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Abstract 

Large-scale ​in vivo​ neuroimaging datasets offer new possibilities for reliable, 
well-powered measures of interregional structural differences and biomarkers of pathological 
changes in a wide variety of neurological and psychiatric diseases. However, so far studies 
have been structurally and functionally imprecise, being unable to relate pathological changes to 
specific cortical layers or neurobiological processes. We developed artificial neural networks to 
segment cortical and laminar surfaces in the BigBrain, a 3D histological model of the human 
brain. We sought to test whether previously-reported thickness gradients, as measured by MRI, 
in sensory and motor processing cortices, were present in a histological atlas of cortical 
thickness, and which cortical layers were contributing to these gradients. Identifying common 
gradients of cortical organisation enables us to meaningfully relate microstructural, 
macrostructural and functional cortical parameters. 

Analysis of thickness gradients across sensory cortices, using our fully segmented 
six-layered model, was consistent with MRI findings, showing increasing thickness moving up 
the processing hierarchy. In contrast, fronto-motor cortices showed the opposite pattern with 
changes in thickness of layers III, V and VI being the primary drivers of these gradients. As well 
as identifying key differences between sensory and motor gradients, our findings show how the 
use of this laminar atlas offers insights that will be key to linking  single-neuron morphological 
changes, mesoscale cortical layers and macroscale cortical thickness. 
 
 
Introduction 
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The cerebral isocortex has six cytoarchitectonic layers that vary depending on cortical 
area and local morphology. Previous work has described relationships between 
cytoarchitecture, cortical morphology and functional organisation ​1–3​; nevertheless, the precise 
nature of these relationships are unclear. A core problem is that the most convenient and 
flexible techniques for measuring the cortex over a large population – ​in vivo​ MRI – lack spatial 
resolution while spatially precise histological approaches present profound technical problems. 
For example, MRI can be used to demonstrate that sensory cortices exhibit a measurable 
thickness gradient but cannot directly link these gradients to underlying laminar or histological 
patterns and are susceptible to biases from parallel gradients of myelination. Conversely, 
measurement problems in serial slicing of convoluted cortical tissue make thickness gradients 
hard to ascertain over an entire cortical region. However, creating a cortical layer segmentation 
of the BigBrain, a 3D histological atlas of the human brain, offers a solution to these problems 
and allows us to relate standard MRI measures to laminar patterns. Using this atlas, we can 
determine whether cortical thickness gradients can be seen in measurements made with much 
greater spatial resolution and whether similar cortical thickness gradients are present in 
fronto-motor cortices. Furthermore, it becomes possible to examine which cortical lamina 
contribute to these thickness gradients. 

Sensory processing hierarchies describe the concept that the cerebral cortex is 
organised with gradually changing structural and functional properties from primary sensory 
areas, to secondary sensory areas and ultimately higher-order association areas. Multiple 
measurement modalities converge on similarly ordered patterns including single-neuronal 
morphological ​4​ and electrophysiological characteristics​5​, laminar connectivity patterns of 
projecting cortical neurons ​6,7​, laminar differentiation ​8​, MRI cortical thickness​3​, MRI myelination ​9​, 
receptor densities ​10​ and temporal dynamics​11​. Topographically, hierarchies are organised such 
that progressively higher cortical areas are located with increasing geodesic distance across the 
cortical surface from their primary areas ​3,12​. Ordering cortical areas along these gradients 
provides a framework for understanding the relationships between interareal structural and 
functional characteristics. 

