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Abstract  

Insight into shared polygenetic architectures affects our understanding of 

neurodevelopmental disorders. Here, we investigate evidence for pleiotropic mechanisms 

that may explain the comorbidity between Autism Spectrum Disorder (ASD) and Attention-

Deficit/Hyperactivity Disorder (ADHD). These complex neurodevelopmental conditions often 

co-occur, but differ in their polygenetic association patterns, especially with educational 

attainment (EA), showing discordant association effects. Using multivariable regression 

analyses and existing genome-wide summary statistics based on 10,610 to 766,345 

individuals, we demonstrate that EA-related polygenic variation is shared between ASD and 

ADHD. We show that different combinations of the same ASD and ADHD risk-increasing 

alleles can simultaneously re-capture known ASD-related positive and ADHD-related 

negative associations with EA. Such patterns, although to a lesser degree, were also present 

for combinations of other psychiatric disorders. These findings suggest pleiotropic 

mechanisms, where the same polygenic sites can encode multiple independent, even 

discordant, association patterns without involving distinct loci, and have implications for 

cross-disorder investigations. 

Key words: ASD, ADHD, educational attainment, pleiotropy, shared genetic variation 
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Main 

Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) 

are genetically complex childhood-onset neurodevelopmental disorders1,2 that often co-

occur3. Approximately 15–25% of individuals with ADHD show ASD symptoms, and ~40–

70% of individuals with ASD have a comorbid ADHD symptomatology3. 

Both rare and common genetic variation contributes to ASD and ADHD liability4–7. 

There is increasing evidence from twin and molecular studies8,9 suggesting genetic links 

between ASD and ADHD symptoms, both throughout population variation10–16 and at the 

extremes10,17. The existence of genetic cross-disorder links is further strengthened by the 

familial co-aggregation of both clinical disorders in large register-based studies18. 

Consistently, the identification of shared copy number variations (CNVs) in ASD and ADHD 

suggests similar biological pathways19. Estimates of cross-disorder genetic correlations 

range between 0.54 and 0.87 in twin analyses20. When studying polygenic variation, 

symptom overlap can even be stronger in population-based samples11, although these links 

are notably lower between clinically defined ASD and ADHD21–23. While recent research has 

reported moderate genetic correlations between clinical ASD and ADHD, based on genome-

wide summary statistics (rg=0.36)21, earlier studies with lower statistical power found little 

evidence for such genetic overlap22,23. 

Besides some shared genetic aetiology, there are differences in the polygenic 

architecture of clinical ASD and clinical ADHD. Each disorder, as tagged by common 

variants, shows an opposite genetic correlation with cognitive functioning and educational 

attainment (EA), where the latter is influenced by both cognitive abilities and socio-economic 

status (SES)24. While increased polygenic ADHD risk has been linked to lower cognitive 

abilities and EA25–28, increased polygenic ASD risk has been associated with higher cognitive 

functionality and EA21,27,29. This discordant association pattern is strongest for measures of 

years-of-schooling and college-completion21,28. Recent evidence for a polygenic p-factor, 

shared across major psychiatric disorders including ASD and ADHD30, suggests overarching 
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genetic similarities between neurodevelopmental disorders. This may also involve shared 

polygenic variation among ASD, ADHD and EA, acting through complex pleiotropic, 

mediating or confounding mechanisms. However, the discordant association profile of each 

disorder with EA might also be explained by independent genetic loci.  

To improve our understanding of shared psychopathologies across disorders, this 

study aims to disentangle the genetic overlap between ASD and ADHD with respect to EA-

related associations using a multivariable regression (MVR) framework and individual (not 

accumulated31) SNP-based information from existing genome-wide association study 

(GWAS) summary statistics. This translates a causal modelling approach32 into a polygenic 

context without making causal inferences. We dissect polygenic associations between each 

disorder and EA into either ASD-specific or ADHD-specific associations as well as genetic 

influences that are shared across both disorders and EA. We assess the specificity of these 

association profiles by examining combinations of other psychiatric disorders and finally 

model their impact on cross-disorder investigations. 

 

Results 

Multivariable regression model fitting 

Modelling the effect of ASD-related risk alleles on EA (ASD-MVR), we jointly 

estimated ASD-specific associations as well as cross-disorder associations shared with 

ADHD (Figure 1a). Similarly, modelling the effect of ADHD-related risk alleles on EA (ADHD-

MVR), we jointly assessed ADHD-specific associations as well as cross-disorder 

associations shared with ASD (Figure 1b). Compared to univariable ASD and ADHD 

regression models (modelling polygenic associations between a single disorder and EA 

only), ASD-MVRs and ADHD-MVRs allowing for cross-disorder associations with EA 

revealed a better model fit. They explained up to 3% more variation in genetically predictable 

EA, with little evidence for multi-collinearity (Supplementary Table 8-10).  
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Multivariable regression analyses of EA on ASD and ADHD  

Discovery ASD-MVRs and ADHD-MVRs were carried out with a series of variant sets 

covering different P-value selection thresholds (11 variant sets for each disorder: 5x10-

8<Pthr<0.5, Supplementary Figure 1a), similar to a polygenic scoring approach31, and 

provided evidence for ASD-specific, ADHD-specific and cross-disorder associations with EA 

(Supplementary Table 6-7). For example, for ASD-MVR at Pthr<0.0015 (NSNPs=1,973, Figure 

1a,c, Supplementary Table 8), we observed an 0.009 increase in years-of-schooling per log-

odds in ASD-liability (ASD-MVR βASD=0.009(SE=0.003), P=0.002), and a 0.029 decrease in 

years-of-schooling per log-odds in ADHD-liability (ASD-MVR β⊗ADHD=-0.029(SE=0.004), 

P<1x10-10). Thus, these cross-disorder associations showed an opposite direction of effect 

(Figure 1c,d), even though they were modeled with the same ASD-related risk alleles. 

