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Abstract 
Neuroimaging studies have reported numerous region-specific atypicalities in the brains of 
individuals with Autism Spectrum Disorder (ASD), including alterations in cortical thickness 
(CT). However, there are many inconsistent findings, and this is probably due to atypical CT 
developmental trajectories in ASD. To this end, we investigated group differences in terms of 
shapes of developmental trajectories of CT between ASD and typically developing (TD) 
populations. 
 
Using the Autism Brain Imaging Data Exchange (ABIDE) repository (releases I and II combined), 
we investigated atypical shapes of developmental trajectories in ASD using a linear, quadratic and 
cubic models at various scales of spatial coarseness, and their association with symptomatology 
using the Autism Diagnostic Observation Schedule (ADOS) scores. These parameters were also 
used to predict ASD and TD CT development. 
 
While no overall group differences in CT was observed across the entire age range, ASD and TD 
populations were different in terms of age-related changes. Developmental trajectories of CT in 
ASD were mostly characterized by decreased cortical thinning during early adolescence and 
increased thinning at later stages, involving mostly frontal and parietal areas. Such changes were 
associated with ADOS scores. The curvature of the trajectories estimated from the quadratic model 
was the most accurate and sensitive measure for detecting ASD. Our findings suggest that under 
the context of longitudinal changes in brain morphology, robust detection of ASD would require 
three time points to estimate the curvature of age-related changes.  
 
 
Keywords: Autism spectrum disorder, developmental trajectories, cortical thickness, MRI. 
 
Abbreviations: Autism Spectrum Disorder (ASD), Typically Developing (TD), Cortical 
Thickness (CT), Autism Diagnostic Observation Schedule (ADOS), Partial Least Squares (PLS). 
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Introduction 
 
Autism Spectrum Disorder (ASD) is a highly heterogeneous neurodevelopmental disorder that has 
an early-life onset. It is characterized by deficits in social communication and restricted or 
repetitive behaviors and/or interests 1. Several neuroimaging studies have reported region-specific 
changes in brain morphology in ASD 2–4, and supported by post-mortem studies 5. Findings of 
atypical brain morphology in ASD, however, are highly heterogeneous 6–8, and there are not yet 
clear neuroanatomical markers for accurately identifying individuals with ASD.  
 
ASD is a very heterogeneous disorder which together with the small sample sizes and varying age 
ranges of some studies might partially explain the inconsistencies in the neuroimaging literature 
9,10. One hypothesis is that such inconsistencies are due to the age-specific developmental 
atypicalities of ASD brain. Many studies have recently supported this, reporting atypical 
developmental trajectories in the ASD brain in terms of neuroanatomy 11–13, hemodynamic 
functional connectivity 14–16 and neurophysiological rhythms and synchrony 17–19.  
 
Significant alterations of developmental trajectories of CT have been reported in ASD. For 
example, it has been shown that in ASD adults CT decreases more dramatically with age compared 
to TD 20. Increased CT in children with ASD has also been reported in children aged 8-12 years 3. 
Zielinski et al. (2104) reported three distinct phases of atypical cortical development in ASD: an 
accelerated expansion during early childhood, accelerated thinning in later childhood and 
adolescence and decelerated thinning in early adulthood 21. Wallace and colleagues, conversely, 
reported accelerated age-related cortical thinning in temporal and parietal areas during early 
adulthood in the ASD population 22. In addition, based on a sample of 6-15 year old children with 
ASD, Jiao and colleagues found both increased and decreased thickening of cortical areas 23. 
Recently, Kundrakpam et al. (2017) using the ABIDE I, reported higher CT in ASD until 
adolescence where accelerated thinning was found until adulthood.  
 
In the present study, we used the largest cross-sectional database available to capture 
developmental shapes of CT trajectories that are atypical in ASD between childhood and late 
adolescence. Age-related changes in cortical thickness have been previously explored based on 
linear, quadratic, and cubic models 24–27. Instead of deriving statistics from fitting a model that 
describes age-related CT differences between ASD and TD, we used a linear, quadratic and cubic 
models to extract their highest order derivative. The coefficients of these derivatives are constant 
across the entire age range and have a geometrical interpretation, herein, the developmental 
features are referred to as “trajectory shapes”, and the highest order coefficient in the linear model 
(the linear trend) as the ‘slope’, in the quadratic (acceleration) as the ‘curvature’ and in the cubic 
(rate at which acceleration changes) as the ‘aberrancy’. 
 
