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Abstract

Mutation discovery is often key to the identification of genes responsible for major phenotypic traits.
In the context of bulked segregant analysis, common reference-based computational approaches are not
always suitable as they rely on a genome assembly which may be incomplete or highly divergent from
the studied accession. Reference-free methods based on short sequences of length k (k-mers), such as
NIKS, exploit redundancy of information across pools of recombinant genomes. Building on concepts
from NIKS we introduce LNISKS, a mutation discovery method which is suited for large and repetitive
crop genomes. In our experiments, it rapidly and with high confidence, identified mutations from over
700 Gbp of bread wheat genomic sequence data. LNISKS is publicly available at https://github.com/
rsuchecki/LNISKS.

Introduction1

Bulk segregant analysis (BSA) involves pooling recombinant genomes to facilitate rapid identification of ge-2

netic markers associated with phenotypic traits (Michelmore et al., 1991; Giovannoni et al., 1991). Mapping-3

by-sequencing (MBS) combines BSA with second generation sequencing (SGS) to enable simultaneous muta-4

tion identification and mapping (Schneeberger et al., 2009). This original approach for identifying mutations in5

ethyl methanesulfonate (EMS) mutagenised populations relied on selection-induced patterns within genome-6

wide allele frequency (AF) in pooled genomes and was initially based on pooling 500 mutant F2 plants for7

sequencing. However back- or out-crossing of the mutagenised plants eliminates mutation load not linked to8

the causative mutation(s) as only offspring demonstrating the desired phenotype are retained (Zuryn et al.,9

2010). One such approach is MutMap where a mutant is crossed with the original wild-type followed by10

selfing of the offspring, which results in segregation of phenotypic differences in F2 progeny (Abe et al., 2012).11

Based on the assumption that the causative mutation occurs with highest frequency among bulked segregants12

a combination of isogenic BSA with deep candidate resequencing was applied to detect subtle allele frequency13

differences between closely linked mutations to facilitate the identification of causal ones (Hartwig et al.,14

2012). This technique can also be extended to identification of causal mutations from multiple independent15

mutagenesis events (Yan et al., 2017).16

MBS is most powerful with whole genome sequencing (WGS) data but methods based on RNA and, more17

commonly, enrichment sequencing (e.g. exome capture) have been developed to address the issues of sequenc-18

ing cost and computational challenges, particularly in the case of large and complex plant genomes (Gardiner19

et al., 2014; Mascher et al., 2014; Pankin et al., 2014; Ramirez-Gonzalez et al., 2015; Gardiner et al., 2016;20

van Esse et al., 2017; Wang et al., 2017). Alternative methods, such as MutChromSeq (Sánchez-Mart́ın et al.,21

2016) and TACCA (Thind et al., 2017) rely on sequencing and assembly of flow sorted mutant chromosomes.22

Recently, AgRenSeq (Arora et al., 2018) was proposed as a powerful approach for detecting multiple disease23

resistance genes from crop wild relative diversity panels. AgRenSeq is particularly notable for its innovative way24

of linking phenotyping values to genotypic information represented by k-mers, which bares some resemblance25

to the HAWK approach used for disease association mapping in humans (Rahman et al., 2018).26
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A number of computational approaches have been developed for identifying mutations in MBS, mostly27

relying on a reference genome for aligning SGS reads (Candela et al., 2015). However, reference-based28

approaches are not always applicable or sufficient, typically due to lack of a suitable reference genome. The29

suitability of a reference genome depends on its completeness and level of conservation with the studied30

accession, which, particularly for large repetitive polyploids, needs to be high to allow reliable read alignment31

and subsequent variant calling. Considering the high diversity within globally cultivated crop species such32

as wheat (Jordan et al., 2015; Krasileva et al., 2017), there is no guarantee that the reference genome will33

be sufficiently similar to the studied variety in the chromosomal region of interest, e.g. due to presence of34

sequences introgressed from related species.35

The established needle in the k-stack (NIKS) algorithm (Nordström et al., 2013) allows reference-free36

identification of homozygous mutations from WGS data. Briefly, two sets of k-mers are extracted from WGS37

reads. Set W contains k-mers from homozygous wild-type, and set M contains k-mers from homozygous38

mutant. A SNP can be represented by up to k k-mers in each of the two sets, these are the k-mers of interest.39

For example given the following sequence with a single base mutation: ACG[C/T]TTA, we identify three40

3-mers {CGC,GCT,CTT} supporting the wild type allele and three 3-mers {CGT,GTT,TTT} supporting41

the mutant allele. The remaining 3-mers, namely {ACG,TTA} do not overlap the mutated base. Sets of42

sample-specific k-mers are identified through removal of k-mers which are present in both sets, that is:43

W ← W \M and M ′ ← M \W . Sample-specific k-mers from W and M ′ are unambiguously extended44