An analogous approach with ADHD-MVRs (Figure 1b) revealed a complementary 

association profile (Supplementary Table 7). There was an inverse ADHD-specific 

association between polygenic ADHD risk and EA. Conditionally, ASD cross-disorder 

associations with EA were positive, thus discordant, even though modeled with the same 

ADHD-related risk alleles (Figure 1c,e). For ADHD-MVR at Pthr<0.0015 (NSNPs=2,717, Figure 

1c,e, Supplementary Table 8), this corresponds to an 0.012 decrease in years-of-education 

per log-odds in ADHD liability (ADHD-MVR βADHD=-0.012(SE=0.003), P=4x10-5), and an 

increase in 0.022 years-of-education per log-odds in ASD liability (ADHD-MVR 

β⊗ASD=0.022(SE=0.003), P<1x10-10). Importantly, joint modelling of disorder-specific and 

cross-disorder SNP effects as part of a multivariable regression model also increased the 

evidence for ASD-specific and ADHD-specific association effects (Supplementary Table 8). 

While disorder-specific and cross-disorder MVR effects are independent of each other, the 

underlying genetic variation is shared and the simultaneous estimation of ASD and ADHD 

MVR effects results in an improved model fit. Increasing the number of variants in ASD-

MVRs and ADHD-MVRs using more relaxed SNP-selection thresholds (e.g. Pthr<0.05) 

boosted the statistical power (Figure 1c, Supplementary Table 6-8).  
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Follow-up analyses with concordant variants (variants with concordant ASD and 

ADHD risk effects, ~80% of the initial sets) confirmed these findings (Supplementary Figure 

1b, Supplementary Table 9) and showed that MVR findings are independent of allelic 

alignment to ASD or ADHD risk. Bivariate relationships between SNP estimates for ASD, 

ADHD and EA are plotted in Supplementary Figure 2 (concordant variants, Pthr<0.05). 

Using the same sets of variants as in the discovery ASD-MVRs and ADHD-MVRs 

above, we replicated the profile of discordant cross-disorder associations with EA at the 

relaxed threshold (Pthr<0.05), using SNP estimates from ASD(PGC), instead of 

ASD(iPSYCH,woADHD) as predictor (Supplementary Figure 1c, Supplementary Table 10). 

Thus, despite known zero genetic correlations between ADHD(iPSYCH) and 

ASD(PGC)(Supplementary Table 3), we observed strong evidence for genetic associations 

(P<1x10-10) between each disorder and EA using the same set of SNPs (Pthr<0.05, 

Supplementary Table 10). At the more stringent threshold (Pthr<0.0015), only ASD-specific 

effects passed the multiple testing threshold. This is consistent with the limited power of 

ASD(PGC) and a reduced concordance rate between ASD(PGC) and ADHD(iPSYCH) risk 

alleles (~50%). ASD-MVRs and ADHD-MVRs including general intelligence as the outcome 

(Supplementary Figure 1d), instead of EA, confirmed the association patterns of the 

discovery MVRs throughout (Supplementary Table 11), and our findings agree with known 

genetic correlations (Supplementary Table 5).  

 

Identification of cross-disorder loci 

To identify variants exerting the largest cross-disorder effects, we systematically 

assessed the overlap between ASD-MVR and ADHD-MVR variant sets, based on the 

powerful iPSYCH samples (Supplementary Figure 1e). Starting with ASD-MVR and ADHD-

MVR variant sets at Pthr<0.0015 (ASD: NSNPs≤1,973, ADHD: NSNPs≤2,717) we successively 

restricted the selected markers to variants that were also associated with the other disorder 

(5x10-8
≤Pthr<0.5, Figure 2a). Fitting MVR models with these reduced sets (Figure 2b, 

Supplementary Table 12-13), we identified MVR effects that were larger than in the discovery 
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ASD-MVRs and ADHD-MVRs, with non-overlapping 95% confidence intervals. For example, 

for variants selected at Pthr<0.0015 for both disorders, we estimated about 5-fold larger MVR 

effects, using only 4.2% and 3.1% of the original variant sets for ASD-MVR and ADHD-MVR 

respectively. These reduced variant sets comprised the same 83 loci, based on identical or 

tagged proxy SNPs (Linkage Disequilibrium-r2=0.6, 500 kb window), with 99% of them 

showing concordant ASD and ADHD risk effects (Supplementary Table 14). This 

combination of risk alleles and effects (selected at Pthr<0.0015 for both disorders) is unlikely 

to be due to chance, as shown by permutations (Supplementary Table 15, empirical P<3x10-

4), and suggests locus specificity. The 83 variants mapped to 52 genes using positional 

mapping and included multiple regulatory RNAs (Supplementary Table 14). 

 

Specificity of ADHD/ASD cross-disorder genetic associations  

To assess the specificity of discordant ADHD/ASD cross-disorder associations with 

EA, based on the selected shared risk allele pool, we also modelled cross-disorder 

associations between other neuropsychiatric disorders (MDD, SCZ and BD) and EA, using 

the previously defined ASD and ADHD variant sets (Pthr<0.0015 and Pthr<0.05, 

Supplementary Figure 1f). This identified several similar association patterns, predominantly 

at Pthr<0.05 (Supplementary Figure 3, Supplementary Table 16-17), each consistent with 

known genetic correlations (Supplementary Table 3-4). For ASD-MVRs at Pthr<0.05, 

discordant patterns with EA were detected in combination with MDD (ASD-MVR β⊗MDD=-

0.012, SE=0.001, P<1x10-10, Supplementary Table 16). For ADHD-MVRs at Pthr<0.05, 

discordant associations with EA were found with respect to BD (ADHD-MVR β⊗BD=0.008, 

SE=0.001, P<1x10-10, Supplementary Table 17). Identified cross-disorder effects were 

smaller compared to ASD/ADHD cross-disorder associations with EA, observed in the 

discovery MVRs based on iPSYCH (Figure 1c, Supplementary Figure 3), but comparable to 

follow-up analyses using ASD (PGC).  
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Multi-factor model of genetic interrelations between ASD, ADHD and educational attainment 

Consistent with an assumption-free decomposition of trait-interrelationships 

(Cholesky model), our findings support a multi-factor model that predicts at least two sources 

of shared genetic variation between ASD and ADHD (Figure 3). The first genetic factor (A1, 

EA/ADHD/ASD) captures shared variation between EA, ASD and ADHD and predicts 

negative genetic covariance between ASD and ADHD, consistent with MVR findings in this 

study. The second genetic factor (A2, ADHD/ASD) acts independently of A1 and explains 

positive genetic covariance between ASD and ADHD, reflecting known positive or null 

genetic correlations between disorders21,22. The third genetic factor (A3) encodes ASD-

specific variation. The observed net covariance between ASD and ADHD reflects the sum of 

negative and positive covariance contributions. Consequently, ASD/ADHD genetic overlap 

might be reduced, as hypothesised for ASD(iPSYCH)/ADHD(iPSYCH)(Figure 3a). It might 

also be completely abolished, as hypothesised for ASD(PGC)/ADHD(iPSYCH)(Figure 3b) 

and supported by simulations that recapture genetic trait interrelationships (Supplementary 

Table 18). Alternative definitions of the model can allow for ADHD-specific influences 

(Supplementary Figure 5). 