Previously, brain morphometric measures such as CT and cortical volume have been used to 
predict ASD23,28–30, and remains a promising feature. Recently, an ABIDE study used linear 
developmental changes in white/gray matter contrast to predict ASD development31. In the present 
study, we trained a classifier by either using the slope, curvature or aberrancy to predict ASD 
development. Although a cross-sectional sample is used, this classification could be applied 
longitudinally to classify individuals with ASD, and our results could provide evidence of the 
necessary longitudinal time points to estimate a specific trajectory shape.  
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We explored atypical trajectory shapes at three levels of coarseness to detect if abnormal CT 
maturation is generalizable across the cortex or if it is spatially very constrained to specific areas. 
We used three atlases. The first atlas is a trivial one, simply representing two hemispheres. The 
second atlas is based on a typical FreeSurfer anatomical parcellation (FSAP): 70 brain areas. 
Finally, the third atlas is based on the Multi-Modal Parcellation32 (MMP): 360 brain areas. We 
will refer to these three parcellations as hemispheric, anatomical, and multi-modal, respectively, 
representing a spectrum of spatial coarseness from the most coarse to fine-grained. In addition, the 
trajectory shapes (the slope, curvature and aberrancy) obtained at each area of the FSAP and MMP 
were correlated with ADOS scores to assess if symptom severity contributes to more exacerbated 
atypical trajectory shapes in ASD.  
  
 

Results 
 
Overall CT is not atypical in ASD when averaged across a large age range 
 
First, we assessed group differences in CT between experimental groups at the hemispheric, 
anatomical and multi-modal levels. The CT across sites were corrected for different scan 
parameters, as illustrated in Fig. 1 step 6. Statistical significance was tested using the multivariate 
mean-centered PLS analysis (see methods). It revealed no overall group differences in CT between 
ASD and TD groups for all the atlases. This can be clearly seen in the CT trajectories (Fig. 2 & 4) 
where differences are marked by changes across age rather than differences in mean CT between 
the two groups. 
 

 
 
Fig 1. Workflow diagram of the steps of this study. The coefficients in red in step 8 are the 
trajectory shapes used in the subsampling, correlation and classification analyses. 
 
Atypical developmental trajectories of CT in ASD 
 
Linear, quadratic and cubic models were fitted, separately for each group, to estimate CT trajectory 
shapes in each area of the three parcellations. First, we fitted the models using all the subjects from 
a group to test the goodness of fit in a given area, then, from subgroups derived using a 
subsampling technique to extract trajectory shapes. On the group level fitting, the goodness of fit 
of a model in each area was tested with a deviance test. Illustrated in Fig 2, a few areas around the 
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ventral medial temporal cortex, models did not significantly fit, especially at the multi-modal level 
using the MMP. These areas were masked out and excluded from further analyses. 

 
Figure 2. Areas from the FSAP and MMP used in the analyses. The goodness of fit at each area 
of the FSAP and MMP was measured with a deviance test assessing if the model significantly fits 
better than a constant model. After FDR correction, areas with a significant fit were used in 
subsequent analyses (colored in yellow), and non-significant were masked out (colored in red). 
Colored areal border outlines represent the original atlas annotation color of the FSAP (left) and 
MMP (right).  
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Using the subsampling approach, in each group we generated 80 subgroups composed of 70 
subjects and the three models were fit. From each area of the parcellations, we extracted a 
trajectory shape from each model (slope, curvature and aberrancy). Then, these trajectory shapes 
were statistically assessed using mean-centered PLS. We found statistically significant differences 
in developmental trajectory shapes in CT for the hemispheric, anatomical and multimodal 
parcellations rendering a p-value of p<0.01, p<0.001 and p<0.001 respectively.  
 
At the hemispheric level, the statistical analysis indicated strong effects in the quadratic model 
with a curvature value more negative (less concaved) in the ASD, in the linear model with the 
slope being more positive (slower decline), while the aberrancy of the cubic model did not 
contribute much to the hemispheric CT group differences. These effects can be seen in Fig. 3 with 
the z-scores for each model plotted on the brain surfaces. The curvature coefficient has a z-score 
of -11 for both hemispheres, the linear 3 and cubic 0. The effects captured by the curvature and 
the slope are very similar but with an opposite sign. In this case, the effect reflected in the slope 
indicates decreased thinning in the ASD, while the curvature indicates decreased thinning, 
compared to TD, until around 15 years of age and then accelerated thinning. The aberrancy did 
not capture stable effects. 

