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Abstract1

Background Obesity is a complex global health challenge. Although both low-carbohydrate2

(low-carb) and low-fat diets can lead to weight loss, there is typically substantial variability3

in weight and related outcomes for both diet approaches among obese but otherwise healthy4

adults. Elucidating individual characteristics that might contribute to sustained weight loss is5

critical to developing effective dietary intervention strategies. We hypothesized that structural6

differences in the gut microbiota explained some portion of the weight loss variability among7

people randomized to either a low-carb or low-fat diet, possibly related to its effects on dietary8

compliance.9

Results Our study included two staggered cohorts of obese adults enrolled in the Diet10

Intervention Examining The Factors Interacting with Treatment Success (DIETFITS) study -11

a randomized clinical trial of either a low-fat or low-carb diet. In the discovery cohort (n=66),12

161 pre-diet fecal samples were sequenced in addition to 157 samples collected after 10-weeks13

of dietary intervention. In the validation cohort (n = 56), 106 pre-diet fecal samples were14

sequenced. Pre-diet taxonomic features, such as the Prevotella/Bacteroides ratio, correlated to15

weight loss in the discovery cohort were not confirmed in the validation cohort. The most robust16

finding in the discovery cohort indicated that gut microbiota plasticity was linked to 12-month17

weight loss in a diet-dependent manner; subjects with higher sustained weight loss on a low-fat18

diet had higher pre-diet daily plasticity, whereas those most successful on the low-carb diet19

had greater microbiota plasticity over 10 weeks of dietary intervention. Unfortunately, because20

sample frequency and timing was quite different in the validation cohort, the relationship21

between plasticity and weight loss could not be studied in this group.22

Conclusions These findings suggest the potential importance of gut microbiota plasticity23

in sustained weight loss. We highlight the importance of evaluating kinetic trends and in24

assessing reproducibility in studies of the gut microbiota.25
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Background27

The global obesity pandemic has claimed one in three American adults and prevalences continue28

to rise in many other countries as well [46]. Obesity comorbidities (e.g. cardiovascular diseases,29

cancer, diabetes, and other chronic conditions) cost the US 8.65 billion/yr from loss of productivity30

due to absenteeism alone [58, 65, 53, 55, 14]. The personal, social and economic costs provide an31

urgent need for consistently effective, and possibly more personalized, weight-reduction therapies.32

Different dietary interventions, such as low-carbohydrate (low-carb) and low-fat diets, can lead33

to weight loss, but not always; there remains substantial variability in diet success outcomes among34

obese, but otherwise healthy, adults [37]. Additionally, adherence to dietary intervention strategies35

has remained a major challenge, despite the clear dose-response relationship with weight loss for36

individuals on both low-carb and low-fat diets [17, 1]. Thus, practitioners have begun to look for37

individual characteristics (e.g. physiological attributes, cultural or lifestyle characteristics, food38

preferences, etc.) that could influence an individual’s sustained weight loss, possibly by improving39

adherence to a specific dietary regime.40

Gut microbiota are highly individualized and intricately involved with the quantity and quality41

of nutrients extracted from our diets, with direct implications for obesity [19, 62, 26, 41, 60, 59].42

Microbial metabolites and proteins are known to communicate with the host to influence appetite43

control [33, 11, 22, 49]. For example, proteins from gut E. coli modulate appetite by interacting with44

antigens involved in host satiety signaling [6]. Byproducts of microbial fermentation (e.g. butyrate45

and propionate) also stimulate gut hormones that reduce food intake [42, 50]. Studies assessing46

inter-individual variability in gut microbiota alterations in response to dietary interventions are47

limited by short-term (<12 weeks) dietary modifications or measurement of metabolic outcomes48

(e.g. plasma glucose, triglycerides, insulin, cholesterol) rather than weight loss [28]. The one49

published study that directly investigated the relationship between baseline microbiota structure50

and long-term weight loss found that a high fecal Prevotella/Bacteroides (P/B) ratio (> 0.01, n =51

15) at baseline resulted in a mean of 1.31kg more weight loss at 6 months than a low P/B ratio52