Cortical thickness is a widely used marker of ​in vivo​ and ​ex vivo​ cortical structure ​13​. Early 
histological studies noted marked interareal thickness differences on ​post mortem​ histological 
sections​14,15​, which have since been replicated ​16,17​ and extended using ​in vivo​ MRI ​3​, and 
alterations in this pattern may be seen in neuropsychiatric illness ​18​. MRI cortical thickness 
demonstrated patterns of cortical thickness relating to functional and structural hierarchical 
organisation across sensory cortices of both macaque and humans ​3​. A similar gradient of 
increasing MRI cortical thickness has been reported, extending from the primary motor cortex to 
the anterior frontal cortex ​19​. However, while classical studies of cortical histology observed that 
primary sensory regions are thinner than their surrounding secondary sensory cortices, the 
inverse is true for the motor cortex which is especially thick ​14,15​. Furthermore, thickness 
gradients identified in MRI extended far beyond neighbouring secondary areas into association 
cortical areas. Thus it remains unclear whether thickness gradients found in MRI are artefactual, 
driven by gradient differences in cortical myelination causing systematic cortical reconstruction 
errors ​9,20​, or truly represent the underlying histology. Moreover the isocortex has six 
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histologically defined layers, and it is unclear to what extent changes in cortical thickness are 
driven by different layers.  

Carrying out analyses of histological thickness gradients poses several methodological 
challenges. First, most histology is carried out in 2D, with associated measurement artefacts 
due to oblique slicing ​21​. Second, manual measurement is associated with observer dependent 
variability, estimated to be up to 0.5 mm ​15​. Third, due to the labour-intensive nature of 
histological analyses, many histological atlases have a small number of sample points. These 
factors hinder the ability to detect and map potentially subtle, cross-cortical changes in 
cytoarchitecture as well as overall and laminar thicknesses. BigBrain offers a unique dataset to 
resolve histological cortical layers in 3D, thereby providing a concrete link between microscale 
patterns of structure and ​in vivo​ markers.  

We therefore set out to automate segmentation of cortical layers in 3D in order to 
explore patterns of cortical and laminar thickness across sensory and fronto-motor cortical 
hierarchies. To do this we used a convolutional neural network to segment profiles of 
histological intensity sampled between the pial and white matter. Training profiles were 
generated from examples of manually segmented layers on cortical regions from 2D histological 
sections of the BigBrain. The trained network was used to segment intensity profiles derived 
obliquely through the 3D histological volume and generate mesh segmentations of six cortical 
layers. These surfaces were used to calculate cortical and laminar thicknesses. Geodesic 
surface distance from primary visual, auditory, somatosensory and motor areas were calculated 
and used as a marker of hierarchical progression. Cortical and laminar thickness gradients were 
calculated for each system. 
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Results: 
Neural network training: 

In the cross-validation, average per-point accuracy on the test fold was 83% +/-2% prior 
to post processing, suggesting the network was able to learn generalisable layer-specific 
features and transfer them to novel cortical areas. The predictions of the model trained on the 
full dataset were used to create a 3D segmentation of the cortical layers in both hemispheres 
(Figure 1). 
 
Confidence results: 

Layer confidence maps, given by difference between prediction values (between 0 and 
1) of the highest and second highest predicted classes for each point, give an approximation of 
the reliability of laminar segmentations for the cortex where ground truth manual segmentations 
have not been carried out (Supplementary Figure 2). Throughout the cortex, the network has 
high confidence for supra-pial and white matter classes. Layers I, II, III, V and VI also exhibit 
relatively consistent confidence maps, whereas layer IV demonstrates a high variability of 
confidence, which is high in the occipital cortex but low anteriorly. This pattern matches with 
visual observations that layer IV is relatively prominent in the occipital cortex, but more difficult 
to identify in frontal lobe areas, and absent in primary motor cortex. 
 
Resolution results: 

Downsampling BigBrain to decrease the resolution, from 20 microns down to 1000 
microns, progressively decreased the accuracy of the network on the test folds from 85% to 
40% (Supplementary Figure 3). However, at 100um, the approximate upper limit for current 
high-resolution structural MRI, profiles had sufficient detail to maintain an accuracy of 76%. 
 
 
Visual inspection of 3D layers of the cortex: 

On visual inspection, the automatically identified cortical layers closely follow bands of 
intensity within the BigBrain (Figure 1) and continue to follow the same features beyond the 
limits of training examples (Figure 2a).  

In the original surfaces, the white surface was placed at the maximum intensity gradient 
between gray matter and white matter, while the new white surface is based on the network 
trained on manual placement of the white boundary, which is defined by the presence of cortical 
neurons. On closer inspection, the maximum gradient appears to be at the border between 
sublayers VIa and VIb where the change in neuronal density is sharper than at the boundary 
between white matter and layer VI (Supplementary Figure 4). 