The predicted multi-factor model is furthermore consistent with genetic correlations 

for ASD+ADHD symptom combinations. For ASD(iPSYCH,woADHD), excluding comorbid 

ADHD patients, genetic correlations with EA exceeded those between ASD(iPSYCH) and 

EA, although the 95%-confidence intervals overlap (Figure 4). In contrast, inverse genetic 

correlations between ADHD and EA (rg=-0.49(SE=0.03), P<1x10-10) were dampened when 

ADHD(iPSYCH) and ASD(PGC) summary statistics were combined and then correlated with 

EA (rg=-0.33(SE=0.03), P<1x10-10)(Figure 4). 

 

Discussion 

This study provides strong and consistent evidence that EA-related polygenic 

variation is shared across ASD and ADHD. Different combinations of the same risk-
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increasing alleles can result in ASD-related positive and ADHD-related negative association 

profiles with genetically predictable EA. This suggests the presence of pleiotropic 

mechanisms, where multiple, even discordant, association profiles with EA can be encoded 

across the same polygenic sites without involving distinct loci. 

The pattern of ASD- and ADHD-specific associations with EA, in combination with 

discordant polygenic cross-disorder links, was (i) reciprocally detectable using both ASD and 

ADHD-related variant sets, (ii) replicated at Pthr<0.05 using ASD(PGC) summary statistics, 

(iii) independent of risk allele alignment for ASD and ADHD and (iv) consistent with the 

previously reported genetic overlap between EA, ASD and ADHD21,28. This suggests that 

cross-disorder associations are driven by a substantial proportion of subthreshold variants 

that are associated with both ASD and ADHD, reflecting pleiotropic effects, presumed for 

many trait-associated variants in the genome33. Moreover, joint modelling of these pleiotropic 

alleles, exploiting single instead of aggregated SNP estimates, could substantially increase 

evidence for both disorder-specific and cross-disorder associations. Against this shared 

polygenic background involving several thousands of variants, we also identified ~80 loci 

(~50 genes) that exerted discernably larger signals when followed-up in the powerful 

iPSYCH samples, and involve regulatory loci.  

The identification of discordant ASD- and ADHD-related association profiles with EA, 

across shared ADHD and ASD risk alleles, may relate to different mechanisms. First, there is 

mounting evidence that ASD and ADHD share some underlying aetiological mechanisms. 

For example, CNVs in ASD and ADHD indicate similar biological pathways19, and both 

disorders carry a similar burden of rare protein-truncating variants, implicating shared 

genes34. Despite these biological commonalities, the assignment of clinical diagnoses to 

patients comorbid for ASD and ADHD symptomatology has been, until the introduction of the 

Diagnostic Statistical Manual of Mental Disorders 5th edition (DSM-5)35, less formalised. 

GWAS participants have been predominantly diagnosed with previous classification 

systems36,37, where hierarchical diagnostic criteria did not allow for a diagnosis of ADHD 

when symptoms occurred during the course of a pervasive developmental disorder. 
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Furthermore, comorbid symptoms within clinical ASD and ADHD often occur at the 

subthreshold level3. This suggests that patients with comorbid ASD and ADHD symptoms 

might have been assigned to either diagnostic entity, depending on the symptoms that 

presented first, potentially exacerbating genetic similarities between ASD and ADHD.  

Second, shared alleles with opposite polygenic effects may implicate epistasis, such 

that ASD-specific and ADHD-specific genetic factors may shape the direction and magnitude 

of ADHD/ASD cross-disorder associations with EA. For example, following an omnigenic 

model38,39, disorder-specific ‘peripheral’ genetic influences could control shared ADHD/ASD 

cross-disorder ‘core’ variation. Alternatively, the set of shared risk alleles may harbour high 

plasticity genes, exerting different effects within differing environments. The strongest signals 

driving the observed opposite cross-disorder associations with EA in iPSYCH were found 

near several miRNA and lncRNA loci that can be influenced by environmental signals40. 

Thus, symptoms and behavioural spectrum of an individual at high genetic risk for both ASD 

and ADHD may depend on the exposure to different home environments (e.g. household 

income, neighbourhood SES). This is consistent with findings of stress-related gene 

modulatory effects manifesting, for example, as an environment-induced development of 

depression41.  

Discordant associations with EA, encoded via different combinations of the same risk 

alleles, may lead to negative genetic covariance between ASD and ADHD that can reduce 

the net genetic overlap between both disorders. The discovered inverse cross-disorder 

associations with EA were stronger and larger for ADHD and ASD, when studied using 

iPSYCH samples, compared to cross-disorder effects involving other psychiatric disorders. 

However, they are unlikely to be limited to polygenic ASD and ADHD risk. The identification 

of discordant EA association profiles for ASD and MDD risk, across the same ASD risk 

alleles, and likewise the discordant polygenic EA association effects for ADHD and BD, 

across the same ADHD risk alleles, supports the widespread pleiotropy among 
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neuropsychiatric disorders30. In particular, it suggests complex genetic interrelationships 

between ASD and MDD, and between ADHD and BD that may involve negative covariance. 

Discordant ADHD/ASD cross-disorder association profiles with EA, across shared 

polygenic sites, were replicated using two independent ASD collections at a widely 

established selection threshold (Pthr<0.05) often used in related polygenic scoring analyses42. 