(assembled) separately, yielding sets C(W ′) and C(M ′) of contigs (or unitigs) which in NIKS nomenclature45

are called seeds. Of particular interest are contigs of length 2k − 1 which are likely to be centred around a46

mutated base, as there are up to k k-mers representing a SNP. Contigs from C(W ′) are then paired with47

contigs from C(M ′) to identify the mutations.48

We have built on NIKS concepts to develop LNISKS (longer needle in a scanter k-stack, Figure 1), a high-49

throughput pipeline with a number of original features including a highly-parallelized assembly algorithm. We50

also introduce k-mer filters which can be generated from external data. The filters are expected not to contain51

k-mers matching those which support a putative causative mutation and so can be safely used to reduce the52

search-space and the incidence of false-positive calls. In addition, LNISKS addresses some of the challenges53

arising from uneven coverage common to SGS datasets through post-pairing extension of seeds under 2k− 154

bp. While NIKS has been shown to work in Arabidopsis (135 Mbp) and in Rice (430 Mbp) (Nordström et al.,55

2013), our approach scales to wheat-size genomes (17 Gbp).56

Bread wheat genome is hexaploid and highly repetitive (Wicker et al., 2011; Choulet et al., 2014), so57

variant identification can be adversely affected by nearly-identical repeats and highly similar homeologous58

genes across the three closely related (sub-) genomes. In k-mer based approaches specificity can be improved59

e.g. by increasing k, potentially at the cost of reduced sensitivity. Longer k-mers are more likely to be60

unique within the genome, but require higher sequencing coverage to provide contiguous representation of61

the genome. As the number of k-mers in a genome increases with value of k, so does the computational cost62

of generating sets W and M from WGS, and comparing between them. We utilize KMC2/KMC3 (Deorowicz63

et al., 2015; Kokot et al., 2017), which allows fast, memory-efficient k-mer counting for k up to 256 and64

equally importantly, database level operations on sets of k-mers – most pertinently subtraction. A customized65

version of KMC3 has recently been shown to speed-up the early stages of the NIKS pipeline while reducing66

its memory requirements (Kokot et al., 2017).67

We have used LNISKS to identify a mutation underlying ms5 genic male sterility in bread wheat (Pallotta68

et al., 2019). In addition to a causative SNP, LNISKS also identified mutations underlying the markers which69

contributed to narrowing the Ms5/ms5 critical region. The WGS data underlying these results comes from70

20 Ms5 (wild-type) and 40 ms5 (mutant) plants. The mutant and-wild type bulks were generated from a71

cross of ms5 mutant plants with a male-fertile sib and the resulting F2’s were screened for homozygosity at72

the TaMs5-A locus using 5 markers. The combined genome coverage was ≈ 19X and ≈ 23X for wild-type73

and mutant bulks respectively. Based on these datasets we demonstrate the utility of LNISKS and explore74

some of its parameter space to shed light on capabilities and limitations of our approach.75

Results76

We assess the accuracy of our pipeline and explore the effects of the innovations introduced in LNISKS. The77

first of our performance measures relies on the fact that we are looking for ethyl methanesulfonate (EMS)78

mutations, which are expected to be overwhelmingly G/C to A/T transitions (Greene et al., 2003). While79

exploring the parameter space the proportion of such transitions among our calls serves as a key benchmark80

of our pipeline’s accuracy. Another measure we employ relates to the expected lengths of seeds (contigs)81
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Figure 1: High-level overview of LNISKS approach.
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extended from sets of sample-specific k-mers and consequently, to the paired/clustered seeds alignment length.82

A pair of contigs of length 2k − 1 bp with a single nucleotide polymorphism in the centre is the expected83

ideal for yielding a high-confidence variant call, as each of the two contigs is composed of all k k-mers which84

overlap either the wild-type or the mutated base, respectively. We classify such calls in the highest confidence85

category A. For a number of reasons however, contigs may either be shorter or longer than 2k − 1 bp. Pairs86

where variant position is k bases from one of the ends may also be of interest. We place calls corresponding87

to these pairs in confidence category B. All the remaining calls are assigned to category C as most likely to88

be spurious. The additional category D covers a subset of category B calls with more than one varying site89

per pair of sequences and at least one of these being k bases from a contig/alignment end. It covers the rare90

cases of two or more mutations within k bases from one another.91

The choice of k92

Longer k-mers are more likely to be unique within a genome. Analysis of k-mer frequency plots (Figure 2) for93

Ms5/ms5 data suggests that the longest k-mer for which the distribution does not appear to be truncated for94

either of the two input datasets is k ≈ 56. Higher k values in combination with limited sequencing coverage95

available result in an increased proportion of the target sequence not being captured by k-mers. Therefore, we96

would set k at or slightly below that value for further analysis. For illustrative purposes we explore a range of97

k values, k ∈ {24, 32, . . . , 72} and note that unless explicitly stated, the presented results pertain to LNISKS98

run at k = 54. The choice of k affects mainly accuracy but to some extent also computational requirements.99