A second feature apparent on visual inspection is that the layers do not follow a single 
set of rules - they vary between cortical areas. This is most readily apparent at the V1-V2 
boundary where layer IV is dramatically different (Figure 2b). Layer IV is particularly thick in V1 
and has multiple sublayers creating extra peaks and troughs in the intensity profiles whereas in 
V2 it is much thinner and no longer differentiated into sublayers. The transition from a thick layer 
IV to a thin layer IV occurs precisely at the boundary between these two regions suggesting the 
network is internally learning certain areal properties also. 
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Visual comparison of total and layer thickness maps 

On visual inspection, maps of BigBrain cortical thickness are consistent with classical 
atlases of histological thickness reported by von Economo and Koskinas (Figure 3). In particular 
the motor cortex is the thickest part of the cortex with values over 3.8mm uncorrected (over 
4.5mm when adjusted for shrinkage). The thickness of the motor cortex is often underestimated 
in MRI thickness measurement​22​, probably due to the high degree of intracortical myelination 
which affects the grey-white contrast, causing the white matter surface to be too close to the 
grey surface, such that cortical thickness is underestimated ​3,20​. Clearly visible in both BigBrain 
and von Economo is the thin occipital cortex.  

On comparison with the available layer maps for layers I, III, V and VI from the von 
Economo atlas, there are several similarities but also meaningful differences (Figure 4). Layer III 
is thick in the precentral areas, and particularly thin in the primary visual cortex. Layers V and VI 
are thick in frontal and cingulate cortices, but also thin in the occipital cortex.  
Of interest is the clear boundary exhibited by layer IV at the boundary between V1 and V2 in the 
occipital cortex. This change in thickness is abrupt enough to generate an automated 
anatomical label for V1 (Figures 2 and 4). 
 
Cortical gradients and processing hierarchies 

Cortical thickness was positively correlated with geodesic distance in visual (right, 
R=0.42, p=0; left, R=0.56, p=0), somatosensory (right, R=0.30, p=0; left, R=0.20, p=0), and 
auditory cortices (right, R=0.13, p=0; left, R=0.20, p=0) (Figure 5A-C). By contrast in the motor 
cortex, thickness was negatively correlated with geodesic distance (right, R=-0.16, p=0; left, 
R=-0.25, p=0) (Figure 5D). This is consistent with MRI thickness findings in sensory gradients 
but contradictory for the fronto-motor gradient. 

Cortical layers did not contribute equally to the total thickness gradient in the visual 
cortex and somatosensory (Figure 6A). Layers III and V had the largest contributions to the total 
thickness gradient, followed by layer VI and then II. A similar but less pronounced pattern was 
seen within the auditory cortex. 

In the motor cortex the inverse was true, with decreases in layers III, V and VI. Layer IV 
also exhibited a decrease in thickness, however there was low network confidence for layer IV 
in these areas and thus this particular finding is inconclusive. 

Thus, consistent with MRI thickness gradients, somatosensory and visual areas 
exhibited positive histological thickness gradients primarily driven by layers III, V and VI. By 
contrast the fronto-motor areas exhibited an inverse gradient, peaking in the motor cortex and 
driven by the same layers (Figure 6B & C). 
 
Open data availability 

All code used for the segmentation and analysis of cortical layers will be made available 
at ​https://github.com/kwagstyl ​ and BigBrain volumes, layer surfaces and intensity profiles are 
available to download at ftp://bigbrain.loris.ca/. 
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Discussion 
 
We automatically segmented the six histological layers of the cerebral cortex in the 

BigBrain and used these to test for gradients of cortical and laminar thickness within sensory 
and motor processing hierarchies. Consistent with previous findings using ​in vivo​ MRI and 2D 
histological measurements ​15​, sensory hierarchies exhibited a gradient of increasing cortical 
thickness from primary sensory to higher order areas. In visual, somatosensory and auditory 
cortices, these gradients were primarily driven by layers III, V, VI. By contrast, the fronto-motor 
cortices exhibited a decreasing cortical thickness gradient away from the primary motor cortex 
towards higher order frontal areas, which was driven by decreases in these layers. These 
findings highlight the utility of the BigBrain for linking micro- and macro-scale patterns of cortical 
organisation. 