(P/B < 0.01, n = 21) [32]. No studies have investigated the impact of microbiota on adherence to53
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a dietary intervention.54

The DIETFITS study [57, 24] was a randomized trial of 609 adults designed to elucidate predis-55

posing individual characteristics–genotype, insulin-glucose dynamics, physiological and psychosocial56

attributes–that contribute to successful 12-month weight loss on ad libitum diets designed to be57

lower in carbs or fat. Within a population subset of DIETFITS, we explored whether attributes of58

the gut microbiota predisposed individuals to successful 12-month weight loss and how that might59

have been mediated by dietary adherence. Identifying pre-diet features of the gut microbiota that60

can predict adherence and/or success on a specific diet might permit personalization of dietary61

intervention strategies to maximize weight loss.62

Results63

Subject demographics and sequencing statistics64

We recruited subjects from two cohorts of obese adults enrolled in the DIETFITS randomized65

trial of low-carb and low-fat diets. The cohorts were enrolled approximately six months apart,66

allowing one to be used for discovery and the second for validation. From each of these cohorts,67

individuals who a) provided fecal samples prior to initiating the intervention that passed quality68

filtering (>10,000 high-quality 16S rDNA sequences) and b) completed the one-year intervention69

were included in our study.70

The discovery cohort included 66 subjects, of whom 32 (22 female) were randomized to the71

low-carb diet and 34 (17 female) to the low-fat diet. These 66 subjects provided fecal samples72

on three consecutive days prior to starting the diet plus three additional daily samples 10 weeks73

after diet initiation. A sequencing depth of 73, 659 ± 33, 380 reads per sample was obtained from74

318 fecal samples (161 pre-diet; 157 at 10 weeks). Subject characteristics and dietary information75

can be found in Table ??. Subjects on the low-carb diet restricted carbs to 22.6 ± 10.3% of their76

daily kilocalories (kcals) and lost 8.4 ± 7.7% of their starting weight after 12 months of dietary77

intervention whereas those on the low-fat diet restricted fats to 25.3± 5.7% of daily kcals and lost78

6.3 ± 7.7% of their starting weight. Previous definitions of long-term weight loss success [64, 36]79

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/580217doi: bioRxiv preprint 

https://doi.org/10.1101/580217
http://creativecommons.org/licenses/by-nc-nd/4.0/


were used to categorize subjects based on the percentage of baseline weight lost at 12 months: 2080

were unsuccessful (US: < 3% weight loss), 25 were moderately successful (MS: 3−10% weight loss),81

and 21 were very successful (VS: > 10% weight loss).82

The validation cohort was comprised of 56 subjects: 31 (25 female) on the low-carb and 25 (1983

female) on the low-fat diet. Subject characteristics were comparable between the two cohorts (Table84

??), except for the percent weight lost at 12 months on the low-carb diet, which was significantly85

lower in the validation cohort (4.8±6.2% compared to 8.4±7.7% in the discovery cohort, Welch’s t-86

test p = 0.045) and percent of carbs consumed (31.5± 9.1% compared to 22.6± 10.3% in discovery87

cohort, Welch’s t-test p = 0.0005). Subjects were classified to weight loss success groups, as88

described above, with the following distribution: 24 US, 18 MS, and 14 VS. From these “validation”89

subjects, fecal samples were collected only prior to the start of the dietary intervention at a median90

of 12 (IQR 7, 25) days apart. Samples meeting quality criteria (n = 106) had a mean sequencing91

depth of 70, 041± 15, 664 reads per sample.92

Pre-diet gut microbial community composition does not predict 12-month93

weight loss success94

Pre-diet gut microbial community composition varied among subjects, and samples collected from95

the same individual tended to cluster together in principal coordinates analysis (PCoA) shown96

in Fig. 1. In the discovery cohort, pre-diet microbiota composition did not cluster by 12-month97

weight-loss success category (PERMANOVA on Bray-Curtis dissimilarity low-carb: p = 0.51; low-98

fat: p = 0.81). The microbiota composition also did not cluster by age, gender, pre-diet weight,99