Application of k-mer filters removes non-EMS-derived calls100

Recall that the crucial step in the LNISKS (and NIKS) approach is the identification of the two sets of k-mers101

which appear in only one of the two bulks (typically wild-type and mutant). In LNISKS, once we obtain102

sets W ′ and M ′ of such sample-specific k-mers, we apply a novel k-mer filtering step, which is subject to103

availability of suitable data and specific biological context of the input datasets. Our experiments show that104

this step greatly reduces the number of k-mers considered for the assembly. This eases the computational105

requirements and helps to reduce the number of candidate mutations by discarding loci which may be regarded106

as irrelevant due to their presence in genomes which do not produce a given phenotype. As illustrated by107

Table 1, filtering reduces the number of calls to be considered/validated. The percentage of G/C to A/T108

transitions also indicates that the filtered-out calls are overwhelmingly not EMS-derived. Across the explored109

values of k, G/C to A/T transitions constitute about two thirds of category A SNPs, compared to around110

one third for other categories. If we apply our custom filtering step, the proportion of G/C to A/T transitions111

among category A calls increases to over 95% (Table 1), thereby approaching the level expected for EMS112

mutations (Greene et al., 2003). The number of category A calls and the number of G/C to A/T transitions113

called from category A clusters is highest at k ≈ 54 (Table 1) which is close to the choice of k that could be114

made based on the preliminary analysis of k-mer distributions for a range of k values (Figure 2), as described115

above.116

Identification of mutations linked to TaMs5-A117

Identification of the gene underlying the TaMs5 locus relied on several bi-parental mapping populations,118

varied genomic and transcriptomic datasets as well as a range of bioinformatic techniques employed to gen-119

erate relevant molecular markers for mapping the causative locus (Pallotta et al., 2019). Mutations between120

Ms5 wild-type and the ms5 mutant detected by LNISKS underlie many of the molecular markers contribut-121

ing to that effort. The overall numbers of mutations detected are summarized in Table 1. The detected122

SNPs include a non-synonymous mutation in a gene demonstrated to be causative for ms5 sterility (Pal-123

lotta et al., 2019). It is found among putative mutations reported by our pipeline for the explored values of124

k ∈ {24, 32, 40, 48, 52, 56, 64, 72} irrespective of whether filters have been applied. This should not however125

be treated as an indication that the choice of the value of k or the filters do not matter, although the number126

of marker SNPs detected was similar at various settings. This may reflect the fact that sequences which are127

more unique across the genome were more suitable for use as markers and are also more easily detectable128

from BSA data. Note that the application of custom filters is of little relevance when identifying SNPs for129

molecular markers as the presence or otherwise of a SNP in other cultivars need not affect its suitability for130

that purpose. This is echoed in the negligible influence of the use of filters on the number of detected SNPs131

which were ultimately used as molecular markers (see Table 2).132
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Figure 2: With increasing k, the number of distinct k-mers increases, but the frequency distribution shifts
to the left, eventually becomes truncated and no longer captures the inflection point at frequency ≈ 3. This
indicates insufficient sequencing coverage for contiguous assembly of mutation harbouring sequences at or
above k ≈ 60. We can also observe that at low values of k the number of distinct k-mers is relatively low.
This indicates that such short k-mers are unlikely to deliver sufficient specificity. Note that counts of k-mers
of frequency 1 are not reported as these primarily reflect sequencing errors.
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Table 1: Numbers of paired seed for a range of k values. Each pair of seeds supports one or more putative
mutations. Assignment to a confidence category A,B or C is based on the length of the alignment and
the position of called mutation(s) within it (see text for details). The subscript filtered indicates results
obtained from runs where custom filters were applied to the set of k-mers from the mutant pool as described
in experimental procedures. The bottom row indicates the percentage G/C to A/T transitions which are
expected to dominate among true calls. These are largely consistent across the range of k values so we do
not provide a per k breakdown.

Number of paired seeds per confidence category
k All Allfiltered A Afiltered B Bfiltered C Cfiltered D Dfiltered

24 12,652 4,792 2,758 1,579 7,160 2,710 2,734 505 249 16
32 17,192 7,079 4,629 2,753 9,297 3,630 3,266 698 431 32
40 28,113 13,176 5,848 3,824 15,419 6,702 6,846 2,652 529 50
48 34,416 15,170 7,155 4,679 18,855 7,392 8,406 3,101 813 76
52 34,561 14,955 7,678 5,005 19,785 7,405 7,098 2,547 483 56
54 36,747 15,789 7,766 5,228 21,547 7,861 7,434 2,702 609 58
56 51,539 21,770 7,656 4,967 30,805 11,831 13,078 4,974 689 58
58 80,229 42,908 7,343 4,276 44,788 22,926 28,098 15,708 671 64
60 83,342 44,681 7,379 4,455 47,372 23,901 28,591 16,327 725 82
64 95,873 50,790 6,540 4,029 53,250 26,769 36,083 19,994 811 126
72 63,532 59,557 4,381 4,641 38,083 32,817 21,068 22,101 213 122

G/C to A/T 36.1% 64.3% 67.5% 95.3% 34.0% 61.9% 26.8% 52.9% 37.2% 68.0%

Table 2: Number of key confidence category A markers identified at varying k values, with or without the
application of custom k-mer filters.