Gradients of thickness are large scale markers of systematic changes in the cortical 
microcircuit. The volume of the cortex is 80-90% neuropil ​23,24​, of which 60% is axons and 
dendrites and the remainder is synaptic boutons, spines and glia. As neuronal density 
decreases with increasing cortical thickness ​25,26​, and most of the volume of the cortex is 
neuropil, increased thickness is most likely to mark increased intracortical connectivity ​13​. At a 
laminar level, the strongest contributors to the overall thickness gradients were layers III, V and 
VI (Figure 6). Cell-morphological studies in macaques have shown that the cell size and 
dendritic arborisation of layer III and V pyramidal neurons increase across the visual pathway 
4,27,28​. Similarly, afferent axonal patch sizes scale with pyramidal neuronal arborisation ​29​. 
Increasing dendritic arborisation, axonal field size and number of synapses all contribute to an 
increase in the volume of laminar neuropil and are therefore a likely driver of the laminar and 
overall thickness gradients measured here. Layer VI also increased in thickness in sensory 
pathways. However, while neurons located in these layers might exhibit increases of their 
associated neuropil, the measured thickness change may in part be due to the extended 
arborisations of III/V pyramidal neurons forming connections within these layers. Histological 
gradients of layer thickness provide us with a meso-scale link between ​in vivo​ patterns of MRI 
cortical thickness and microstructural, neuronal-scale changes in the cortical microcircuit. Such 
links help us to understand the neurobiological significance of interindividual, longitudinal and 
neuropathological biomarkers​13​. 

 
In contrast to ​in vivo​ studies of fronto-motor functional, myelin and MRI cortical thickness 

organisation, which place the primary motor cortex at the same level as primary sensory 
areas​9,12,19​, we found that total and laminar fronto-motor thickness gradients were the inverse of 
those measured in sensory cortices. Histologically, the motor cortex was especially thick and the 
thickness decreased with geodesic distance from the primary motor cortex, with layers III, V and 
VI following a similar inverse pattern. This finding is consistent with reported trends in other 
histological properties such as laminar structural type ​15​ and neuronal density ​25​, as well as the 
observation that the motor cortex has large, pyramidal neurons with extensive dendritic 
arborisation ​30,31​. Functionally, these structural differences might be considered in terms of 
narrow, specific columnar receptive fields for accurate sensory perception ​32​, and wider 
receptive fields ​33​ for the coordination of multiple muscle groups ​34​ in precise motor control. Thus 
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there is a coherent group of cortical microcircuit properties which diverge from patterns of 
cortical myelination and fMRI-derived gradients, locating the motor cortex at the peak of a 
gradient of increasing cortical thickness, layer III, V and VI thickness and pyramidal neuronal 
arborisation, with primary sensory areas at the opposite extreme.  

 
Atlas of cortical layers 

The layers we have generated to test gradient based hypotheses have applications 
beyond the scope of this study. Surface-based models of layer structure also create a 
framework for translating between microstructural modalities and surface-based neuroimaging. 
Furthermore, current approaches to measuring laminar structure and function ​in vivo​ rely on 
prior models of the cortical layers - for example signal-source simulation in MEG ​35​ or for 
sampling laminar BOLD signal in fMRI ​36​. The whole-brain histological models for areal layer 
depth provided here, combined with a good understanding of how the layers vary with local 
cortical morphology​21,37,38​ will aid such anatomical models. 
 