This suggests that our findings are robust across diagnostic classification systems for clinical 

ASD, routes of patient ascertainment, and association analysis designs. Nonetheless, 

differences in concordance rates between ASD and ADHD risk alleles with respect to 

ASD(PGC)(~50%) versus ASD(iPSYCH,woADHD)(~80%) may also suggest genetic 

heterogeneity among ASD samples. In addition, our results could be affected by presentation 

bias, such that children with ASD might be more often labelled with ADHD, due to a higher 

proportion of ADHD symptoms in ASD43. Furthermore, controls are shared across iPSYCH 

GWAS samples, potentially leading to inflated type-I error44,45. This is, however, unlikely, 

given the opposite direction of effect and replication within ASD(PGC). Finally, as symptom 

heterogeneity may shape genetic overlap between neurodevelopmental disorders, EA and 

cognition-related traits21,46, future studies with access to this information are warranted to fully 

understand the underlying complex multivariate interrelations.  

 

Conclusions 

We show that EA-related polygenic variation is shared across ASD and ADHD 

genetic architectures, and that different combinations of the same risk alleles can encode 

ASD-related positive and ADHD-related negative association profiles with EA without 

involving further loci. These inverse patterns may affect the detectable net genetic overlap 

between ASD and ADHD but also other psychiatric disorders, especially when patients are 

jointly analysed within cross-disorder investigations.  
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Methods  

Data sets 

Information on SNP-EA, SNP-general intelligence and SNP-disorder associations 

was obtained from GWAS summary statistics21,27,28,47–49. These aggregated results are briefly 

summarised here and described in detail in Table 1 and Supplementary Table 1. 

EA and general intelligence: GWAS summary statistics on years-of-schooling 

(discovery and replication sample excluding 23andMe) were obtained from the Social 

Science Genetic Association Consortium (SSGAC, https://www.thessgac.org/, Table 1)47. EA 

was coded according to the International Standard Classification of Education (1997) scale50 

and analysed as a quantitative variable defined as an individual’s years-of-schooling. 

Participants were >30 years of age at the time of assessment and of European ancestry. The 

meta-analysis consisted primarily of population-based cohorts, but also included family-

based and case-control samples. 55.2% of participants were female. For most cohorts, 

genome-wide data were imputed to a 1000 genomes project51 version 3 reference template, 

as previously described47.  

GWAS summary statistics on general intelligence27 were retrieved from the Complex 

Trait Genetics (CTG) lab (https://ctg.cncr.nl/software/summary_statistics, Supplementary 

Table 1). Participating cohorts were primarily population-based. Each cohort assessed 

intelligence with different instruments that were re-defined to index a common latent factor of 

general intelligence (GI)27. Participants had a wide age range (from 5 to 98 years), 51.2% 

were female and all of them were of European descent. Genome-wide data were 

predominantly imputed to the Haplotype Reference Consortium (HRC) reference panel52, as 

previously described27.  

ASD and ADHD: GWAS summary statistics for ASD and ADHD were accessed 

through the Danish Lundbeck Foundation Initiative for Integrative Psychiatric Research 

(iPSYCH, http://ipsych.au.dk/) using samples from the Danish Neonatal Screening Biobank 

hosted by Statens Serum Institute21,28,53 (ASD(iPSYCH), ADHD(iPSYCH), Table 1). iPSYCH 
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adopts a case-control design (26.6% female ASD-cases21, 21.6% female ADHD-cases28) 

with shared controls (~49% female)21,28, all of European ancestry with age ranges spanning 

infancy to adulthood21,29. For MVR analyses, ASD samples were restricted to ASD-cases 

without (wo) an additional ADHD diagnosis (ASD(iPSYCH,woADHD), Table 1) to avoid 

overlap with ADHD(iPSYCH). However, ADHD-cases may have an additional ASD 

diagnosis. Information on ADHD cases without ASD was not available. 

ASD cases and ADHD cases were diagnosed according to ICD-1036 and identified 

using the Danish Psychiatric Central Research Register54. Registry-based ASD diagnoses 

were validated previously54,55. Controls were randomly selected from the same nationwide 

birth cohort and did not have a diagnosis of ASD or ADHD or moderate-severe mental 

retardation (F71-F79)28,53. The median age at first diagnosis of ASD was 10 years. 

Genotyping was performed using the Illumina Infinium PsychArray BeadChip and genotypes 

were imputed to a 1000 Genomes template51 (Phase3, release 02-05-2013). Genotyping, 

quality control, imputation and genetic association analysis were carried out using the 

Ricopili pipeline with standard PGC settings42. 

Independent ASD GWAS summary statistics were obtained from the Psychiatric 

Genomics Consortium (www.med.unc.edu/pgc/). They were based on a case-

control/pseudo-control design and all individuals were ≥3 years of age and of European 

ancestry (ASD(PGC), Table 1). Information on the male-female ratio was not available56. A 

consensus ASD diagnosis was made using research standard diagnoses and expert clinical 

consensus diagnoses. The majority of ASD-cases (94.1%) also had a clinical diagnosis 

based on the Autism Diagnostic Interview-Revised37 and/or the Autism Diagnostic 

Observation Schedule57. Genome-wide data were imputed to a 1000 Genomes reference 

template51 (Phase1 v3). 

For genetic correlation analyses, a combined ASD+ADHD GWAS statistic was 

derived by conducting a random-effect meta-analysis of ASD(PGC) and ADHD(iPSYCH) 
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using GWAS summary statistics and GWAMA software58. Note that the sample size for 

ADHD(iPSYCH) is about three times larger than for ASD(PGC). 

Other psychiatric disorders: To assess the specificity of MVR association profiles, we 

also investigated GWAS summary statistics for Major Depressive Disorder (MDD)48, 

Schizophrenia (SCZ)49 and Bipolar Disorder (BD)49. Cases were identified based on 

international consensus criteria. For MDD, cases were identified based on a lifetime 

diagnosis of MDD, established using DSM-III, DSM-IV, ICD-9 and/or ICD-10 criteria48. For 

SCZ, the majority of cases were diagnosed using DSM-III, DSM-III-R, DSM-IV, ICD-10, and 

SCID criteria42,49. BD cases were diagnosed according to DSM-III, DSM-IV-TR, DSM-IV, 

SCID, ICD-10 and/or RDC criteria49,59. For all three data sets, genotype imputation was 

performed using the IMPUTE2 / SHAPEIT pipeline against the 1000 Genomes Project (v3) 

template. Summary data were obtained from the PGC (www.med.unc.edu/pgc/, 

Supplementary Table 1), all based on participants of European ancestry.  