k 24 32 40 48 52 54 56 64 72
unfiltered 17 18 22 21 20 19 20 18 18

filtered 17 18 22 22 21 20 20 19 17

Evaluation of mutation calls using a reference genome assembly133

With more complete and contiguous wheat assemblies becoming available (Clavijo et al., 2017; Zimin et al.,134

2017; IWGSC, 2018), we are able to use these to evaluate a significant proportion, though certainly not all,135

called variants. This limited applicability is to be expected, as the assemblies are for Chinese Spring, a variety136

distinct from Chris which is ms5 background. The reference based evaluation is two-fold. We first focus on137

false positive calls which are a major issue for many reference-free approaches (Leggett and MacLean, 2014).138

This can be done using any one of the three aforementioned assemblies. We align paired seeds to the IWGSC139

RefSeq v1.0 (IWGSC, 2018) genome assembly to identify false positive calls postulated by those pairings.140

If each of the sequences from a given pair aligns to a different chromosomal location, the pairing is almost141

certainly spurious and so is the associated call. The results of this evaluation are summarized in Table 3. We142

were able to unambiguously align both seeds from over 90% of pairs which support category A calls. Among143

these, less than 0.5% were shown to be false-positive based on conflicting alignment locations. If custom144

k-mer filtering is applied, almost 95% of pairs unambiguously align and the associated false-positive rate falls145

to 0.1%.146

The second reference-based evaluation relies on a priori information about the expected physical location147

of the locus of interest. Back-crossing is expected to remove EMS-derived mutations from the genomes of the148

individuals, except for regions linked to the locus causing the phenotype. We expect a concentration of SNPs149

in the linked regions. For ms5, this should be in the centromeric region of chromosome 3A. This evaluation is150

made possible by the IWGSC RefSeq v1.0 assembly (IWGSC, 2018) which allows investigation of the detected151

mutation load across the pseudo-chromosomes which incorporate an overwhelming majority of the assembled152

sequences. As illustrated by Figure 3, the G/C to A/T transitions are concentrated on chromosome 3A with153

certain blocks, primarily also on chromosome 3A, marked with presence of other mutations which are unlikely154

to be EMS-derived. These could indicate allelic variation associated with the ms5 background Chris, and155

the majority of these are discarded if we apply our custom filtering step. We also observe a band of G/C to156

A/T mutations at ≈ 550 Mbp. This location corresponds to a super-scaffold in IWGSC RefSeq v1.0 which157

is most likely incorrectly placed within the pseudo-chromosome. Syntenic ordering of proteins along pseudo-158

chromosme 3A against pseudo-chromosome 3B as well as related species suggest that the super-scaffold159

should be placed at ≈ 100 Mbp point.160
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Table 3: Paired contigs for k = 53 were aligned to the reference genome allowing 1bp indels and up to 3
mismatches per 100bp. Orphaned alignment of just one of the elements of a pair indicates that the other
element did not align or that it aligned equally well at multiple locations. Although the SNPs represented by
the multi-aligned sequences cannot be easily classified as false positive (FP) they are dubious at best. If both
sequences from a pair align unambiguously to the reference, we compare their alignment positions and easily
identify FP calls wherever the two contigs align to distinct locations in the reference genome.

A Afiltered B Bfiltered C Cfiltered

Input (pairs) 7,742 4,418 20,661 6,837 7,352 2,544
Orphaned 410 89 5,152 1,541 2,538 901
Both aligned (placed) 7,032 4,177 10,146 3,217 1,427 339
Both aligned (percentage) 90.8% 94.5% 49.1% 47.1% 19.4% 13.3%
Matched position 7,000 4,173 9,465 3,091 873 214
Identified False Positives (IFP) 32 4 681 126 554 125
IFP as percentage of placed 0.46% 0.10% 6.7% 3.9% 38.8% 36.9%
IFP as percentage of input 0.41% 0.09% 3.3% 1.8% 7.5% 4.9%

When we look at chromosome 3A in more detail (Figure 4), we observe a large block (40 Mbp – 500Mbp)161

where many of G/C to A/T transitions display high support values, which reflect the number of plants162

contributing the underlying k-mer information. Furthermore, we observe how the application of custom filters163

discards many non-EMS derived SNPs, often concentrated just outside the large block rich in G/C to A/T164

transitions.165

Computational cost166

Through the use of state-of-the-art tools such as KMC2/3 and VSEARCH (Rognes et al., 2016) as well as167

extensive use of multi threading, LNISKS can process datasets consisting of billions of reads within hours.168

All in silico experiments were executed on an allocation of 32G of RAM and 16 logical cores on a compute169

cluster containing two nodes, each with 72 Intel Xeon E5-2699 v3 CPUs (2.30GHz), 770 Gigabytes RAM and170

two RAID0 SSDs for temporary files. Typical wall-clock run time of the pipeline (k = 53) was 2 hours and171