body mass index or dietary compliance in the PCoA maps. Similar results were found in the100

validation cohort (Fig. 1b).101

Higher gut microbiota plasticity predicted successful 12-month weight loss102

In the discovery cohort, 85% of subjects (n = 26 for low-carb, n = 30 for low-fat) provided two or103

three fecal samples on consecutive days prior to the start of the intervention. These samples allowed104
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us to quantify subjects’ pre-diet daily microbiota plasticity, i.e., the amount of daily variability in105

an individual’s microbiota composition, measured with β-diversity metrics. Pre-diet microbiota106

plasticity was significantly higher for VS subjects on the low-fat diet compared to US subjects107

(baseline BL v. BL plots in Fig. 2, Wilcoxon rank-sum test p = 0.033 for Bray-Curtis dissimilarity).108

This result was robust to the choice of distance metric (Fig S3) and was repeated on clusters109

of phylogenetically related ASVs (sharing roughly species- or genus-level sequence similarity; see110

Methods for details) with similar results (Fig S3b). There was no difference in pre-diet plasticity111

between weight-loss success groups for the low-carb diet. Consecutive daily samples were also112

collected after subjects had been on the dietary intervention for approximately 10 weeks; there was113

no difference in daily plasticity between weight-loss groups at 10 weeks for either diet (10wk v.114

10wk plots in Fig. 2, Wilcoxon rank-sum test on Bray-Curtis dissimilarity p = 0.61 for low-carb,115

p = 0.54 for low-fat).116

We also quantified plasticity over ten weeks in response to the dietary intervention, i.e., the117

variability between gut microbiota composition before the start of the dietary intervention and118

after 10 weeks of dieting. The plasticity over ten weeks was computed for subjects (n = 28 low-119

carb, n = 32 low-fat) who provided at least one pre-diet sample and another ten weeks after the120

start of the dietary intervention (77 ± 9 days apart for low-carb diet, 81 ± 14 days for low-fat).121

For each subject, the average pairwise β-diversity (between each pre-diet and 10-week sample) was122

calculated. On both diets VS subjects had higher plasticity between their baseline and 10-week123

fecal microbiota communities than US subjects (BL v. 10wk plots in Fig. 2; Wilcoxon rank-sum124

test on Bray-Curtis dissimilarity: low-carb p = 0.017; low-fat p = 0.11). Again, for both diets125

the observed trends were robust across multiple β-diversity metrics and clustered-ASV data (Fig.126

S4). Daily pre-diet plasticity was positively correlated with plasticity over ten weeks for subjects127

on the low-fat diet (Spearman’s rank correlation 0.37 for Bray-Curtis, p = 0.053). The magnitude128

of variation between the pre-diet and the 10-week period was higher than day-to-day plasticity at129

either the baseline or 10-week time point (Fig. 2, Wilcoxon rank-sum test p < 0.0001 for both130

low-carb and low-fat). Although intra-individual plasticity over ten weeks was significantly higher131

for VS compared to US subjects, inter-individual differences across subjects were still larger in132
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magnitude on both diets (Fig. S5).133

Within each cohort, pre-diet phylogenetic α-diversity was not different between US and VS134

subjects (Fig. S1) and was not correlated with dietary compliance on either diet (data not shown).135

However, for subjects in the discovery cohort, we found a negative correlation between pre-diet136

plasticity and average α-diversity (mean of all pre-diet samples) for subjects on the low-fat diet137

(Spearman’s rank correlation coefficient -0.42 for Bray-Curtis dissimilarity, p = 0.021). This sug-138

gests that individuals on the low-fat diet with low mean bacterial alpha-diversity tend to exhibit a139

more variable microbiota composition.140

The magnitude of gut microbiota plasticity (using any β-diversity metric) was not statistically141

different between women and men at any time point: pre-diet (Wilcoxon rank-sum test on Bray-142

Curtis distance p = 0.86), at 10-week (p = 0.35), or between pre-diet and 10-week (p = 0.54).143

Subjects in the validation cohort did not collect pre-diet fecal samples on consecutive days (median144