 
Figure 3. Developmental trajectories of hemispheric CT. The slope, curvature and aberrancy 
parameters from the three models were used to find altered trajectory shapes in ASD. In the 
middle, z-scores from the PLS analysis are plotted for each hemisphere representing how reliable 
the parameters were in expressing the overall group differences. The trajectory shape represented 
by the curvature coefficient was the strongest followed by the slope.  
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For the anatomical and multi-modal parcellations, mean-centered PLS analyses rendered similar 
results as the hemispheric, and the multi-modal was spatially more defined. As in the hemispheric 
level, the results between the linear and quadratic model were spatially similar but with opposite 
sign z-scores. In Fig. 4, z-scores for each model and atlas are visualized. The z-scores are with 
respect to the contrast ASD>TD. The areas with the highest z-scores representing the most stable 
group differences were located in frontal, fontal-medial and temporoparietal junction (TPJ) areas 
for the linear and quadratic models. In addition, for the quadratic model, brain regions with high 
z-scores were localized in the posterior cingulate cortex (PCC). In contrast, z-scores for the cubic 
model were located in occipital and posterior-parietal areas. Fig. 5 illustrates the developmental 
trajectories from areas with high z-scores for a given model.  

 
Figure 4. Distributions of the z-scores across brain areas, shown separately for three models 
and two atlases (left for anatomical, right for multi-modal). For the group contrast (ASD>TD) 
the effect found in the linear coefficient is positive, whereas in the quadratic and cubic is negative. 
The spatial distribution of the highest z-scores in the linear model is very similar to the quadratic, 
and both represent a decreased cortical thinning during childhood but the quadratic also captures 
accelerated thinning after mid-adolescence. Colored border outlines in each cortical area 
represent the original atlas annotation color of the area. 
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Center-specific analysis of developmental trajectories of CT in ASD 
 
To further support our findings based on data in which batch effects (multi-center variability) were 
removed, the same analysis was performed using subjects from only one center. As in the results 
from the full dataset, the z-score distribution for the linear coefficient was also skewed on the right 
and for the curvature coefficient on the left. The same effect of decreased thinning at an early age 
(captured by the linear and quadratic) and acceleration during mid-adolescence (captured by the 
quadratic) were found with the NYU dataset. As can be seen in Supp. Figure 1, areas with the 
highest z-scores for the linear and quadratic coefficients are also located in frontal and temporal 
lobes, TPJ and PCC. The effects captured by the cubic coefficient did not correspond between the 
full and center-specific analyses, suggesting once more that the aberrancy of the cubic model did 
not capture stable effects.  
 

 
 
Figure 5. Developmental trajectories in areas that reliably expressed group differences. 
Trajectories are plotted selecting areas with high z-scores values for the right and left 
hemisphere for the three models used.  
 
Associations between ADOS and developmental trajectories of CT 
 
To explore the relationship between ASD symptomatology and trajectory shapes in CT maturation, 
behavioral PLS correlated the trajectory shape of a model fitted in a subgroup with the subgroup 
mean ADOS-Generic scores (communication, social and stereotyped behavior subscales). This 
measured if the subgroup’s trajectory shape is associated with ADOS scores. Given that the 
trajectory shapes might correlate differently, for each of the three trajectory shapes at the 
anatomical and multi-modal spatial levels we performed different behavioral-PLS (6 in total), and 
the p-values obtained for each model were Bonferroni corrected. 
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Only the overall correlations between the curvature of the quadratic model from the FSAP and 
MMP and ADOS scores were significant after Bonferroni correction with a corrected p-val <0.01 
for both levels. The distribution of z-scores for both parcellations was skewed to the left, which 
indicate negative correlations between the curvature values and ADOS. The more negative the 
curvature, which in this case represents accelerated CT thinning after mid-adolescence, the higher 
the symptom severity. More specifically, the correlation values between the curvature coefficients 
from the FSAP and ADOS sub-scores were: r= -.21 for communication subscale, r= -.22 for social 
subscale and r= -.11 for stereotyped behavior subscale. For the MMPA the correlations were: r=-
.27 for communication subscale, r=-.27 for social subscale and r=-.16 for stereotyped behavior 
subscale. Fig. 6 illustrates the LV design reflecting the contribution of each ADOS sub-score, their 
correlation values with curvature coefficients, and the spatial topography of the most negative z-
scores. The spatial topography of the most negative z-scores was very similar to the group 
differences analysis, being mostly located in frontal areas, TPJ and PCC. 
 

 
Figure 6. Correlations between the ASD curvature values and mean ADOS scores averaged 
across the subjects used to characterize the curvature. The spatial map in blue indicates negative 
z-scores representing the association between ADOS scores and a negative curvature 
developmental trajectory. On the bottom, raw histograms are plotted for each atlas representing 
the contribution of the ADOS scores to the latent variable (how much each contributed to the 
overall correlation) and the correlation of each ADOS score with all the curvature coefficients of 
the areas.  
 