33 minutes, which compares favourably with the 2 hours required for sequential, single-threaded reading and172

decompression of the same input data. The total CPU time for this run was 26 hours and 34 minutes. Where173

applicable, additional time is required for pre-computing custom filter database(s). For lower k values it may174

also be necessary to further extend paired seeds to facilitate better (sequence similarity based) functional175

annotation of contigs underlying putative mutations.176

Mutation identification from heterozygous data - proof-of-concept177

Both NIKS and LNISKS are designed for detecting homozygous mutations. This enables straightforward sub-178

traction of k-mers which in turn makes the approaches computationally tractable. This is a direct consequence179

of the fact that an overwhelming majority of k-mers are discarded by the subtraction step and the subsequent180

operations are carried in a much reduced search space. Here we present a proof-of-concept approach, where181

with the tool set comprised of KMC2/3, our custom filters as well as our vclusters and seedmers modules,182

we are able to quickly identify the ms5 causative mutation and some of the key marker-SNPs for the locus183

when one of the input datasets (Ms5 fertile) comes from plants which are phenotypically indistinguishable184

from the homozygous wild-type but known to be heterozygous based on marker information. This (third) bulk185

is comprised of 20 individuals, and the estimated combined sequencing depth was just under 15X assuming186

17 Gbp genome. In this analysis we also use the bulk of 20 homozygous mutant individuals (23X combined187

sequencing depth) and custom filters. Because of the lower sequencing coverage of one of the input sets we188

chose a lower k, k = 40. This approach identifies 3297 putative mutations, including 1519 calls supported by189

k k-mers each. Among these, 88% are G/C to A/T transitions, and include the ms5 causative mutation and190

mutations representing 10 of the key markers used in the ms5 mapping (compare to corresponding LNISKS191

results in Table 2).192

To provide an estimate of the specificity of the calls we have aligned pairs of postulated wild-type and193

mutant sequences to IWGSC RefSeq v1.0 assembly. In 2213 or 67% of cases, both sequences aligned to194

the same locus. Among the 1519 high confidence calls supported by k k-mers, 1358 (89.4%) sequence pairs195

aligned to the same locus. Of these, 1286 (94.7%) aligned to chromosome 3A.196
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Figure 3: Confidence category A mutations identified without the application of filters, distributed along
pseudo-chromosomes. Overall, 81.7% (83.7% filtered) of category A calls and 89% (92.8% filtered) of
G/C to A/T transitions assigned to a chromosomal position are concentrated on chromosome 3A. Pseudo-
chromosomes with no putative mutations assigned are not shown. Support for a given call is a simple measure
calculated based on presence of k-mers supporting wild-type (mutated) allele in wild-type (mutant) plants. It
is a crude reflection of the number of plants contributing evidence for a given call. The coloured areas under
curves represent density of mutations within 5Mbp bandwidth. To aid visualisation (Wickham, 2009), the

density estimate values are scaled as follows
√

density × n× 107, where n is the number of points.
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Figure 4: Confidence category A mutations distributed along the 3A pseudo-chromosome. Position of an
individual data point along the y axis reflects the number of plants contributing k-mers which support the
corresponding mutation. The coloured areas represent density of mutations within 1Mbp bandwidth. To aid
visualisation, the density estimate values are scaled as follows

√
density × n× 107, where n is the number

of points.
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Although this approach appears to be less sensitive than LNISKS, this may be at least partly due to the197

lower sequencing coverage (≈ 15X) available for the fertile heterozygous bulk, further exasperated by the198

fact that for the heterozygous portions of the genome (the region of interest), we would require twice the199

sequencing coverage for a comparable level of evidence to be available for calling mutations. The available ≈200

15X coverage in the region of interest translates to ≈ 7.5X available per allele.201

Availability and dependencies202

The LNISKS piepline is freely available at https://github.com/rsuchecki/LNISKS under Apache 2.0203

license. Many of the individual components of the pipeline are modules from https://github.com/204

rsuchecki/yakat toolkit (Java), which is packaged as a single executable with no dependencies. LNISKS205

also utilizes bash, AWK/MAWK and standard Linux tool set. It was developed and tested on Ubuntu Linux206

14.04 with Java 8 update 74. It has few dependencies, with KMC2/3 (Deorowicz et al., 2015; Kokot et al.,207

2017) used for k-mer counting and set operations and VSEARCH (Rognes et al., 2016) used for seed clustering.208

Discussion209

Bulk Segregant Analysis supported by modern sequencing technology is a powerful approach for identification210

of mutagenesis-derived causative mutations. Our computational approach allows for it to be applied when a211

suitable reference genome assembly is not available. Another advantage of k-mer based mutation identification212

directly from the input data is that it is not reliant on the fine-tuning of the alignment parameters. This213

effectively adds to computational efficiency of the approach as it reduces the need for parameter space214

exploration. Where such exploration of parameter space is necessary, it is fast thanks to operating on much215

reduced sets of fixed length sequences (k-mers). Finally, as illustrated in this work, the subtraction of k-mers216

present in third party datasets amplifies the signal of the targeted mutations, thus further accelerating the217

