative modelling 

206 methods, alternative definitions of virulence, and exclusions of poor quality data.

207

208 Ecology and Evolution of Risk Factor Traits

209 Primary tissue tropism was the most informative non-taxonomic risk factor (Fig 4) and the first 

210 split criteria in the classification tree (Fig 2), with specific neural tropism and generalised 

211 systemic tropism predicting severe disease (Fig 5). Few evolutionary studies have directly 

212 predicted how tissue tropism should influence virulence. The identified risk factor tropisms 

213 could be explainable as a simple function of pathology occurring in multiple or sensitive 

214 tissues respectively, increasing intensity of clinical disease. However, it has been suggested 

215 that an excessive, non-adapted virulence may result if infections occur within non-target 

216 tissues that do not contribute to transmission [28]. Furthermore, the evolutionary determinants 

217 of tissue tropism themselves are not well understood [29]. Tissue tropism should be a key 

218 consideration for future comparative and evolutionary modelling efforts.
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219

220 We also found viruses primarily transmitted by direct contact and respiratory routes to have a 

221 higher predicted probability of severe virulence than viruses transmitted by more indirect 

222 faecal-oral or vector-borne routes. Contrastingly, Ewald [18] reported a positive association 

223 between virulence and vector-borne transmission in comparative analyses pooling several 

224 microparasite types, including a limited range of viruses, and suggested virulence has fewer 

225 costs to viral evolutionary fitness if vector transmission can occur independent of host health 

226 and mobility. The opposite association we observe may imply that even if transmission occurs 

227 via an indirect route such as through an arthropod vector, virulence could bring ultimate 

228 fitness costs due to host mortality before encountering a vector, fomite, etc.. 

229

230 The relationship between virulence and transmissibility appears more complex. Firstly, the 

231 random forest model suggested a lower risk of severe virulence for viruses with sustained 

232 human-to-human transmissibility (level 4) (Fig 5). This would lend support towards 

233 hypothesised virulence-transmissibility trade-offs [20–22] and suggests that the adaptation 

234 necessary to develop efficient human-to-human transmissibility could result in attenuation of 

235 virulence in RNA viruses. Sustained transmissibility appeared to positively predict severe 

236 disease for a specific subset of four viruses in the single classification tree (Fig 2), all 

237 retroviruses causing chronic syndromes (HIV 1 and 2, Primate T-lymphotropic virus 1 and 2), 

238 which are likely subject to different evolutionary dynamics – if disease occurs after the 

239 infectious period, virulence brings fewer costs to pathogens from host mortality, essentially 

240 ‘decoupling’ from transmission [24]. We note only three non-chronic level 4 viruses rated 
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241 severe: Severe acute respiratory syndrome-related coronavirus, Yellow fever virus, and Zaire 

242 ebolavirus.

243

244 Secondly, cross-species infections incapable of onward transmission (sometimes termed 

245 ‘dead-end’ infections) have been predicted to result in higher virulence as without any 

246 evolutionary selection, viral phenotypes within that host will be non-adapted, i.e. a 

247 ‘coincidental’ by-product [24,25]. However, we did not observe viruses incapable of human-to-

248 human transmissibility to be more virulent, the highest risk instead being observed for viruses 

249 with self-limited transmissibility. This may suggest that if virulence is entirely unselected in 

250 dead-end infections, ultimate levels of virulence could also feasibly turn out to be 

251 ‘coincidentally’ low. 

252

253 Taxonomic family being a highly informative predictor in the random forest implies that there 

254 is a broad phylogenetic signal to virulence, but it is also highly likely that the explanatory 

255 power represents a proxy for many other phylogenetically-conserved viral traits that are 

256 challenging to implement in comparative analyses of this scale, such as variation at the 

257 proteomic, transcriptomic or genomic level; or further data beyond simple categorisations, e.g. 

258 specific arthropod vector species. Untangling these sources of variation from different scales 

259 of traits will be a critical next step in predictive modelling of viral virulence.

260

261 Analytical Limitations

262 We acknowledge several limitations to the quality of our data, as with any broad comparative 
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263 analysis. Risk factor data was problematic or missing for certain viruses, e.g. natural 

264 transmission route for viruses only known to infect humans by accidental occupational 

265 exposure, and tissue tropism for viruses only known from serological evidence. However, the 

266 consistency of findings between alternative, stricter definitions of virulence and data subsets 

267 removing viruses with suspected data quality issues suggests scarcity of data does not bias 

268 our analyses.