 

SNP-heritability and genetic correlations 

SNP-heritability (SNP-h2), as the proportion of phenotypic or liability variance tagged 

by SNPs on genotyping arrays, was estimated for EA, general intelligence and psychiatric 

disorders using Linkage Disequilibrium Score (LDSC) regression60 (Supplementary Table 2). 

To estimate LDSC-h2, genome-wide χ2-statistics are regressed on the amount of genetic 

variation captured by each Single Nucleotide Polymorphism (SNP)60, while the intercept of 

this regression minus one is an estimator of the mean contribution of confounding bias to the 

inflation in the mean χ2-statistic60. SNP-h2 was calculated on the liability scale for psychiatric 

disorder samples, assuming a population prevalence of 0.012 for ASD21, 0.05 for ADHD61, 

0.162 for Major Depressive Disorder (MDD)62, 0.007 for Schizophrenia (SCZ)63 and 0.006 for 

Bipolar Disorder (BD)64. 

In extension, unconstrained LDSC correlation65 analysis was applied to estimate 

bivariate genetic correlations (rg) (Supplementary Table 3-5), as a regression of the product 

of test statistics on LD score that captures the extent of shared genetic influences between 
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phenotypes assessed in distinct samples. All analyses were performed with LDSC 

software65,66 and based on the set of well-imputed HapMap3 SNPs and a European 

reference panel of LD scores65.  
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Multivariable regression analysis  

We conducted a set of interlinked MVR analyses to dissect polygenic ASD-EA and 

ADHD-EA associations into either ASD-specific or ADHD-specific associations as well as 

genetic influences that are shared across both disorders and EA (overview in Supplementary 

Figure 1). Here, MVR (sometimes also referred to as multiple linear regression) contains a 

single outcome (dependent variable) and multiple predictors (independent variables). 

Specifically, we translated a causal modelling approach using GWAS summary statistics32 

into a polygenic context without making causal inferences. In principle, this involves a 

weighted multivariable regression approach, where we regressed SNP estimates for EA (ZEA, 

dependent variable) jointly on SNP estimates for ASD (XASD, independent variable) and SNP 

estimates for ADHD (YADHD, independent variable)(Formula 1-4). This methodology32 can 

disentangle polygenetic trait interrelationships using single SNP information, while controlling 

for bias67 and assesses here, due to the polygenic context, genetic associations only.  

 Genetic variant selection: For all discovery ASD- and ADHD-MVR analyses 

(Supplementary Figure 1a), 11 ASD-related and 11 ADHD-related variant sets were selected 

from ASD(iPSYCH,woADHD) and ADHD(iPSYCH) GWAS statistics respectively, using 

multiple P-value thresholds (Pthr, 5x10-8; 5x10-7; 5x10-6; 5x10-5; 0.0005; 0.0015; 0.005; 0.05; 

0.1; 0.3; 0.5), similar to a polygenic scoring approach31. However, for presented MVR 

analyses (including sensitivity and follow-up analyses) we predominantly focused on two P-

value thresholds only: (i) Pthr<0.0015, consistent with guidelines for validating genetic 

instrument strength (F-statistic<10)68 and conservative selection thresholds recommended 

for related polygenic scoring approaches31, and (ii) Pthr<0.05, a less stringent threshold that 

has been previously applied for the polygenic analysis of complex psychiatric disorders42, 

with the aim of increasing the statistical power and precision of MVR estimates. All variants 

were restricted to common (minor allele frequency>0.01), independent (linkage 

disequilibrium-r2<0.25 within ±500 kb) and well-imputed (Imputation quality(INFO) >0.7) 

SNPs. 
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Estimation of ASD-specific, ADHD-specific and cross-disorder genetic associations 

with EA: After creating variant sets for both ASD and ADHD, SNP estimates for these 

variants were extracted from ASD(iPSYCH, woADHD), ADHD(iPSYCH) and EA(SSGAC) 

GWAS statistics. Next, per ASD variant set, an ASD-MVR was fitted as follows (Formula 1-

2):  

 

(1) 

 

(2) 

 

with SNP estimates ZEA (independent variable), XASD (dependent variable) and YADHD 

(dependent variable), regression intercept α, ASD-specific MVR effect βASD, and cross-

disorder MVR effect β⊗ADHD. Thus, in ASD-MVR models (Supplementary Figure 1a), ASD-

specific associations with EA (ASD-MVR βASD) were assessed using ASD SNP estimates 

and cross-disorder associations (MVR β⊗ADHD) with EA using ADHD GWAS estimates.  

 

Similarly, per ADHD variant set, an ADHD-MVR was fitted as (Formula 3-4):  

 

  (3) 

 

(4) 

 

with SNP estimates ZEA (independent variable), XASD (dependent variable) and YADHD 

(dependent variable), regression intercept α, ADHD-specific MVR effect βADHD, and cross-

disorder MVR effect MVR β⊗ASD. Here, in ADHD-MVR (Supplementary Figure 1a), ADHD-

specific associations with EA (ADHD-MVR βADHD) were assessed using ADHD SNP 

estimates and cross-disorder associations with EA (MVR β⊗ASD) using ASD SNP estimates. 

ADHDADHDASDASDEA YMVRXMVRZ ⊗++= ββα

2)( −= EAZSEweights

ASDASDADHDADHDEA XMVRYMVRZ ⊗++= ββα

2)( −= EAZSEweights
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Cross-disorder effects were thus estimated twice: (i) fitting ADHD SNP estimates for 

ASD variant sets and (ii) fitting ASD SNP estimates for ADHD variant sets.  

Reported MVR effects present changes in years-of-schooling per increase in log-

odds ASD or ADHD liability, respectively, pooled across the selected variants. The overall 

model fit of MVRs was compared to univariable regression models (see below) using 

likelihood-ratio tests, as implemented in the R:stats library (Rv3.5.1). To assess collinearity 

between predictors, we calculated the variance inflation factor (VIF, R:car library (Rv3.5.1)). 