process of candidate gene identification.218

Low recombination around the TaMs5-A locus resulted in a very high number of linked mutations thus219

highlighting one of the main risks associated with the approach. Population size, number of meiosis events220

and sampling affect how many recombination events are captured for downstream analysis. This coupled with221

large genome size translates into considerable cost of undertaking BSA analysis. In some cases this could222

potentially be alleviated e.g. by selecting the most informative recombinants based on prior knowledge from223

genetic mapping of the locus of interest.224

The IWGSC reference assembly allowed us to illustrate the validity of our approach. It also indicates that225

in cases where the studied accession is sufficiently similar to Chinese Spring, a reference-based approach may226

suffice. If however the studied cultivar has, for example, the relevant chromosome (or part of it) introgressed227

from a related species then an approach reliant on a reference assembly may not be suitable. Furthermore,228

the effective utility of this particular assembly is largely dependent on it being presented as a set of well229

constructed pseudo-chromosomes. Such level of contiguity and refinement was not available for any of the230

previous assemblies of bread wheat, and may not be available for many other species in the short to medium231

term.232

LNISKS is developed and tested with WGS data in mind but it can be applied to other types of sequence233

data such as RNA-Seq. Using RNA-Seq in place of DNA-Seq offers a reduction in cost but carries certain234

risks, not least the risk of the targeted gene not being expressed or sufficiently highly expressed in the collected235

tissues at a given developmental stage. A causative mutation outside the expressed portion of the genome236

will not be detected directly and the identification of the relevant gene or genes by relying on changes in237

expression or even lack of expression carries a high level of uncertainty. On the other hand, mutations in238

linked genes will likely be detected and these may be used to narrow down the candidate list.239

Our approach detects short indels as well as SNPs. We do not focus on this functionality, as indels are rare240

in EMS-derived data. For example, among category A calls at k = 54, 1 bp insertions and deletions represent241

0.5% of calls, or 0.15% of calls when custom filters are applied. More generally, as already demonstrated by242

NIKS, also large indels can be captured, but this requires fine-tuning of parameters when pairing seeds and243

calling such mutations.244

Finally, we have demonstrated how to identify mutations from data derived from heterozygous individuals245

but also how such data can be leveraged for prioritising called mutations. More generally, combining KMC for246

counting k-mers and set operations with the tool set we have developed, allows us to go beyond the paradigm247

of LNISKS and NIKS to identify and prioritize SNPs across multiple datasets. One could, for example discard248

any k-mers present in all the bulks/datasets under consideration and use our tool set to identify SNPs between249

any of the bulks.250
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Experimental procedures251

We provide a general overview of our approach in Figure 1. LNISKS broadly follows the steps of the established252

NIKS approach (Nordström et al., 2013). One of the main differences is the application of custom k-mer253

filters. Other innovations which we outline in this section pertain to extension of k-mers to seeds both before254

and after the seeds are clustered/paired. SNP prioritisation and the functional annotation of the underlying255

sequences are not core parts of our pipeline, but we do provide the tools required for these operations.256

After a brief summary of our library preparation and sequencing protocol, we outline the key elements of our257

pipeline, explore the issue of call prioritization and finally detail our proof-of-concept approach for reference258

free identification of heterozygous mutations.259

Library construction and sequencing260

The genomic DNA was prepared according to a library construction protocol developed by Illumina and261

sequenced using the Illumina HiSeq2500. DNA was extracted from frozen tissue from 80 individual plants262

using the DNAeasy system (Qiagen) according to manufacturer’s conditions. Briefly, after genomic DNA was263

sheared by sonication using a Covaris S220/E220 system, the resulting DNA fragments were end-repaired264

and their 3’ ends treated for A-base addition. After ligation of Illumina-specific adapters and gel-based265

size-selection, adapter-ligated DNA fragments were subjected to limited PCR amplification with Illumina-266

specific PCR primers. Cluster generation and paired-end sequencing of the amplified DNA fragments were267

performed on an Illumina cBot and Illumina HiSeq2500, respectively, according to Illuminas instructions.268

Sequencing primer hybridization was performed on the cBot and 151 cycle paired-end protocols were used on269

the HiSeq2500. Sequences and quality scores were generated with the Illumina pipeline software for image270

analysis and base calling. After initial base calling and processing, the sequencing files generated by the271

Illumina pipeline were converted to FASTQ format and additional custom quality filtering was performed,272

such that reads were trimmed if they harboured one or more base at their 3’ end with a quality score ¡273