269

270 Virulence also exhibits substantial variation at the sub-species level, i.e. between strains or 

271 variants. For example, severity of Lassa virus disease superficially varies with infection route 

272 and geography, though this appears to be driven by variation between genotypes [30]. 

273 Confirmatory analyses at a finer resolution would validate our identified risk factors, e.g. 

274 phylogenetic trait models of individual genera or species. Furthermore, clinical symptoms are 

275 also subject to traits of the host individual, e.g., immunocompetence, age, microbiome 

276 [31,32]. Our risk factor analysis brings a novel, top-down perspective on virulence at the 

277 broadest level, though caution must be exerted in extrapolating the risk factors we find to 

278 dynamics of specific infections.

279

280 Implications for Public Health

281 The value of predictive modelling as an inexpensive and rapid tool for risk assessments 

282 during early emergence is increasingly recognised [16]. Instances where machine learning 

283 model predictions do not match outcomes could indicate likely candidates for outcome class 

284 changes, e.g. future reservoir hosts for zoonotic disease [33]. Severe virulence was predicted 
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285 for one virus rated ‘nonsevere’ from literature protocols, Usutu virus, potentially suggesting 

286 the capability for more severe disease to be recognised in future. 

287

288 However, our models have restricted function in predicting the virulence of a newly identified 

289 virus. Although taxonomy is easily accessible and applicable to give simple virulence 

290 estimates, the most informative non-taxonomic predictor, tissue tropism, is not likely to be 

291 known with confidence before clinical observations of virulence. One way to address this 

292 paucity of data lies in the potential predictability of tissue tropism from cell receptors, and 

293 more challengingly, cell receptors from viral sequence data [34], an increasingly accessible 

294 information source during early emergence following advances in genomic sequencing 

295 methods [35]. However, the exact links between tissue tropism, cell receptors, and sequences 

296 are currently a critical knowledge gap, but a potentially powerful focus for future predictive 

297 efforts. A further key area will be the possibility to directly infer virulence itself from other 

298 aspects of sequence data, e.g. genome composition biases, which have recently 

299 demonstrated the potential to predict reservoir host taxa and arthropod vectors via machine 

300 learning [36].

301

302 More widely, our analysis brings a novel focus that complements comparative models 

303 predicting other aspects of the emergence process, such as zoonotic transmission 

304 [8,9,27,33], propagation within humans [10,11] or geographic hotspots [37,38]. After 

305 continued calls for model-informed strategy, predictive studies are now beginning to shape 

306 surveillance and prevention with respect to emerging zoonoses [16,39], with virulence being 
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307 been suggested as a factor to direct viral surveillance [40], albeit in non-human hosts. The 

308 virulence risk factors we identify suggest that broadly targeting direct contact or respiratory 

309 transmission interfaces within ecological systems and/or tailoring detection assays towards 

310 certain virus families (e.g. Hantaviridae) or tissues (e.g. neural tissue) could contribute to a 

311 viable strategy to detect future virulent zoonoses.

312

313 Conclusion

314 This work adds to the comparative and predictive modelling efforts surrounding emerging 

315 infectious diseases. Here, we contribute a novel focus in ecological predictors of virulence of 

316 human RNA viruses, which can be combined in holistic frameworks with other models such 

317 as those predicting emergence dynamics. As a predictive model, the featured random forest 

318 offers valuable inference into the evolutionary determinants of virulence in newly emerging 

319 infections. We propose that future predictive studies and preparedness initiatives with respect 

320 to emerging diseases should carefully consider potential for human virulence.
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321 Materials and Methods

322 Data Collection

323 For each of the 214 recognised human-infective RNA virus species following standardised 

324 data compilation efforts and critical assessment protocols [5], data on virulence and potential 

325 risk factors were collected via a systematic search and review of clinical and epidemiological 

326 literature. The following were consulted in turn: clinical virology textbooks [41–43]; references 

327 from the dataset described by [5]; literature searches using Google Scholar (search terms: 1) 

328 [virus name] AND human, 2) [virus name] AND human AND case, 3) [virus name] AND 

329 human AND [fatal* OR death], 4) [virus name] AND human AND [tropi* or isolat*]. Searches 3 

330 and 4 were carried out only when fatality or tropism data respectively were not already found 

331 from previous sources. Data collection and virus name search terms included the full species 

332 name, any synonyms or subspecies (excluding vaccine strains) and the standard virus 

333 abbreviation as given by ICTV Online Virus Taxonomy [44].