 
ASD classification of CT developmental trajectories  
 
A support vector machine was used to classify trajectory shapes in CT from ASD and TD 
subgroups. These trajectory shapes reflect developmental features that could be obtained 
longitudinally from a single subject, as their derivative is constant across age. For the anatomical 
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and multi-modal parcellations, using the FSAP and MMP respectively, an SVM was trained to 
classify trajectory shapes from the linear, quadratic and cubic highest order coefficients. Figure 7 
illustrates the distribution of the accuracy, specificity and sensitivity obtained with 500 cross-
validation runs. 
 
The best total accuracy in classifying ASD and TDC was archived using the quadratic trajectory 
shape with an accuracy of 76% with the MMP and 74% with the FSAM, followed by the linear 
(73% and 71%) and cubic (67% and 61%). When separating accuracy in sensitivity (ASD 
detection) and specificity (CTR detection), using the MMP the curvature identified more ASD 
(mean 73%), while the slope more CTR (80%).  
  
 

 
Figure 7. Distributions of classification accuracy, sensitivity and specificity using an SVM to 
classify ASD and TD trajectory features of CT development using areas from the MMP and 
FSMP. Each instance was a cross-validation run where the dataset was randomly split into two 
equal halves for training and testing.  
 

Methods 
 
Participants 
 
We analyzed structural T1-weighted MRI scans from the Autism Brain Imaging Data Exchange 
(ABIDE) repository (releases I and II). Quality control was assessed by visual inspection by three 
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independent reviewers, and subjects with strong movement artifacts were discarded. To reduce the 
bias in the age distribution, we excluded participants younger than 6 years of age and older than 
30 years of age as beyond this age range the number of participants drops significantly. To consider 
the full spectrum of ASD cohort, we did not exclude subjects based on their IQ.  
 
Out of 2226 subjects available in the ABIDE I & II, 571 were rejected based on motion artifacts 
detected during the visual inspection or segmentation errors revealed at the preprocessing stage, 
as explained below. To properly account for center variance, centers with less than 10 subjects in 
each group were removed, which resulted in 24 included in the analysis. The centers with the same 
parameters from ABIDE I and II were combined. In total, our final sample included 674 subjects 
with ASD (females = 94, mean 14.5 ±5.18 years) and 686 TD subjects (females=134, mean 14.9 
±5.49 years). Age between ASD/TD, the proportion of male/female in each center between groups 
or the proportion of ASD/TD subjects per center did not differ significantly. Information on the 
participants can be found in Table 1. 404 ASD participants had information on ADOS-Generic 
scores (communication, social and stereotyped behavior) and were included in the analysis of 
associations between ADOS and age-related trajectory shapes in CT.  
 
 

Centers 
N   Females   Mean age   STD age 

ASD TD  ASD TD  ASD TD  ASD TD 
CALTECH 14 12   3 4   22.1 22.6   3.1 3.2 
CMU 10 10  1 3  23.5 24.5  3.6 3.5 
KKI 58 61   16 16   10.3 10.3   1.5 1.2 
LEUVEN 24 25  2 2  17.6 18.1  4.2 4.8 
MAX MUN 13 13   1 0   18.3 22.8   8.1 6.7 
NYU 109 116  12 23  12.5 13.8  5.8 5.4 
OHSU 30 30   4 6   11.2 10.6   2.1 1.7 
OLIN 16 14  3 2  16.8 16.9  3.4 3.6 
PITT 24 23   4 4   16.5 17.5   4.7 4.6 
SDSU 37 41  7 7  13.8 13.7  3.1 2.5 
STANDFORD 15 17   4 4   10.1 9.9   1.6 1.6 
TRINITY 40 45  0 0  15.9 16.5  3.4 3.5 
USM 37 33   2 3   12.9 12.1   2.4 2.5 
YALE 24 26  7 8  13.5 14.6  2.6 4.0 
UCLA 60 53   7 11   19.3 20.0   5.2 6.1 
UM 42 48  5 8  13.0 12.9  3.0 2.7 
BNI 11 10   0 0   21.1 20.8   2.2 2.6 
EMC 14 14  2 2  8.5 8.1  1.3 1.1 
ETH 10 10   0 0   21.1 24.0   3.5 4.0 
GU 31 31  4 10  11.1 11.1  1.4 1.6 
IP 18 17   5 10   15.3 18.8   4.9 6.4 
IU 15 17  2 5  21.5 21.9  3.5 2.0 
ONRC 10 9   1 2   22.2 22.7   3.6 3.4 
UCD 12 11  2 4  15.3 15.1  2.0 1.4 
Total 674 686   94 134   14.5 14.9   5.2 5.5 
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Table 1. Description of the number of participants per center, number of females per center, age 
mean and standard deviation. Full names of the centers available at: 
 http://fcon_1000.projects.nitrc.org/indi/abide/  
 
Our analysis was conducted on data from all centers combined, after correcting for batch effects 
(variability across centers), and, to validate the results excluding the possibility of being driven by 
batch effects, on a single center using the New York University (NYU) repository which has the 
largest sample size in the ABIDE dataset. 
 