15. Assuming 17 Gbp genome size, sequencing coverage for the bulks was ≈ 19X for the 20 homozygous274

wild-type plants, ≈ 23X for the 40 homozygous mutant plants and ≈ 15X for the additional 20 wild-type275

plants heterozygous for the locus.276

Custom k-mer filters277

We have devised a filtering strategy which reduces the computational cost of extending and clustering seeds,278

and reduces the number of false positive calls. The mode of use as well as usefulness of such filters depends279

on a priori knowledge and the availability of suitable sequence data. Filters are in principle best suited for280

aiding the detection of dominant mutations when sufficient sequence and phenotypic data are available. When281

looking for a dominant allele responsible for a trait we do not expect its exact sequence to be present in a282

variety not displaying that trait. In the case of ms5 the assumption is that a mutation causing such an283

unambiguous phenotype (as male sterility) should not be present in cultivated varieties, so the application284

of a filter was straightforward also for this recessive mutation. Consequently, we are able to extract sets of285

filtering k-mers from datasets such as the WGS data of 16, predominantly Australian wheat cultivars (Edwards286

et al., 2012). We used KMC2 to extract k-mers, k ∈ {24, 32, 40, 48, 52, 54, 56, 58, 60, 64, 72} from each of287

the 16 datasets. For each k we have computed a union of the 16 sets, only considering k-mers occurring at288

least twice in a given set, k-mers occurring only once in a dataset are ignored as they are likely to arise from289

sequencing errors in the input reads. Each set F generated this way holds from 10.2 × 109 to 16.8 × 109290

k-mers with the corresponding KMC database occupying from 41 gigabytes for k = 24 to 338 gigabytes for291

k = 72, or the total of 2.2 terabytes for the explored values of k. We expect that LNISKS user would only292

need to generate a database for a single selected k value. The relations between a filtering set and the input293

sets of k-mers for the selected value k = 54 are illustrated in Figure 5.294

Generation of unambiguous k-mer extensions295

We have developed a specialized tool for efficient generation of unambiguous extensions (unitigs) from sets of296

k-mers. Our kextender exploits the fact that due to only sample-specific k-mers being present in the input,297

the implicit De Bruijn graph consists largely, although initially not exclusively, of disconnected sub-graphs,298

each representing a unitig. As we construct a map which stores the information from the input k-mers, we299

ensure that this holds for all sub-graphs. For each input k-mer we store two (k− 1)-mers, each with a single300

bp extension representing the first and the kth base, respectively. Binary encoded canonical representation301

of a (k − 1)-mer forms the key for a given entry. With each key, we can associate up to four alternative 1302
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Figure 5: Relations between sets of 54-mers occurring at least twice in each of the datasets. The discarding of
W ∩M greatly reduces computational complexity. This operation discards 8 105 726 935 k-mers and results
in the set M ′ = M \W , |M ′| = 91 993 118. In addition, the application of custom filtering set F allows us
to half the number of the k-mers remaining in M ′ as we discard F ∩M ′ i.e. 46 088 370 k-mers. The value
of the filtering comes from the resulting reduction in the number of non-EMS mutations called.

bp extensions on each of the two sides. Presence of k-mers which are adjacent in the original input sequence303

limits the overhead of storing two (k − 1)-mers rather than a single k-mer to typically less than 10%. At304

this modest cost we gain a convenient, implicit representation of the De Bruin graph, well suited for parallel305

traversal for contig construction. A collision in the map construction occurs when for a given (k − 1)-mer306

we store an alternative 1 bp extension at either of the two positions – this invalidates the map entry for that307

(k− 1)-mer. After the construction stage we purge the invalidated entries from the map, which ensures that308

the underlying implicit De Bruijn graph only contains nodes of degree ≤ 2. Any entry which only holds a309

single 1 bp extension is also purged as it only holds redundant information which is also stored with another310

(k− 1)-mer. At this stage, map entries representing graph nodes adjacent to the purged ones are recorded in311

set T . Sub-sets of T are then passed to extender threads which traverse the sub-graphs associated with each312

element independently in parallel to build contigs. If two threads happen to start traversing a path underlying313

the same unitig from opposite ends, one thread abandons the extension, leaving the other one to continue the314

extension process unhindered. Such collisions are rare, at 1 per 25 000 extensions in our experimental set-up.315

This will vary depending on size and contiguity of the graph being traversed as well as the number of threads316

traversing it.317

Further extension of clustered seeds318

In the NIKS approach, seeds from the two datasets are paired based on sequence similarity. In principle this319

should suffice. In practice however, k-mer extension to seeds may often fail to reach the desired length of320

2k− 1 bp. This can be due to insufficient or uneven sequencing coverage or repetitiveness of the sequence in321

question, which translates to non-uniqueness of some of the k-mers which overlap a putative mutation. The322

issue of non-uniqueness of k-mers can be alleviated by increasing k. However as we increase k, seed contiguity323

may suffer due to insufficient or uneven coverage. Because of that, rather than simply finding best matching324

pairs of wild-type and mutant sequences we have opted for similarity-based clustering of all sequences from325

the two input datasets. If both the wild-type and the mutant sequence are 2k− 1 bp they will most likely be326

clustered together as they would if we were simply pairing sequences across the two sets. Clustering however327

also allows us to group together multiple incompletely extended seeds which overlap a putative mutation328

site. Our vclusters module prior to variant calling merges clustered contigs from a given set. For that329

we exploit the fact that wild-type and mutant contigs clustered together serve as reciprocal anchors thereby330

facilitating extension of contigs to 2k − 1 bp. This enables us to identify mutations which would otherwise331

remain undetected or classified at a low confidence level among mostly false calls. This extension procedure332
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is only performed if there are no mismatches between the contigs within a given data set. This subroutine is333

behind ≈ 20% of category A calls across the k-mer lengths explored in our experiments.334