Limitations 

It is important to acknowledge that the gradients of laminar thickness measured may be 
affected by limitations in the BigBrain dataset. The first limitation is that the ​post mortem​ brain 
was damaged during extraction and mounting. In some areas this resulted in minor shears. This 
problem was addressed to some extent through the utilisation of non-linear registration 
techniques. Nevertheless, some shifts in cortical tissue between consecutive sections are 
present and will affect the accuracy of layer reconstructions. In other areas, the cortex has been 
torn. Spatial smoothing and the large total number of sample points make it unlikely that these 
errors are affecting the results. A second limitation is that there is only one BigBrain. Future 
work will be necessary to establish the interindividual and age-dependent variability in laminar 
structure, either using other histological BigBrains or with complementary high-resolution MRI 
imaging approaches. 

 
Total cortical thickness and thicknesses for each of the six isocortical layers were 

measured in the BigBrain to explore the histological drivers of MRI-based thickness gradients. 
Overall, the pattern of thickness in the BigBrain was consistent with histological atlases of 
cortical thickness. In the visual and somatosensory cortices, an increasing gradient of 
histological cortical thickness was identified and found to be primarily driven by layers III, V and 
VI. In the fronto-motor cortex, the inverse pattern was found. These findings provide a link 
between patterns of microstructural change and morphology measurable through MRI and 
emphasise the importance of testing MRI-based anatomical findings against histological 
techniques. The laminar atlases provide an invaluable tool for comparison of histological and 
macroscale patterns of cortical organisation. 
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Methods: 
Volumetric data preparation: 

BigBrain is a 20x20x20μm (henceforth described as 20μm) resolution volumetric 
reconstruction of a histologically processed ​post mortem​ human brain (male, aged 65), 
(available for download at https://bigbrain.loris.ca). In order to run computations on this amount 
of data, the BigBrain was partitioned into 125 individual blocks, corresponding to five 
subdivisions in the x, y and z directions, with overlap. The overlap of blocks was calculated to 
be sufficient such that each single cortical column could be located in a single block, enabling 
extraction of complete intensity profiles between pairs of vertices at the edge of blocks without 
intensity values being altered by boundary effects when the data were smoothed. Blocks were 
smoothed anisotropically​39​, predominantly along the direction tangential to the cortical surface, 
to maximise interlaminar intensity differences while minimising the effects of intralaminar 
intensity variations caused by artefacts, blood vessels and individual neuronal arrangement​21​. 
The degree of anisotropic smoothing is determined by repeatedly applying the diffusive 
smoothing algorithm. The optimal level of smoothing was previously determined and gave an 
effective maximum full width at half maximum (FWHM) of 0.163mm​21​. For subsequent analyses 
both the raw 20μm and anisotropically smoothed blocks were used. 

Lower resolution volumes were extracted by subsampling the raw BigBrain 20μm 
volume at 40, 100, 200, 400 and 1000μm. Anisotropically smoothed volumes were also 
generated at each of these resolutions. 
 
Profile extraction: 
Pial and white surfaces originally extracted using a tissue classification of 200μm were taken as 
starting surfaces​40​. Prior to intensity profile extraction, in order to minimise cortical streamlines 
intersecting, to improve their approximation of columnar trajectories and to ensure profiles 
captured the full extent of the cortex, the following steps were taken: 

1) A mid-surface was generated that was closer to the pial surface in sulci and closer to the 
white surface in gyri, weighting the distance vector by the cortical curvature. Thus the 
mid surface was closer to the surface with the higher curvature. 

2) This mid-surface was upsampled to 655362 vertices to increase the resolution of the 
surface. 

3) For each vertex, the vector between nearest points on the pial and white surfaces was 
calculated. 

4) To avoid crossing profiles which can result in mesh self-intersections​, the vector 
components were smoothed across the mid-surface with a FWHM of 3mm 
(Supplementary Figure 1).  

5) Profiles were calculated along these vectors from the midsurface, extending the profiles 
0.5mm further than the minimum distance in the pial or white direction, to ensure the 
resultant intensity profile captured the full extent of the cortex. 

 The resultant profiles were less oblique and more likely lined up with the cortical columns 
(Supplementary Figure 1). 
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Extended intensity profiles were then created by sampling voxels at 200 equidistant points 
between each pair of vertices from the raw and anisotropically smoothed BigBrain volumes, at 
each available resolution. For an extended profile of approximately 4mm, this gives a distance 
of 0.02mm or 20μm between points, corresponding to the highest resolution volume available. 
Profile intensity values were adjusted by regressing between mean profile intensity and 
posterior-anterior coordinate in 3D space, to account for the decreasing staining intensity.  
 