 
Preprocessing, CT calculation and regions of interest 
 
MRI data were segmented using FreeSurfer 33. Cortical thickness (CT) was computed as the 
distance between the white and the pial surfaces for each vertex. CT values were averaged at three 
levels: hemispheric, anatomical and multimodal. First, CT values were averaged within 
hemispheres (hemisphere parcellation, HP, with two CT values). Second, at the anatomical level, 
CT values were averaged within the FreeSurfer Anatomical Parcellation (FSAP, with 68 areas) 34. 
Third, at the multi-modal level, using the MultiModal Parcellation (MMP, with 360 areas) atlas 
whose areas are defined by sharp changes in cortical architecture, function, connectivity, and/or 
topography 35.  
 
To assess the presence of segmentation errors in reconstructing the cortical mantle from which CT 
was estimated, we conducted a second quality check. For every center separately, in each 
parcellation area, we performed a z-score transformation across subjects, resulting in the z-score 
distribution with zero mean and unit variance for each center. Subjects with a z-score with a 
magnitude bigger than 3 in any area of the parcellations were considered outliers and excluded 
from further analysis.  
 
 
Inter-center variability removal 
 
Previous studies have reported variability in MRI-based measures across centers in the ABIDE 
repository (Haar et al., 2014). To correct for center differences, at each area of the parcellations a 
linear, quadratic and cubic models were fitted to estimate the variance explained by centers while 
preserving the variance explained by group, age and group x age interactions. Specifically, the 
following equations were applied: 
 
Linear ∶ CT(Age)	~	𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +	𝜷𝟎𝐶𝑒𝑛𝑡𝑒𝑟 + 𝛽<	𝐴𝑔𝑒 + 𝛽?	𝐺𝑟𝑜𝑢𝑝 + 𝛽C	(𝐴𝑔𝑒	𝑥	𝑔𝑟𝑜𝑢𝑝)	 
 
Quadratic ∶ CT(Age)	~	𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +	𝜷𝟎𝐶𝑒𝑛𝑡𝑒𝑟 + 𝛽<	𝐴𝑔𝑒 + 𝛽?	𝐴𝑔𝑒? + 𝛽C	𝐺𝑟𝑜𝑢𝑝 + 𝛽J	(𝐴𝑔𝑒	𝑥	𝑔𝑟𝑜𝑢𝑝)

+ 𝛽K	(𝐴𝑔𝑒?	𝑥	𝑔𝑟𝑜𝑢𝑝) 
 
Cubic ∶ CT(Age)	~	𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +	𝜷𝟎𝐶𝑒𝑛𝑡𝑒𝑟 + 𝛽<	𝐴𝑔𝑒 + 𝛽?	𝐴𝑔𝑒? + 𝛽C	𝐴𝑔𝑒C + 𝛽J	𝐺𝑟𝑜𝑢𝑝

+ 𝛽K	(𝐴𝑔𝑒	𝑥	𝑔𝑟𝑜𝑢𝑝) + 𝛽M	(𝐴𝑔𝑒?	𝑥	𝑔𝑟𝑜𝑢𝑝) + 𝛽N	(𝐴𝑔𝑒C	𝑥	𝑔𝑟𝑜𝑢𝑝)	 
(1) 
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Where 𝐶𝑒𝑛𝑡𝑒𝑟 is a binary variable with the size (N subjects x N centers) and the 𝜷𝟎 coefficients 
in each of the three models explain the center variance for a given area. The variance explained by 
𝜷𝟎𝐶𝑒𝑛𝑡𝑒𝑟 was regressed out from each area in the HP, FSAP and MMP. After this center 
correction, CT values across centers were combined for further analyses.  
 
 
Modeling developmental trajectories of cortical thickness  
 
Following the model formulas in Eq.1, from the linear model we obtained the 𝛽< coefficient (linear 
trend), or ‘slope’, from the quadratic model we obtained the 𝛽? coefficient (acceleration) or 
‘curvature’, and from the cubic the 𝛽C coefficient (rate at which acceleration changes) or 
‘aberrancy’.  
 