All MVR models included an intercept (α) to allow for the presence of alternative 

pathways between ASD- and ADHD-related genetic variants and EA, other than captured by 

ASD or ADHD SNP estimates (unconstrained MVR models). An intercept consistent with 

zero (i.e. within the 95% confidence interval) suggests that there is no evidence for additional 

pleiotropic effects. As MVR estimates are thus sensitive to allelic alignment, MVR models 

were fitted twice: (i) a discovery MVR with SNP effects aligned to ASD risk in ASD-MVRs, 

and ADHD risk in ADHD-MVRs, respectively (Supplementary Figure 1a, across 11 P-value 

thresholds described above (5x10-8≤Pthr<0.5); (ii) a subset of variants from (i) with concordant 

association effects for both ASD and ADHD risk (Supplementary Figure 1b, P-value 

thresholds: Pthr<0.0015; Pthr<0.5). 

To replicate MVR findings from the discovery analysis, both ASD-MVR and ADHD-

MVR findings were followed-up using ASD(PGC) instead of ASD(iPSYCH,woADHD) SNP 

estimates and the set of overlapping SNPs between ASD(iPSYCH,woADHD) and ASD(PGC) 

(Supplementary Figure 1c, P-value thresholds: Pthr<0.0015; Pthr<0.05). In addition, ASD-MVR 

and ADHD-MVR models were fitted using summary statistics for general intelligence, instead 

of EA (Supplementary Figure 1d, P-value thresholds: Pthr<0.0015; Pthr<0.05).  

 To identify loci underlying the observed MVR cross-disorder associations, we 

restricted ASD-MVR and ADHD-MVR variant sets at Pthr<0.0015 (ASD: NSNPs≤1,973, ADHD: 

NSNPs≤2,717) to SNPs that were associated with both disorders at various P-value 

thresholds, and then re-analysed them (Supplementary Figure 1e). For this, we assessed the 

proportion of overlapping independent SNPs associated with both ASD and ADHD risk using 
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PLINK (500 kb and Linkage Disequilibrium-r2≥0.6). We started with two variant sets of 

interest: (1) ASD-related variants at Pthr<0.0015 (NSNPs=1,973) and (2) ADHD-related variants 

at Pthr<0.0015 (NSNPs =2,717). For each variant set, we identified the percentage of SNPs that 

were also associated with the other disorder across a range of P-value thresholds (5x10-8; 

5x10-7; 5x10-6; 5x10-5; 0.0005; 0.0015; 0.005; 0.05; 0.1; 0.3; 0.5). In total, this resulted in 11 

subsets for ASD-related variants, and 11 subsets for ADHD-related variants. Next, we 

performed MVRs using these SNP subsets only. For variant subsets with the largest MVR 

effects, we identified the corresponding genes based on positional mapping using PLINK 

software (0 kb gene window), similar to the default options applied by current gene-

enrichment software69. Gene positions were retrieved from UCSC RefSeq gene range lists 

(genome build 37). 

To assess the specificity of observed ASD/ADHD cross-disorder associations with 

EA, we carried out sensitivity MVR analyses that were similar to the discovery analyses 

described above. We used the same ASD and ADHD variants sets for ASD-MVR and 

ADHD-MVR, respectively, but replaced the SNP estimates for the cross-disorder (i.e. ADHD 

in ASD-MVR and ASD in ADHD-MVR)with SNP estimates from MDD, SCZ or BD GWAS 

(Supplementary Table 1, Supplementary Figure 1f, P-value thresholds: Pthr<0.0015; 

Pthr<0.05).  

We applied the following conservative Bonferroni-corrected multiple testing 

thresholds for the MVR analyses described above: (i) discovery analyses with two MVR 

models across 11 P-value thresholds (22 tests, PAdjusted=0.0023, Supplementary Figure 1a) 

with concordant SNP set analyses being nested within these discovery analyses 

(Supplementary Figure 1b); (ii) follow-up analyses with independent ASD(PGC) estimates 

with two MVR models across two P-value thresholds (4 tests, PAdjusted=0.0125, 

Supplementary Figure 1c); (iii) follow-up analyses with independent general intelligence 

(CTG) estimates with two MVR models across two P-value thresholds (4 tests, 

PAdjusted=0.0125, Supplementary Figure 1d); (iv) screening of MVR effect sizes with variant 

sets, associated with both ASD and ADHD risk, applying joint ASD and ADHD variant 
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selection criteria: For each MVR model, variant sets selected at Pthr<0.0015 were 

successively restricted to SNPs that are associated with both disorders, using 11 P-value 

thresholds (2 x MVR models x 11 tests + 22 additional tests correcting for all discovery 

analyses, 44 total tests, PAdjusted=0.0011, Supplementary Figure 1e) and (v) follow-up 

analyses with independent MDD(PGC), SCZ(PGC) and BD(PGC) estimates with two MVR 

models across two P-value thresholds (12 tests, PAdjusted=0.0042, Supplementary Figure 1f). 

 

Univariable regression models 

For comparison with MVR, univariable weighted regression models were conducted 

based on ASD and ADHD variant sets (Pthr<0.0015 and Pthr<0.05) selected from 

ASD(iPSYCH, woADHD) and ADHD(iPSYCH) GWAS statistics, respectively. Corresponding 

SNP estimates for ASD, ADHD and EA were subsequently extracted from ASD(iPSYCH, 

woADHD), ADHD(iPSYCH) and EA(SSGAC) GWAS statistics, as described for MVR above.  

Using univariable weighted regression models (R:stats library, Rv3.5.1) and ASD 

variants, (1) SNP estimates for ADHD were regressed on SNP estimates for ASD, (2) SNP 

estimates for EA were regressed on SNP estimates for ASD, and (3) SNP estimates for EA 

were regressed on SNP estimates for ADHD. Similar models were fitted using ADHD 

variants. All univariable regressions included an intercept. Models were fitted twice: (i) with 

SNP estimates aligned according to the risk-increasing allele for the disorder used for variant 

selection and (ii) a subset of variants from (i) with concordant association effect for ASD and 

ADHD risk. The univariable model fit was compared with MVRs using a likelihood-ratio test 

as implemented in the R:stats library (Rv3.5.1).  

 

Structural equation modelling 

To summarise genetic interrelationships between EA, ASD and ADHD with a multi-

factor model, we translated known SNP-h2 and rg estimates (Supplementary Table 3-4) into 

hypothetical factor loadings consistent with structural equations for a saturated model. 
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Specifically, we propose a multi-factorial structural equation model consisting of three 

continuous phenotypes (EA, ASD liability and ADHD liability Z-scores), three independent 

latent genetic factors, and three independent latent residual influences. We assume that 

genetic factors give rise to genetic variances and covariances between EA, ASD and ADHD 

liability, while residual covariances are assumed to be absent. Phenotypic variances and 

covariances were described according to a Cholesky decomposition70 (i.e. a saturated 

model), assuming an infinitely large population and a fully identified model (Figure 3, 

Supplementary Figure 4). A Cholesky model involves the decomposition of both the genetic 

variances and residual variances into as many latent factors as there are observed variables. 