334

335 Although many possible measurements of virulence have been proposed [45,46], even simple 

336 metrics like case fatality ratio (CFR) have not been calculated for the majority of human RNA 

337 virus species. Therefore, virulence was rated using a simple two-category measure of severity 

338 of typical disease in humans. We rated viruses as ‘severe’ if they firstly had ≥5% CFR where 

339 data was available (159/214 viruses including those with zero CFR), otherwise, we rated 

340 viruses as ‘severe’ if they had frequent reports of hospitalisation, were associated with 

341 significant morbidity from certain conditions (haemorrhagic fever, seizures/coma, cirrhosis, 

342 AIDS, hantavirus pulmonary syndrome, HTLV-associated myelopathy) or were explicitly 
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343 described as “severe” or “causing severe disease” (S1 Table, S2 Table). We rated viruses as 

344 ‘nonsevere’ if none of these conditions were met. Note that this led to ‘nonsevere’ ratings for 

345 some viruses with clinically severe, but rare syndromes, e.g. Dengue virus can cause 

346 haemorrhagic dengue fever, though this is much rarer than typical acute dengue fever 

347 [41,42]. To address this, data were also collected on whether the virus has caused fatalities in 

348 vulnerable individuals (defined as age 16 and below or 60 and above, immunosuppressed, 

349 having co-morbidities, or otherwise cited as being ‘at-risk’ by sources for specific viruses) and 

350 in healthy adults, and whether any ‘nonsevere’ virus has atypically severe strains (for 

351 example, most infections with viruses within the species Human enterovirus C cause mild 

352 disease; however, poliovirus, which causes severe paralytic disease, is also classified under 

353 this species). These were examined both individually and within a composite six-rank system 

354 (S5 Table).

355

356 Data were compiled for four main risk factors: transmission route(s) and tissue tropisms, 

357 sourced from literature search exercises as described; and extent of human-to-human 

358 transmissibility and host range, sourced directly from [5]. Although evolutionary theories also 

359 predict virulence to vary with other traits, e.g. environmental survivability [47], paucity of data 

360 or nestedness within taxonomic family prevented their inclusion in our analysis. Transmission 

361 route was defined as the primary route the virus is transmitted by, classified as either vector-

362 borne (excluding mechanical transmission), direct contact, faecal-oral or respiratory 

363 transmission. Tissue tropism was specified the primary organ system the virus typically 

364 infects or targets, classified as either neural, gastrointestinal, hepatic, respiratory, circulatory, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 19, 2019. ; https://doi.org/10.1101/581512doi: bioRxiv preprint 

https://doi.org/10.1101/581512
http://creativecommons.org/licenses/by/4.0/


Tropism and Transmission Ecology Predict Viral Virulence – Brierley et al. 19

365 vascular, or ‘systemic’ (primary tropism within multiple organ systems). We accepted isolation 

366 of the virus, viral proteins or genetic material, or diagnostic symptoms of the virus (such as 

367 characteristic histological damage) as evidence of infection within an organ system but did not 

368 accept generalised symptoms such as inflammation. However, many human viruses were 

369 isolated from blood with no further evidence of any specific tissue tropisms (n = 69). 

370 Therefore, we also included an additional ‘viraemia’ category in this variable to indicate only 

371 blood presence was known. Binary variables were also constructed denoting whether viruses 

372 were ever known to utilise a) more than one transmission route/tissue tropism, and b) each 

373 individual transmission route and tropism, including additional categories that were never 

374 among the primary routes/tropisms (food-borne and vertical transmission; renal, cardiac, joint, 

375 reproductive, sensory, skin, muscular and endocrine tropism).

376

377 Human-to-human transmissibility was specified using infectivity/transmissibility levels, based 

378 on previous conceptual models and a systematic compilation and review of evidence [4,5,12]. 

379 Level 2 denotes a virus capable of infecting humans but not transmitting between humans (R0 

380 = 0), level 3 denotes a virus with limited human-to-human transmissibility (0 < R0 ≤ 1); and 

381 level 4 denotes a virus with sustained human-to-human transmissibility (R0 ≥ 1). Host range 

382 was specified as either ‘narrow’ (infection known only within humans or humans plus non-

383 human primates) or ‘broad’ (infection known in mammals or animals beyond primates) [5]. 

384 Binary variables were also sourced as to whether infection was known within a) humans only, 

385 b) non-human primates, c) other mammals and d) birds. All virulence and risk factor data 
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386 pertained to natural or unintentional artificially-acquired human infection only and data from 

387 intentional human infection, animal infection, and in vitro infection were not considered. Viral 

388 taxonomy was included in analyses by specifying both genome type and taxonomic family as 

389 predictors. All virulence and risk factor data are available via Figshare [48].