To capture trajectory shapes in each experimental group, we fit the three models separately for 
ASD and TD for brain areas for each of the three parcellations using the CT data corrected for 
center variance. Given that models were fitted separately per group, the parameters group and age 
x group interaction from eq.(1) were not necessary, as well as the center parameter 𝜷𝟎 as the center 
variance was regressed out in the previous step. Formulas for the current models are depicted in 
workflow figure (Fig.1, step 8).  
 
First, these models were fit on the entire group sample to test the goodness of fit, and after, on each 
subsample (or subgroup) to capture the within group variability in trajectory shapes, as explained 
in the subsample analysis section below. 
 
On the group level fitting, we tested if any of the three models were not a good fit for any of the 
areas of the anatomical or multi-modal levels. To test the goodness of fit for a given model and 
area, a deviance statistical test was performed. It assesses if the fit is significantly a better fit than 
a constant model. Multiple comparisons were FDR corrected 36. Areas that did not survive the 
multiple comparison correction were masked out and excluded from subsequent analyses.  
  
 
Subsampling analysis 
 
We used a subsampling method to estimate developmental trajectories using a cross-sectional 
sample. This method is adapted from Vakorin et al., (2017) and Kozhemiako et al., (2018), and 
was used to statistically assess group differences in the trajectory shape captured by the highest 
order coefficient of a model between ASD and TD populations. In the present study, this 
subsampling method was applied to statistically assess if trajectory shapes in CT constant across 
age (slope, curvature or aberrancy) are atypical in the ASD group.  
 
This method consists in generating small samples (subgroups) of subjects randomly pulled from 
the main group. This procedure is repeated 100,000 times, and a set number of sub-groups with 
the flattest age distribution, measured as sample entropy, are selected. The number of subgroups 
was set to 80. For each experimental group, 80 subgroups each composed of 70 subjects were 
selected. The number of subjects repeated across subgroups or the entropy (age distribution) 
between ASD and TD groups were not significantly different.  
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Once subgroups were created, the three models were fitted in all areas of each spatial level (HP, 
FSAP, MMP) where the model was proven to be a good fit as tested by a deviance test. From the 
three models, the coefficients termed slope, curvature and aberrancy were obtained, thus for each 
spatial level, a matrix of (80 subgroups x n areas x 3 coefficients) separately for ASD and CTR 
groups and were saved for the statistical multivariate analysis. 
  
Multivariate statistical analysis 
 
To assess group differences in developmental trajectories, as well as to test for potential 
associations with ASD symptomatology, we applied Partial Least Squares (PLS) analysis. PLS is 
a multivariate statistical approach that uses singular value decomposition to extract Latent 
Variables (LVs), composed of a singular vector, singular value and LV design, explaining the 
variance in the data 38. In this study, two types of PLV were used: mean-centered and behavioral. 
The former is suitable for testing for an overall contrast between groups or conditions. In this 
study, a contrast expresses ASD > TD differences in trajectory shapes in CT. In contrast, the 
behavioral PLS explores the correlation between features and responses or behaviors, in our case, 
trajectory shapes and ADOS scores. Both approaches, perform one single permutation test by 
resampling without replacement subjects’ assignment across groups,  and a unique p-value for all 
the features is obtained by counting the number of times a permuted singular value was higher 
than the original. Then, bootstrapping is performed by resampling with replacement subjects while 
keeping the group assignment fixed. The original singular vector is divided by the bootstrap 
standard error to obtain a bootstrap ratio associated with each feature indicating their reliability, 
akin to z-scores. In this paper, bootstrap ratios will be called z-scores. Each feature, in our case a 
coefficient expressing a trajectory shape in a given area from a parcellation, is associated with a z-
score which indicates the stability of the area in reflecting the group differences. This procedure is 
commonly applied in statistical analysis across many fields, but especially in neuroimaging 
(McIntosh & Lobaugh, 2004; Krishnan, Williams, McIntosh, & Abdi, 2011).  
 
Analysis of group differences in trajectory shapes in CT 
 
Three independent mean-centered PLS analyses were conducted at the hemispheric, anatomical 
and multimodal levels to detect differences in trajectory shapes between ASD and TD groups. For 
each PLS, the input was a matrix of size (80 subgroups x n areas x 3 coefficients) separately for 
ASD and CTR groups. Permutations and bootstrapping were performed 10,000 times to obtain 
statistically reliable results. Assuming the contrast ASD>TD, positive z-scores are associated with 
brain regions wherein the trajectory shape in CT is increased in the ASD group. Correspondingly, 
negative z-scores indicate brain regions with decreased CT trajectory shape in ASD. The z-scores 
for each model were separated, and each had a skewed distribution, indicating that there is a 
predominant increased or decreased effect representing the group differences. To visualize the 
results, each model coefficient was plotted separately and thresholded with the highest value 
opposite of the skewness.  
 