12 [IQR 7,25] days between samples) and fecal samples from 10-weeks into the intervention were145

not available, so we were unable to validate plasticity as a factor in weight loss success.146

Gut microbiota plasticity correlated with dietary compliance in a diet-147

and sex-dependent manner148

Subjects were instructed to strive to restrict nonfiber carbohydrate or fat intake to 20g/d but to149

titrate over the first few weeks of the study to levels they perceived they could maintain for the rest150

of their lives. Each diet resulted in a reduced intake of the restricted component (Table ??) but also151

in the number of total calories consumed. Thus we calculated a proxy measure for adherence to a152

low-fat or low-carb diet, referred to here as dietary compliance and quantified as the reduction in153

restricted foods (measured as decrease in percentage of total daily kcals consumed from fats/carbs)154

between baseline (pre-diet) and during the dietary intervention (an average was taken over three155

unannounced 24-h dietary recalls at each time point conducted during the trial - baseline, 3, 6, and156

12 months). We conducted sub-group analyses on dietary compliance for men and women, given157

observed sex-specific differences in correlations between reported dietary compliance and weight158

loss in the larger DIETFITS study population.159
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Women and men on the low-fat diet exhibited different correlations between dietary compliance160

and pre-diet daily plasticity (Fig. 3). Men with higher plasticity reduced their fat consumption161

more (had higher compliance) than men with lower plasticity (Spearman’s rank correlation using162

Bray-Curtis dissimilarity 0.55, p = 0.02), whereas women lacked a meaningful correlation between163

plasticity and dietary compliance (Spearman’s rank correlation -0.47, p = 0.1). For both women164

and men on the low-carb diet, no significant correlations were found between dietary compliance165

and daily pre-diet plasticity. These trends were consistent across several distance metrics (Fig. S6)166

and using ASV-clusters (data not shown).167

We suspected that dietary compliance would affect diet-induced microbiota plasticity over ten168

weeks; more specifically, we expected the gut bacterial community composition of the more adherent169

subjects to shift more in response to their modified diet on the intervention). We observed highly170

significant and opposite correlations between men and women on the low-fat diet (see Fig. 3). This171

was not the case for subjects on the low-carb diet, where again no correlations were noted between172

diet-induced plasticity and compliance to the prescribed diet for both women and men. Trends173

were consistent across a variety of distance metrics (Fig. S6).174

Pre-diet Prevotella/Bacteroides ratio correlated with 12-month weight175

loss success on low-carb diet in discovery, but not validation, cohort176

In the discovery cohort, subjects on the low-carb diet with VS weight-loss had significantly higher177

Prevotella/Bacteroides (P/B) ratio (median = 0.014) compared to US subjects (median = 0.0004;178

Wilcoxon rank-sum test p = 0.021); however, the same was not observed in the validation cohort179

(VS median P/B ratio = 0.0003; US median = 0.0009; p = 0.718; Fig. 4). There was no difference in180

P/B ratio between US and VS subjects randomized to the low-fat diet for either cohort (discovery:181

p = 0.54; validation: p = 0.46).182
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Differential abundance of sequence clusters not consistently predictive of183

12-month weight loss success184

To evaluate patterns of specific members of the pre-diet microbiota that might predict weight185

loss success, we tested for clusters of phylogenetically related ASVs (sharing roughly species- or186

genus-level sequence similarity; see Methods section for details on ASV-clustering) that differed in187

abundance between dieters who achieved VS 12-month weight loss compared to US. We compared188

within each diet separately, filtering out clusters that were not present in at least 10% of subjects189

from the focal diet. Using methods allowing for subject as a random effect (limma package, see190

Methods), in the discovery cohort we found one cluster containing 10 Ruminococcaceae ASVs191