Training data: 

Manual segmentations of the 6 cortical layers were created on 51 regions of the cortex, 
distributed across 13 of the original histological BigBrain sections at 5μm (Figure 2). Layer I, the 
molecular layer, is relatively cell-sparse with few neurons and glia. Layer II, the external granular 
layer, is a much more dense band of small granular cells. Layer III, the external pyramidal layer, 
is characterised by large pyramidal neurons that become more densely packed towards its 
lower extent. Layer IV, the internal granular layer (usually referred to simply as the “granular 
layer”), generally contains only granular neurons, bounded at its lower extent by pyramidal 
neurons of layer V. Layer V, the internal pyramidal layer, contains large but relatively sparse 
pyramidal neurons while layer VI, the multiform layer, has a lower density of pyramidal neurons 
14​. Segmentations were inspected by histological experts: SB, NPG and KZ. This resolution is 
sufficient to distinguish cell body distribution patterns used to delineate specific layers. 
Averaged across all training examples, layer classes contributed to profiles as follows: 
background/csf: 14.6%, layer I: 7.5%, layer II: 5.6% , layer III: 20.8%, layer IV: 5.5%, layer V: 
14.8%, layer VI: 17.8%, white matter: 13.4%. For the cortical layers, these values represent an 
approximate relative thickness. 

Manual segmentations were then co-registered to the full aligned BigBrain 3D space. 
The manually drawn layers were used to create corresponding pial and white surfaces and 
these cortical limits were extended into the white matter and beyond the pial surface between 
0.25mm and 0.75mm so as to match the variability of cortical extent in the test profile dataset. 
Training profiles were created sampling raw, smoothed and manually segmented data, 
generating thousands of profiles per sample. Ea ​ch pixel in t​he labelled data had a class value of 
0-7, wh ​ere pixels su ​perficial to the pial surface were set to 0, followed by layers numbered 1-6, 
and white matter was classed as 7. This 1D profile based approach greatly expanded the 
training dataset from 51 labelled 2D samples to 564,041 profiles. 
 
Neural network: 

A 1D convolutional network for image segmentation was created with the following 
structure. The network was created using stacked identical blocks. Each block contained a 
batch normalisation layer to normalise feature distributions between training batches, a rectify 
non-linearity layer used to model neurons which can have a graded positive activation but no 
negative response ​41​, and a convolutional layer​42​. There was a final convolutional layer with filter 
size 1 and 8 feature maps, one for each class. The cost function was median class-frequency 
weighted cross-entropy. Class-frequency weighting was added to weigh errors according to the 
thickness of the layers so that incorrectly classified points in thinner layers were more heavily 
weighted than errors in incorrectly classified thicker layers​43​. Raw and smoothed profiles were 
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considered as two input channels. The network was iteratively trained until the accuracy did not 
improve for 50 epochs (all training profiles are seen once per epoch). At this point, the previous 
best model was saved and used for subsequent testing on the full dataset. When testing the 
network, a soft maximum was then applied to detect the most likely layer class for each point. 
The output was a matrix of 8 (predicted layers) by 200 (sample points) by 655362 (vertices on a 
mesh) by 2 (cortical hemispheres).  

For each vertex, a measure of confidence was calculated from these predictions. Per 
point confidence is the difference between the prediction value for the highest predicted class 
and the value of the 2nd highest predicted class. Per class/layer confidence is the mean 
confidence for all points in that class/layer. The per-vertex summary measure is the mean 
across all points in the profile. These measures give an indication of the relative confidence for 
the regional and laminar classifications. 
 