 
Center-specific analysis of group differences in trajectory shapes in CT 
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The same subsampling analysis of group differences was repeated for a single center, using the 
NYU repository. The number of subjects was reduced to 40 and the number of subgroups to 50. 
We aimed to obtain similar results while fully avoiding effects associated with inter-center 
variability.  
 
 
Associations between ADOS scores and trajectory shapes in CT 
 
To explore the relationship between ASD symptomatology and trajectory shapes of CT maturation, 
behavioral PLS correlated the trajectory shape from a given model fitted in a subgroup with the 
subgroup mean ADOS-Generic scores (communication, social and stereotyped behavior 
subscales). Given that the trajectory shape of each model might correlate differently, for each of 
the three parameters (slope, curvature and aberrancy) at anatomical and fine-coarse spatial levels 
we performed three PLS (6 in total), and the p-values obtained for each model were Bonferroni 
corrected. 
 
The behavioral PLS analysis renders an LV design vector indicating the contribution of the ADOS 
sub-score (communication, social and stereotyped behavior), a correlation for each ADOS sub-
score, a single p-value for the overall-correlation, and z-scores expressing the stability of the 
feature in expressing the correlation. To make contributions of individual subjects more 
pronounced, the number of subjects per subgroup was decreased to 20, and to increase the 
combination of subjects, the number of subgroups was increased to 400.  
 
 
ASD classification of CT developmental trajectories  
 
To assess which model parameter can better predict a developmental change from ASD or TD 
populations, a linear kernel support vector machine (SVM, using Matlab 2018b fitcsvm function) 
was trained to classify trajectory shapes from ASD and TD subgroups using the FSAP or MMP 
areas.  
 
First, experimental groups from the full dataset were split into two equal training and testing sets. 
To have similar age, for each experimental group subjects were separated within two years age 
bins, and the subjects in each bin were randomly split in two. Once the training and testing sets 
were created, for each set, the subsampling analysis was applied (the CT values from the FSAP 
and MMP areas using 80 subgroups were fitted using the three models and the three coefficients 
were obtained). Then, an SVM was trained using the training set to classify one model coefficient 
from the FSAP or MMP, and the testing set was used to measure the accuracy in classifying ASD 
and TD using the slope, curvature or aberrancy. The accuracy was the average of specificity (how 
many ASD subgroups were correctly classified) and sensitivity (how many TD were correctly 
classified). This procedure was repeated 500 times (500 cross-validations) to obtain a distribution 
of accuracy, specificity and sensitivity.  
 
Data and code availability statement 
Data is available from the ABIDE repository. The codes for the analyses are publicly available at 
https://github.com/AdoNunes/CT_trajectory_features_ASD_2019  
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Discussion 
 

In this study, we investigated atypical developmental trajectories of cortical thickness (CT) 
in the ASD during childhood and late adolescence. Previously, age-related changes in CT were 
studied by fitting a linear, quadratic and cubic models. Instead, in this study, we focused on the 
highest order derivative coefficient (the slope, curvature and aberrancy) to obtain an age-constant 
parameter that has an interpretable geometrical shape. These “trajectory features” describe a shape 
of the developmental trajectory of CT that describe the entire age range of the ASD and TD groups.  
We explored these features at several levels of spatial coarseness using a hemispheric, anatomical 
and multi-modal atlas. Overall, our results indicate that in ASD trajectory features are atypical in 
frontal, parietal and midline areas, and are a robust feature to predict ASD development, especially 
with the curvature parameter from the quadratic model. 
 

Effects with strong directionality differences in CT trajectory features between ASD and 
TD groups were found using the quadratic and linear models, which had skewed z-score 
distributions indicating lower curvature and higher slope values in ASD. In this context, a more 
positive slope reflects a linearly decreased rate of cortical thinning, while a more negative slope 
expresses decreased rate of cortical thinning in early childhood and accelerated thinning after mid-
adolescence. The slope and curvature coefficients although having opposite signs, represented a 
similar effect and the spatial representation of the strongest z-score values greatly overlapped. The 
trajectory shape captured by the quadratic model significantly correlated with the subgroup-
averaged ADOS scores, indicating that the higher the symptom severity of the subsample the more 
negative the curvature coefficient was. Areas with the most stable correlation of curvature 
coefficients with ADOS scores tended to also be the most stable in reflecting group differences in 
curvature values between ASD and TD. This supports the association between higher ASD 
symptom severity and a more negative CT developmental curvature.  
 