390

391 Machine Learning Risk Factor Analysis

392 Firstly, the 212 retained virus species were split into a training set for model fitting and test set 

393 for model evaluation at an approximate 75:25 ratio using stratified random sampling based on 

394 taxonomic family and virulence rating. Fisher’s exact tests confirmed equal representation of 

395 families (p = 0.991) and virulence ratings (p > 0.999) between training and test data. 

396 Comparative risk factor analyses were firstly carried out by constructing a classification tree 

397 using the R package ‘rpart’ v4.1-11 [49]. Classification trees are a simple form of machine 

398 learning models that aim to optimally classify data points into their correct category of 

399 outcome variable based on a structure of binary predictor splits. Tree-based methods are 

400 well-suited for comparative analyses where confounding often results from taxonomic signal 

401 or suites of otherwise co-occurring traits as their high structure can intuitively fit complex non-

402 linear interactions and local effects.

403

404 A tree model was fitted to the training set to predict virulence ratings by ‘recursive 

405 partitioning’, the repeated splitting of the dataset using every possible binary permutation of 

406 each predictor, and retaining the split that minimises the Gini impurity [50], defined as 1 ‒

407  for outcome variable  with  possible ratings and  denoting proportion of ∑𝑛
𝑖 = 1𝑝(𝑥𝑖)2 𝑥 𝑛 𝑝(𝑥𝑖)
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408 data with rating , which is equal to zero for perfectly separated data. To prevent overfitting, 𝑖

409 the tree was pruned back to the optimal branching size, taken as most common consensus 

410 size over 1000 repeats of 10-fold cross-validation. To validate the predictive power of the 

411 classification tree, predictions of virulence rating were generated when applied to the test set. 

412 Tree accuracy was then calculated comparing the proportion of correct predictions compared 

413 to literature-assigned ratings (assuming these to be 100% accurate as the ‘gold standard’ or 

414 ‘ground truth’). As virulence ratings were imbalanced (i.e. only a minority of viruses cause 

415 severe disease, so correct nonsevere classifications are likely to be achieved by chance), 

416 accuracy was directly compared to the null model, i.e. a model with no predictors that 

417 predicted ‘nonsevere’ for all viruses. Additional diagnostics of interest (sensitivity, specificity, 

418 negative predictive value, and True Skill Statistic [60]) were also obtained.

419

420 Although classification trees have the advantage of presenting an interpretable schematic of 

421 risk factor effects and directions, individual tree structures may be sensitive to particular data 

422 points and have no intuitive measures of uncertainty. Therefore, we constructed a random 

423 forest, an ensemble collection of a large number of bootstrapped classification trees [51]. 

424 Having many predictor variables compared to the relatively limited and fixed number of 

425 human-infective RNA virus species, random forests handle such ‘large p, small n’ data 

426 architecture much more easily than traditional regression frameworks [52]. Missing data in all 

427 predictors was imputed using the R package ‘missForest’ v1.4 [53]. Then, using the R 

428 package ‘randomForest’ v4.6-12 [53], a random forest was created containing 5000 individual 

429 trees, each built upon a bootstrapped sample of the training data and restricted to test a 
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430 randomly selected subset of predictors (k = 5) at each split during construction and 

431 convergence confirmed by inspection. Predictive power of the random forest model was 

432 evaluated using the test set as for the classification tree and receiver operating characteristic 

433 curves were visualised and area under curves calculated to directly compare the two machine 

434 learning methodologies.

435

436 Due to their high structuring, random forest models cannot give a simple parametric predictor 

437 effect size and direction (e.g., an odds ratio). Instead, potential virulence risk factors were 

438 evaluated using two metrics: variable importance and partial dependence. Variable 

439 importance is calculated as the mean decrease in Gini impurity following tree splits on the 

440 predictor and can be considered as how informative the risk factor was towards correctly 

441 predicting virulence. Partial dependence is calculated as the mean relative change in log-

442 odds of predicting severe virulence, which were converted to predicted probabilities of 

443 severity associated with each risk factor. Partial dependences describe marginal effects 

444 averaging across any influence of other predictors and as such, a single estimate may not 

445 reflect any complex risk factor interactions. Therefore, to test hypotheses regarding virulence 

446 risk factors, we present both random forest partial dependences and the less robust but more 

447 accessible single classification tree for its ease of interpretation in risk factor structure, and 

448 directly compare the statistical validity of both methods by plotting receiver operating 

449 characteristic curves. All modelling was carried out in R v 3.4.3 [54], with a supporting R script 

450 available via Figshare [48].