The expected phenotypic covariance matrix Σ  for Z-standardised traits based on the factor 

model is  

(5) 

where Λ  is a lower triangular matrix of genetic factor loadings, Φ  is a diagonal 

matrix of latent genetic factor variances (standardised to unit variance) such that Φ  is an 

identity matrix I. The residual variance can be decomposed into latent residual factors, where 

Γ  is a lower triangular matrix of residual factor loadings and Θ  is a diagonal matrix of latent 

residual factor variances (standardised to unit variance) such that Θ  is an identity matrix I. 

For example, for a trivariate model consisting of measures P1, P2 and P3, assuming three 

genetic factors (A1, A2 and A3) and three residual factors (E1, E2 and E3), the expected 

phenotypic covariance matrix can be expressed as follows: 
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with the relevant matrices  
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where 2
1pσ , 2

2pσ and 2
3pσ represent the phenotypic variances and 12pσ , 13pσ  and 

23pσ phenotypic covariances. We annotate the genetic factor loadings a (factor loadings) 

such that the first number indicates the direction of the effect (the variable to which the arrow 

points) and the second the origin of the effect.  

 

The trivariate AE Cholesky decomposition of three standardised measures, as 

described above, can be visualised by means of a path diagram (Supplementary Figure 4) 

and the expected phenotypic variances and covariances can be expressed as follows:  
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The variance of the latent genetic and residual factors has been standardised to unit 

variance and is not shown.  

Estimated genetic variances and covariances can be used to derive genetic 

correlation estimates between two phenotypes measuring the extent to which two 

phenotypes 1 and 2 share genetic factors (ranging from -1 to 1):  
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where 12gσ  is the genetic covariance between phenotypes 1 and 2 and 2
1gσ  and 2

2gσ the 

genetic variances. 

We derived (but did not fit) hypothetical factor loadings, based on LDSC SNP-h2 

estimates for EA and, on the liability scale, ASD and ADHD (Supplementary Table 2), as well 

as unconstrained LDSC genetic correlations (Supplementary Table 3-4) using EA, 

ASD(iPSYCH), ASD(PGC) and ADHD(iPSYCH) GWAS statistics (Table 1). We support the 

plausibility of such a model using simulations (Supplementary Table 18). 

 

Multi-factor model data simulation 

To evaluate the accuracy of the proposed multifactorial model, we carried out data 

simulations (Supplementary Table 18). Assuming multivariate normality and unrelated 

individuals, we simulated three continuous interrelated measures P1, P2 and P3 

corresponding to EA and liability for ADHD and ASD respectively, assuming an underlying 

Cholesky model. This includes three genetic factors with their variances and covariances and 

three residual factors with their variances and their covariances. The genetic 

interrelationships between these three traits were informed by unconstrained LDSC genetic 

correlations between EA, ADHD and ASD (Supplementary Table 3-4) using EA, 

ADHD(iPSYCH) and ASD(PGC) summary statistics, using structural equations described 

above (8 to 14). Residual interrelationships were assumed to be absent as the cohorts are 

independent of each other. However, simulated SNP-h2 estimates were increased, and 

sample size restricted to 6,000 individuals per trait with 20,000 SNPs per genetic factor, to 

ease the computational burden (72h, using 16 cores). Multivariate variances and covariances 

within the simulated data were modelled using genetic-relationship structural equation 

modelling (GSEM, R gsem library, v0.1.2)71. This method involves a multivariate analysis of 
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genetic variance by combining whole-genome genotyping information in unrelated individuals 

with structural equation modelling techniques using a full information maximum likelihood 

approach. Simulated parameters and estimated parameters are shown in Supplementary 

Table 18. 
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Data availability 

Genome-wide association summary statistics on ASD(PGC), EA(SSGAC), GI(CTG), 

MDD(PGC), SCZ(PGC) and BD(PGC) are publically available. Download links are provided 

in the methods section. Restrictions apply to the availability of summary statistics from the 

iPSYCH sample. For access to these data, researchers should contact the lead principal 

investigator A.D.B. 
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Tables  

Table 1: Sample description 

Source Phenotype Consortium GWAS Imputation 
reference panel N  Analyses 

Clinical sample 
ASD 

iPSYCH 
ASD(iPSYCH) 1000 Genomes 

phase 3 
35,740 
(13,076 cases) LDSC 

ASD(iPSYCH,woADHD) 1000 Genomes 
phase 3 

32,985 
(10,321 cases) LDSC, MVR 

PGC ASD(PGC) 1000 Genomes 
phase 1 (v3) 

10,610 
(5,305 cases) LDSC, MVR 

ADHD iPSYCH ADHD 1000 Genomes 
phase 3 

37,076 
(14,584 cases) LDSC, MVR 

Population 
sample Years-of-schooling SSGAC EA 1000 Genomes 

phase 31 766,345 LDSC, MVR 
1. Predominantly 1000 genomes phase 3, see Lee et al.47  
 
Abbreviations: ASD, Autism Spectrum Disorder; ADHD, Attention-Deficit/Hyperactivity Disorder; EA, educational attainment; iPSYCH, The Lundbeck 
Foundation Initiative for Integrative Psychiatric Research; PGC, Psychiatric Genomics Consortium; SSGAC, Social Science Genetic Consortium; LDSC, 
Linkage Disequilibrium Score; MVR, multivariable regression; woADHD; without ADHD.  
 