Our results are consistent with other studies which revealed increased CT in ASD 
individuals during childhood and early adolescence 3, indicating smaller decrease of CT in this 
period. A study with a large sample size of N=3000, found that alterations in the CT are more 
pronounced in the adolescence period, exhibiting a peak in CT especially in frontal areas and lessen 
in frontal areas 42. A recent CT study using the ABIDE I also found increased CT in the ASD from 
early childhood to adolescence and equal or reduced CT in early adulthood in frontal and parietal 
areas, indicating decreased CT thinning during childhood and adolescence and accelerated 
thinning in late adolescence 43. Studies using an age-range similar to ours concluded that the cortex 
thins less in ASD compared to typically developing controls 3,44. In addition, the developmental 
trajectories of the TD group of our study are very similar to the ones described in the longitudinal 
study of Zielinski et al. 2014, however, our ASD trajectories differ with this study in the period of 
accelerated thinning where it starts later than in Zielinski et al.  

 
The areas with the highest z-score from the slope and curvature coefficients include areas 

of the Default Mode Network (DMN) and the frontoparietal network (FPN). Several ASD studies 
have found alterations in the DMN and FPN involving atypical functional connectivity patterns 45–

47, more variability in the spatial networks 9,10, and altered gyrification and structural network 
architecture in ASD 12,48. The DMN has been linked to theory of mind, social cognition and inner 
referential processes 49–53. One of the characteristics of the DMN is to be deactivated during an 
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externally gated task 54–56, and DMN tends to be anticorrelated with the FPN which is a goal 
oriented network 57,58. It has been reported that less DMN deactivation is associated with more 
stressful performance during stimulus-driven tasks 59,60, and it has been found that in ASD task 
deactivation of the DMN is deficient probably underpinning sensory feedback feedforward 
alterations 61,62. Moreover, typical development of the DMN displays a pattern of more sparse and 
mainly local connections to a more long-range and cohesive network in typical development 63,64. 
Also, there is evidence that long-distance connections fail to develop during adolescence in ASD 
population 65. Our study converges with the aforementioned literature signaling alteration in areas 
of the DMN and some of the FPN, and indicates that typical cortical neural development is altered 
and might underpin alterations of structure-function relations in areas of the DMN and FPN.  

 
The trajectory shape for CT in the TD group represents a neurotypical U-shaped thinning 

centered around the age of pubescence and early adulthood 21,24, whereas in the ASD group, there 
is a decreased thinning rate which is better fit by an inverse U-shaped curvature or a more positive 
slope using a linear model. This group difference is likely to reflect alterations in neural pruning 
associated with this age range. Neuronal pruning is the process of reducing the number of 
connections during the first two decades of life in order to select the most efficient and optimal 
connections, and evidence suggests that CT is likely to reflect dendritic arborization 66, 
Accordingly, maturational changes of CT most possibly reflect the process of dendritic pruning. It 
is currently understood that the number of dendritic synapses reach their peak during childhood 
and decrease during puberty 67. The hypothesis of altered neural, and in particular dendritic, 
pruning in ASD has become widespread as it is consistent with considerable evidence from 
multiple lines of research indicating brain overgrowth in ASD 68,69. It has been suggested that ASD 
is characterized by reduced synaptic pruning 70,71, and by genetic alterations impacting synaptic 
structure, function and regulation72,73. Our results, consistent with previous literature, give further 
support that atypical neural pruning in ASD is characterized by a decreased thinning rate of cortical 
thickness between childhood and adolescence and accelerated thinning during late adolescence. 
 
Given that the examined trajectory shapes of CT across age are constant, speculatively these rates 
of CT change could be estimated from one subject having several longitudinal MRI acquisitions. 
Using a cross-sectional data, we obtained a good accuracy in classifying CT developmental 
features, especially using the curvature of the quadratic model and using the areas from the MMP 
atlas. This suggests that similar accuracy could be obtained when trying to predict if individuals 
have ASD based on their longitudinal CT measures. To estimate the curvature in the quadratic 
model is necessary at least three time points. Given that our results indicate that the quadratic 
model is the most accurate and sensitive parameter in classifying ASD, we suggest that three 
longitudinal time points would be necessary to predict if an individual has ASD.  
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Supplementary Figure 1. Group differences in rate of changes in CT maturation using the NYU 
center. For the group contrast (ASD>TD) the effect found in the linear coefficient is positive, 
whereas in the quadratic and cubic is negative. The spatial distribution of the highest z-scores in 
the linear model are very similar to the quadratic, and both represent a decreased cortical thinning 
during childhood to adolescence maturation but the quadratic also captures accelerated thinning 
in the later age period. On the left are the results from the anatomically defined FreeSurfer atlas 
and on the right the Multi-Modal Parceled atlas. Outlined colors in each cortical area represent 
the original atlas annotation color of the area. 
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