451
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581 Figure Captions

582 Fig 1. Virulence of currently known human RNA viruses with respect to taxonomy.

583 Number of known human RNA virus species split by ICTV taxonomic family. Shading denotes 

584 disease severity rating.

585

586 Fig 2. Final pruned classification tree predicting disease severity for 181 human RNA 

587 viruses.

588 Final classification tree structure predicting virulence. Viruses begin at the top and are 

589 classified according to split criteria (white boxes) until reaching terminal nodes with the 

590 model’s prediction of disease severity, and the fraction of viruses following that path correctly 

591 classified, based on literature-assigned ratings (shaded boxes). ‘Tp: primary’ denotes primary 

592 tissue tropism, ‘Tr level’ denotes level of human-to-human transmissibility, and ‘Tp: renal.’ 

593 denotes having a known renal tissue tropism. 

594

595 Fig 3. Receiver operating characteristic curve for tree-based machine learning models.

596 Plotted model predictive performance for the single classification tree (bold black line) and the 

597 random forest (bold red line) models when applied to the test set. Y axis denotes sensitivity 

598 (or true positive rate; proportion of viruses rated ‘severe’ by literature protocol that were 

599 correctly predicted as ‘severe’ by the model), and X axis denotes 1 – specificity (or false 

600 positive rate; proportion of viruses rated ‘nonsevere’ by literature protocol that were incorrectly 

601 predicted as ‘severe’ by the model). Dashed black line indicates null expectation (i.e. a model 
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602 with no discriminatory power). Model profiles further toward the top left indicate a better 

603 predictive performance.

604

605 Fig 4. Variable importances from the random forest model.

606 Importance of each predictor variable across the 5000 bootstrapped trees within the random 

607 forest, calculated as the mean decrease in Gini impurity following a tree split based on that 

608 predictor and scaled against the most informative predictor (taxonomic family) to give a 

609 relative measure. ‘Tp’ denotes tissue tropism predictor, ‘Tr’ denotes transmission route 

610 predictor, ‘Tr level’ denotes level of human-to-human transmissibility, and ‘H’ denotes host 

611 range predictor. 

612

613 Fig 5. Partial dependences from the random forest model in predicting severe 

614 virulence.

615 Predicted probability of classifying virulence as ‘severe’ for each of the most informative risk 

616 factors (primary tissue tropism, any known neural tropism, any known renal tropism, level of 

617 human-to-human transmissibility, and primary transmission route). Probabilities given are 

618 marginal, i.e. averaging over any effects of other predictors. Dashed line denotes raw 

619 prevalence of ‘severe’ virulence rating among the training dataset.

620
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621 Tables

622 Table 1. Predictive performance metrics for classification tree and random forest 

623 model.

624 Sensitivity, specificity, NPV (negative predictive value; proportion of ‘nonsevere’ predictions 

625 that correctly matched literature rating), TSS (true skill statistic; sensitivity + specificity – 1) 

626 and AUROC (area under receiver operating characteristic curve) for predictive model 

627 methods applied to predict virulence of 31 viruses within the test set.

628

Model Sensitivity Specificity NPV TSS AUROC

Classification tree 0.625 0.826 0.864 0.451 0.636

Random forest 0.750 0.957 0.917 0.707 0.957

629

630
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631 Supporting Information Captions

632 S1 Table. Virulence literature rating data for human RNA virus training dataset.

633 Virulence data for the 181 virus species in the training set, ordered by genome type and 

634 taxonomy, including disease severity rating and supporting criteria for viruses rated ‘severe’, 

635 whether virus is known to have caused fatalities in vulnerable individuals and/or otherwise 

636 healthy adults, and whether virus is known to have ‘severe’ strains if species is rated 

637 ‘nonsevere’. CFR = Case fatality ratio, HPS = Hantavirus pulmonary syndrome, HFRS = 

638 Hantavirus haemorrhagic fever with renal syndrome, HTLV = Human T-lymphotropic virus, 

639 AIDS = Acquired immunodeficiency syndrome.

640

641 S2 Table. Virulence literature rating data and predictions for human RNA virus test 

642 dataset.