Hyperparameter optimisation and cross-validation: 

There is no consensus method for finding optimum parameters for a neural network. 
Here, a set of 50 experiments with random hyperparameters was carried out to explore their 
impact on training accuracy. Learning rate, convolutional filter size, number of layers (blocks), 
weight decay and batch size were all varied. In summary, the final network was initialised with 6 
layers, filter size = 49, learning rate = 0.0005, weight decay = 0.001, where the learning rate 
determines the amount weights are updated on each iteration and weight decay determines the 
rate at which weights decrease each iteration, which helps prevent overfitting. 

For network cross validation, the manually labelled areas were subdivided into 10 
equally sized random subsets or folds. Initially, 2 folds were removed from the dataset during 
training and network weights were optimised for segmenting samples on one of these folds. 
This trained network was then used to predict layers on the final previously unseen test fold 
from which the accuracy was calculated. This process was repeated 10 times to generate an 
estimate of the network’s ability to segment novel cortical regions. The same process was 
carried out using profiles extracted at all available resolutions. 

For generating BigBrain layer segmentations, the network was trained on the full training 
dataset and tested on all intensity profiles. 

 
Shrinkage estimate: 

Histological processing, including fixation and sectioning, causes distortion of the tissue 
that is non-uniform in the x,y and z directions. Part of this distortion was corrected in the original 
reconstruction of the BigBrain ​44​.  

Initial shrinkage of the brain during fixation prior to sectioning was calculated based on 
the estimated fresh volume of BigBrain, based on the original fresh weight, and the volume after 
histological processing. This gave a volume-based (3D) shrinkage factor of 1.931, which 
corresponds to an isotropic length-based (1D) shrinkage factor of 1.245. 

To estimate the extent of shrinkage in each of the three orthogonal directions, the 
BigBrain volume was linearly coregistered to a MRI volumetric template based on a group of 
older subjects (ADNI) ​45​. The transformation matrix gave linear scale factors of 1.15, 1.22 and 
1.43 in the x,y and z directions, with a mean of 1.26. The concordance of these measures of 
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shrinkage suggests that subsequent thickness and length estimates can be adequately 
corrected for comparison to ​in vivo​ measures. 

Thus, to approximately compensate for the non-uniform compression of xyz, we 
transformed the mesh surfaces into MNI space based on the ADNI template. Subsequent 
thickness analyses were carried out on the transformed meshes. Such compensation for 
shrinkage is necessary when analysing cortical thickness gradients on oblique profiles in 3D 
over the whole brain. 
 
Surface reconstruction: post-processing 1D profiles: 

1D classified profiles were transformed into mesh layer boundary reconstructions as 
follows. Transitions between predicted layers were located for each profile and the coordinates 
of these transitions became vertex locations for the new layer meshes. For the small number of 
vertices where the network failed (less than 1%), vertex locations were interpolated from the 
neighbouring vertices. Surface indices were smoothed 0.5mm FWHM across the cortical 
surface and 20 iterations of shrinkage-free mesh smoothing was applied to the output surface ​46​. 
This removed non-biologically high frequency changes in surface curvature, most commonly 
due to minor, local misalignment of consecutive 2D coronal sections. 
 
Cortical thickness, layer thickness: 
Cortical thickness was calculated between pial and white cortical surfaces and laminar 
thicknesses were calculated between adjacent pairs of cortical surfaces. 
 
Masking: 
Manual masks were created to remove medial wall, archicortex, including areas of the cingulate 
and entorhinal cortex which do not have 6 layers, and large cuts in the anterior temporal cortex 
(caused by the saw during extraction of the brain from the skull) from subsequent analyses. 
 
Gradients and processing hierarchies: 
Surface labels for the primary visual, somatosensory, auditory and motor areas were manually 
delineated on each hemisphere using morphological markers and histological characteristics 
(Supplementary Figure 5a). Geodesic distance across the cortex from each of these labels was 
calculated to each of the vertices within a larger masked area containing associated cortical 
regions (Supplementary Figure 5b&c) ​3,19,47,48​. 
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Figures: 

 
Figure 1 
Cortical layers in 3D. Six cortical layers segmented on the 3D volume on three orthogonal 
planes: A=sagittal, B=coronal, C=axial. Panel D shows the location of the sections on the 
reconstructed pial surfaces of the 3D BigBrain. B, the coronal plane is the original plane of 
sectioning. Within this plane is marked an area of the cortex where layers would be difficult to 
segment in 2D due to the oblique sectioning of the cortex. 
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Figure 2 