All individuals were of European descent. 
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Figures 

 

Figure 1: ASD-specific, ADHD-specific and cross-disorder associations with 
educational attainment  

Sets of independent ASD and ADHD genetic variants were selected from ASD(iPSYCH, woADHD) 
and ADHD(iPSYCH) GWAS statistics respectively, across different P-value thresholds (Pthr<0.0015, 
Pthr<0.05). Corresponding SNP estimates for ASD, ADHD and EA were subsequently extracted from 
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ASD(iPSYCH, woADHD), ADHD(iPSYCH) and EA(SSGAC) GWAS statistics respectively. (a) 
Schematic ASD-MVR model jointly estimating ASD-specific (ASD-MVR βASD) and ADHD cross-
disorder (ASD-MVR β⊗ADHD) associations with EA using ASD variant sets. ASD-MVR βASD were fitted 
with ASD SNP estimates, ADHD cross-disorder effects (ASD-MVR β⊗ADHD) were fitted with ADHD 
SNP estimates. For clarity, intercepts are not shown. (b) Schematic ADHD-MVR model jointly 
estimating ADHD-specific (ADHD-MVR βADHD) and ASD cross-disorder (ADHD-MVR β⊗ASD) 
associations with EA using ADHD variant sets. ADHD-MVR βADHD were fitted with ADHD SNP 
estimates. ASD cross-disorder effects (ADHD-MVR β⊗ASD) were fitted with ASD SNP estimates. For 
clarity, intercepts are not shown. (c) Estimated ASD-specific (ASD-MVR βASD), ADHD-specific (ADHD-
MVR βADHD) and cross-disorder association effects (ASD-MVR β⊗ADHD, ADHD-MVR β⊗ASD) with SNP 
estimates aligned according to ASD risk (ASD-MVR, 1a) and ADHD risk (ADHD-MVR, 1b), 
respectively. All MVR effects are presented as change in years-of-schooling per increase in log-odds 
ASD or ADHD liability respectively. Bars represent 95% confidence intervals. (d) 3D scatter plot of 
ASD SNP estimates (lnOR, x-axis), ADHD SNP estimates (lnOR, y-axis) and EA SNP estimates (z-
axis) for ASD-related variants (Pthr<0.0015). The multivariable regression plane reflects ASD-specific 
and ADHD cross-disorder associations, as shown in 1c. (e) 3D scatter plot of ASD SNP estimates 
(lnOR, x-axis), ADHD SNP estimates (lnOR, y-axis) and EA SNP estimates (z-axis) for ADHD-related 
variants (Pthr<0.0015). The multivariable regression plane reflects ADHD-specific and ASD cross-
disorder associations, as shown in 1c.  
 
All presented MVR effects passed the multiple testing threshold of P<0.0023. 
 
Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; EA, 
educational attainment; MVR, multivariable regression; Pthr, P-value threshold.  
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Figure 2: Changes in ASD-specific, ADHD-specific and cross-disorder associations 
with educational attainment depending on variant sets meeting joint ASD and ADHD 
selection criteria   

(a) Percentage of ASD variants (Pthr<0.0015) also associated with ADHD across multiple P-value 
selection thresholds (Pthr: 0.0015; 0.005; 0.05; 0.1; 0.3; 0.5) (b) Percentage of ADHD variants 
(Pthr<0.0015) also associated with ASD across multiple P-value selection thresholds (Pthr: 0.0015; 
0.005; 0.05; 0.1; 0.3; 0.5) (c) ASD-MVR and ADHD-MVR analyses based on SNP sets shown in (a) 
and (b). SNP estimates were extracted from ASD(iPSYCH, woADHD), ADHD(iPSYCH) and 
EA(SSGAC) GWAS statistics. Variant sets with P-value selection thresholds Pthr 5x10-8, 5x10-7, 5x10-6, 
5x10-5 and 0.0005 for the cross-disorder are not shown, due to the small number of variants identified. 
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All MVR effects passed the multiple testing threshold of P<0.0011, except ADHD-specific effects for 
ADHD-MVR (where variants were associated with ASD at Pthr: 0.005, 0.05, 0.1).  

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; MVR, 
multivariable regression; Pthr, P-value threshold.  
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Figure 3: Multi-factor model of genetic interrelations between ASD, ADHD and 
educational attainment 

The model predicts two sources of shared genetic influences between ASD and ADHD, as captured 
by common variants within an infinitely large population. The first genetic factor (A1, shared 
EA/ADHD/ASD) refers to shared genetic variation between EA, ADHD and ASD. It allows for a 
negative genetic covariance between ASD and ADHD. The second genetic factor (A2, shared 
ADHD/ASD) acts independently of A1, explaining positive genetic covariance between ASD and 
ADHD.  

Each factor loading (“a”) for the Cholesky decomposition of a trivariate trait is described in the 
Methods. (a) Multi-factor model consistent with ASD(iPSYCH), ADHD(iPSYCH) and EA(SSGAC) 
summary statistics. (b) Multi-factor model consistent with ASD(PGC), ADHD(iPSYCH) and 
EA(SSGAC) summary statistics and supported by simulations (Supplementary Table 18).  

Factor loadings (“a”) were derived from LDSC SNP-heritabilities and genetic correlations. Shared 
ADHD/ASD genetic influences (A2) were modelled allowing for ASD-specific effects (A3). Phenotypic 
measures are represented by squares, while latent genetic factors are represented by circles. Single-
headed arrows denote genetic factor loadings (“a”), double-headed arrows genetic correlations (“rg”). 
Residual influences and unit variances for latent variables were omitted.  

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; EA, 
educational attainment; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric 
Research; PGC, Psychiatric Genomics Consortium; SNP h2, SNP heritability; SNP rg, SNP genetic 
correlation, covg, genetic covariance; woADHD, without ADHD 
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Figure 4: Genetic correlations between educational attainment, ASD and ADHD 

Genetic correlations of ASD and ADHD samples with educational attainment (EA) were estimated 
using genome-wide summary statistics for EA(SSGAC), ASD(iPSYCH), ASD(iPSYCH, woADHD), 
ASD(PGC), ADHD(iPSYCH) and ASD(PGC)+ADHD(iPSYCH) respectively. Latter were created by 
performing a random-effect meta-analysis combining ASD(PGC) and ADHD(iPSYCH) genome-wide 
summary statistics. Genetic correlations were estimated with unconstrained LD score correlation. Bars 
represent 95% confidence intervals. 

Abbreviations: ASD, Autism Spectrum Disorder; ADHD, Attention-Deficit/Hyperactivity Disorder; ASD 
(iPSYCH,woADHD), ASD without ADHD; iPSYCH, The Lundbeck Foundation Initiative for Integrative 
Psychiatric Research; PGC, Psychiatric Genomics Consortium 
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