Call prioritisation through k-mer threading335

We developed the snpmers module which facilitates rapid, reference- and alignment-free genotyping of SGS336

datasets for a pre-defined set of varying loci, such as the set of category A calls from LNISKS. Information337

generated by this module also allows us to prioritize candidate mutation calls. In addition to the homozygous338

wild-type (Ms5) and homozygous mutant (ms5) data, we can also tap into the respective heterozygous339

wild-type data. We use the last of these datasets to illustrate the workings of snpmers but the module’s340

application is in no way limited to heterozygous data.341

We start by extracting set H of k-mers from the WGS reads obtained from fertile plants heterozygous for342

the ms5 mutation at the TaMs5-A locus. To speed-up the subsequent steps, we start by discarding k-mers343

which are present in both the wild-type and the mutant as these do not capture any of the mutations. We344

use KMC2/3 to subtract the intersection of those two sets from H, i.e. H ′ ← H \ (W ∩M). We next employ345

our genotyping module snpmers which takes the list of variants called so far as well as a set of k-mers (in346

this case, H ′). Let W be the set of all possible k-mers overlapping a variant site and matching the wild-type347

allele, and let M be the set of all possible k-mers overlapping a variant site and matching the mutant allele.348

The k-mers from H ′ are matched to a variant position and their frequencies are recorded, resulting in sets349

H ′
W and H ′

M of k-mers from H ′ which match the wild-type and the mutant allele, respectively. This provides350

us with two measures of support for a given allele at a position:351

(i) the median frequency of k-mers in H ′
W (or H ′

M)352

(ii) the k-mer coverage ratio of a given allele c(H ′
W) =

H′
W

W (or similarly c(H ′
M) =

H′
M

M )353

Based on these measures, the snpmers module genotypes the input sample for each of the input loci. In the354

context of TaMs5-A this allows us to prioritize original calls which are also called as heterozygous in H.355

More generally, this approach allows us to assign the two aforementioned measures to both alleles of each356

locus for each of our input datasets, including W and M . These can then be used to sort or filter the list357

of putative mutations to be able to focus on the highest confidence calls. The same measures can also be358

computed for individuals which constitute the bulks. Due to shallow sequencing of individual plants we cannot359

draw conclusions from absence of evidence for a given allele in a single plant, but wherever there are k-mers360

supporting or contradicting a given call, these can be quantified to approximate the number of plants which361

support or contradict that call. For a given call we record how many of the mutant plants yielded one or more362

k-mers supporting the postulated mutant allele. We call these mutant-true (MTT). We also record how many363

of the mutant plants yielded one or more k-mers supporting the postulated wild-type allele, i.e. mutant-false364

(MTF). Similarly, we establish the wild-type true (WTT) and wild-type false (WTF) values. Finally we define365

the support value for a given call by adding the supporting values and subtracting the contradicting values,366

i.e. Support = MTT +WTT −MTF −WTF . Weighing can be applied to highlight the the presence of367

k-mers contradicting the expected allele, as apart from error or repeat-derived contradicting k-mers, these368

are an indication of a given locus not being strongly linked to the causative one and consequently different in369

some of the individuals in the same bulk. Alternatively, MTT and WTT values can be considered separately370

form MTF and WTF. The sum of MTF and WTF is the the evidence contradicting a particular mutation371

call, and as illustrated by Figure 6, it is least pronounced in the centromeric block which contains the ms5372

mutation.373

Proof-of-concept procedure for identification of heterozygous mutations374

LNISKS (and NIKS) are designed for identification of homozygous mutations. Here we outline a procedure375

for the identification of heterozygous mutations using the LNISKS tool set. We first subtract the set M of376

ms5 mutant k-mers from the set H of Ms5 heterozygous fertile k-mers and subtract the set F of custom377

filtering k-mers from the ms5 mutant data set M , that is: H ← H \M and Mf ←M \F . We then extend378

the k-mers from H ′ to obtain the set of unitigs (or seeds) representing the wild-type genotype. We only keep379

seeds of length 2k − 1 and assume that these harbour mutations at the kth base. We employ our seedmers380

module to match the mutant k-mers from Mf to the seeds, allowing a mismatch at the kth base. For each381

seed we record frequencies of up to k k-mers representing an allele alternative to the wild-type represented382

by the seed. The collected information forms the bases of genotype calls.383
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Figure 6: Identified category A mutations distributed along the 3A pseudo-chromosome. Towards the telom-
eres, an increasing proportion of calls are contradicted by k-mers from an increasing number of individuals.
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Long unpaired seeds384

Sequences above user defined length which remain unpaired are output by our pipeline and in some scenarios385

may be of interest as these may reflect e.g. presence of larger indels or sequences highly divergent between the386

studied datasets. In other cases this output is more likely to represent an assembly of contaminant sequences.387
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