643 Virulence data for 31 virus species in the test set, ordered by genome type and taxonomy, 

644 whether virus is known to have caused fatalities in vulnerable individuals and/or otherwise 

645 healthy adults, and whether virus is known to have ‘severe’ strains if species is rated 

646 ‘nonsevere’. Both disease severity rating/supporting criteria following the literature protocol 

647 given in the main text, and predicted probability of severe disease from the random forest 

648 model are given. Bold type denotes where predictions do not match literature-based ratings. 

649 CFR = Case fatality ratio, HPS = Hantavirus pulmonary syndrome.

650
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651 S3 Table. Partial dependence from the random forest model for all predictor variables.

652 Partial dependence given as marginal relative change in log-odds and predicted probability of 

653 classifying virulence as ‘severe’ from the random forest for all predictor variables.

654

655 S4 Table. Diagnostics of random forest models using stringent data subsets. 

656 Predictive performance metrics of random forest models applied to datasets excluding viruses 

657 with low-certainty data (n denotes number of viruses excluded). In each case, data were 

658 randomly resampled using stratification upon taxonomic family and virulence rating, resulting 

659 in differing training and test sets from the main analysis. Otherwise, random forest 

660 methodology follows that of Materials & Methods.

661

662 S5 Table. Six-rank system of classifying virulence for human RNA viruses.

663 Six-rank system of classifying human RNA virus virulence with available data (specifically, 

664 severity rating from main text, fatalities in vulnerable individuals and healthy adults, and 

665 severe strains), along with example viruses and number of viruses fitting each exclusive 

666 rank’s criteria.

667

668 S6 Table. Diagnostics of random forest models predicting alternative metrics of 

669 virulence.

670 Predictive performance metrics of random forest models predicting alternative virulence 
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671 measures using different two-category definitions of ‘severe’ (n denotes number of viruses 

672 considered ‘severe’ using that definition). Vulnerable individuals are defined as those age 16 

673 and below, age 60 and above, immunosuppressed, having co-morbidities, or otherwise cited 

674 as being ‘at-risk’. Ranks follow those given in Table S5. Otherwise, random forest 

675 methodology follows that of Materials & Methods.
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676 S1 Fig. Variable importances from random forest models using stringent data subsets.

677 Variable importance for virulence risk factors from random forest models applied to datasets 

678 excluding a) viruses only known to infect humans from serological evidence (n = 36), b) 

679 viruses with < 20 recognised human infections (n = 55), and c) viruses with poor data quality 

680 in at least one predictor (n = 71). Variable importance is calculated as the relative mean 

681 decrease in Gini impurity scaled against the most informative predictor within each model, 

682 alongside importances from the main analysis for comparison. ‘Tp’ denotes tissue tropism 

683 predictor, ‘Tr’ denotes transmission route predictor, ‘Tr level’ denotes level of human-to-

684 human transmissibility, and ‘H’ denotes host range predictor.

685

686 S2 Fig. Partial dependences from random forest models using stringent data subsets.

687 Predicted probability of classifying virulence as ‘severe’ for each of the most informative risk 

688 factors from random forest models applied to datasets excluding a) viruses only known to 

689 infect humans from serological evidence (n = 36), b) viruses with < 20 recognised human 

690 infections (n = 55), and c) viruses with poor data quality in at least one predictor (n = 71), 

691 alongside predicted probabilities from the main analysis for comparison. Probabilities given 

692 are marginal, i.e. averaging over any effects of other predictors. As each data subset required 

693 random resampling of the training and test data, note that the raw prevalence of ‘severe’ 

694 virulence differed between each model (see S4 Table).

695
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696 S3 Fig. Variable importances from random forest models using stringent data subsets. 

697 Variable importance for virulence risk factors from random forest models predicting alternative 

698 virulence measures using different two-category definitions of ‘severe’, calculated as the 

699 relative mean decrease in Gini impurity scaled against the most informative predictor within 

700 each model, alongside importances from the main analysis for comparison. ‘Tp’ denotes 

701 tissue tropism predictor, ‘Tr’ denotes transmission route predictor, ‘Tr level’ denotes level of 

702 human-to-human transmissibility, and ‘H’ denotes host range predictor.

703

704 S4 Fig. Partial dependences from random forest models using stringent data subsets.

705 Predicted probability of classifying virulence as ‘severe’ in alternative virulence measures for 

706 each of the most informative risk factors from random forest models, alongside predicted 

707 probabilities from the main analysis for comparison. Probabilities given are marginal, i.e. 

708 averaging over any effects of other predictors. As each measurement used a different two-

709 category definition of ‘severe’, note that the raw prevalence of ‘severe’ virulence differed 

710 between each model (see S6 Table).
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