Cortical layers intersected on a 2D section with manually segmented layers. a) The 
boundaries clearly follow the same contours delineated by the manually segmented training 
areas, and appear to accurately follow the layer bounds outside of each training area. b) At the 
V1-V2 boundary (marked with arrows) the thickness of layer IV changes dramatically in both 
manual and automated segmentations (between red and yellow lines), with additional peaks in 
V1 intensity due to the sublayers of layer IV. As each profile is individually segmented by the 
network, without reference to the neighbouring profiles, the network is able to apply 
area-specific rules according to the shape of the profile, suggesting it might be internally 
identifying the area from which the profile is extracted as being either V1 or V2. 
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Figure 3 

Comparison of von Economo’s maps of cortical thickness with cortical thickness on the 
left and right hemispheres of BigBrain. On the von Economo maps, white is thinner cortex and 
black is thicker. Thickness values range from 1.8mm in the calcarine sulcus to 4.5 mm in the 
precentral gyrus. The pattern of cortical thickness across the BigBrain (displayed on smoothed 
surfaces, values were smoothed 3mm FWHM) matched that measured by von Economo and 
Koskinas. In particular, the precentral gyrus, or primary motor cortex, which is often 
underestimated with MRI, was the thickest area. Additionally, the occipital cortex around the 
calcarine sulcus was particularly thin in both BigBrain and von Economo. While broad trends are 
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consistent between the two maps, BigBrain exhibits more local variability, for instance due to 
cortical folding, due to the higher density of measurements made. Von Economo reported 
around 60 regional thickness measurements whereas around 1 million vertices have been 
measured on BigBrain. 
 

 
Figure 4 

Comparison of von Economo’s maps laminar thickness with laminar thicknesses on the 
left and right hemispheres of BigBrain. BigBrain were smoothed across the surface with a 3mm 
FWHM Gaussian kernel. From von Economo, surface mappings of laminar thickness were 
available for layers I, III V and VI. For these maps, white represents thinner cortex and black 
thicker. Similarities include the clear changes in thickness in pre and post central thicknesses of 
layers III, V and VI. For layer IV, the most striking feature is the abrupt change in layer IV 
thickness at the V1 V2 border. For ​referen ​ce, the manual delineation of the primary visual cortex 
(V1) based on cytoarchitectonic features is included. This abrupt change and the unique 
features of layer IV in V1 lead us to conclude that the neural network may have internally 
learned to recognise V1 and apply the appropriate laminar segmentation rules. 
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Figure 5 

Cortical thickness with increasing distance from the primary area. For primary visual and 
somatosensory cortices, consistent with MRI studies of cortical thickness, thickness increased 
with geodesic distance from the primary sensory areas. In the auditory cortex, a weak 
relationship was present. For the motor cortex, a negative relationship was present with 
thickness decreasing from the primary motor cortex into the frontal cortex. This structural 
gradient is the inverse of the pattern of myelination and of previously reported MRI frontal 
thickness gradients, but consistent with patterns of structural type and neuronal density. These 
finding suggest the presence of distinct but overlapping structural hierarchies. 
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Figure 6 

Gradients of cortical and laminar thickness against geodesic distance from primary 
areas. A) Fronto-motor gradients show an inverse relationship from sensory gradients both on 
cortical thickness and laminar thicknesses. Increasing sensory cortical thickness gradients were 
generally driven by thickness increases in layers III, V and VI. By contrast decreasing 
fronto-motor cortical thickness gradients exhibited decreases in thickness of the same layers. 
B) Typical neuronal types and morphologies of individual cortical layers. C) Cortical thickness 
gradients in either direction are primarily driven by changes in pyramidal cell layers. Single-cell 
morphological studies of these neurons in macaque sensory processing pathways reveal 
increasing dendritic arborisation ​49​ consistent with the hypothesis that laminar volume changes 
and ultimately thickness changes represent increases in intracortical connectivity. 
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