(Cluster94) that was significantly more abundant in US compared to VS subjects on the low-carb192

diet (p = 0.0006) (see Table 2). In contrast, VS subjects had significantly higher abundances of193

a cluster containing 64 different Ruminococcaceae ASVs (Cluster65, (p = 0.023) and a cluster194

containing 2 Enterorhabdus ASVs (Cluster266, p = 0.025) compared to US subjects on the low-195

carb diet. The abundances do not display a proportional linear dose-dependent relationship with196

percentage weight loss for all subjects, however (Fig. 5), suggesting that these clusters are unlikely197

to be strong predictors of weight-loss success in a larger population. No clusters were identified198

as differentially abundant for the low-fat diet. Similar results were obtained when differential199

abundance testing was performed on the unclustered ASV counts (Fig. S7) and also when a200

linear model with a continuous predictor corresponding to the percentage weight loss (instead of201

categorical: VS vs US) was applied. ASVs and ASV-clusters identified as differentially abundant202

in the discovery cohort were not significant in the validation cohort (Table 2). In most cases, both203

the magnitude and direction of effect were discordant between cohorts.204

Discussion205

Our study suggests the potential importance of gut microbiota plasticity in sustained weight loss.206

The observed patterns in correlations between plasticity and our estimates of dietary compliance207

could imply sex- and diet-dependent mechanisms. In several earlier studies [15, 20, 68], individual208
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temporal variability of the gut microbiota was seemingly eclipsed by larger-scale variability across209

body habitats, severe perturbations, or geographically distinct populations, which may have led210

some to underestimate the importance of plasticity within an individual. However, a study of211

weekly samples from 85 adults showed that temporal variability is a personalized feature [23]; with212

some individuals displaying consistently high or low compositional variability. Our results are the213

first to illustrate that this personalized feature of the microbiota might be relevant to weight loss.214

Higher pre-diet daily plasticity in gut community composition was observed in subjects attaining215

higher 12-month weight loss, but only on the low-fat diet. This result was consistent across several216

β-diversity metrics indicating that microbiota was more plastic both in terms of membership and217

structure. Of note, no pre-diet microbes were differentially abundant for US compared to VS sub-218

jects on the low-fat diet, a result that might have been influenced by the increased plasticity found219

in the latter. In agreement with other studies, we saw a negative correlation with compositional220

variability and phylogenetic diversity (more diverse communities were less variable) [23, 16, 44].221

The insurance hypothesis in ecological theory suggests that biologically diverse communities are222

more resilient as they contain a larger set of community traits/functions that enable them to adapt223

to changing environments and buffer the system against the loss of species [67]. In our case, we224

see that higher turnover of microbes might allow for a greater response to the dietary intervention,225

independent of diversity, possibly by allowing for the alteration of the microbial consortia into one226

less efficient at extracting nutrients.227

As this was seen only for low-fat dieters, we hypothesized that increased plasticity might have228

facilitated responsiveness to the increased carbohydrates and fiber consumed on the low-fat diet229

[24], making the transition to the new diet easier for subjects in ways that aided adherence through230

appetite suppression [33, 39, 8, 25, 12, 3, 2]. Our data suggest this is true for men, as we saw positive231

correlations between plasticity and both weight loss and dietary compliance. Despite magnitudes232

comparable to men’s daily pre-diet plasticity, women on the low-fat diet displayed a negative trend233

between plasticity and dietary compliance. This suggests that the mechanisms underlying the234

relationship between plasticity and weight loss might be independent of dietary adherence for this235

sub-population. Sex hormones play integral roles in appetite regulation [31, 30]. Although we236
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did not analyze hormones directly, it is possible that these signals might be differentially stronger237

than other anorexigenic signals originating from the gut for women compared to men, possibly238

explaining some of the sexual dimorphism in our results. Additionally, self-reporting biases might239

have influenced the 24-hr dietary recalls, and thus our dietary compliance measures, differentially240

for men and women [29]. We accounted for this by calculating macronutrient intake as a percentage241

of total energy intake, but these biases were not assessed directly in the survey instrument and thus242

we were unable to specifically adjust for them.243

Plasticity of the gut microbiota over the first ten weeks of the dietary intervention was higher244

for VS compared to US subjects on either diet, but significant only for low-carb dieters. Again, we245

saw strong diet- and sex-specific differences between plasticity and dietary compliance. Although246

higher microbiota plasticity was seen in VS low-carb dieters, there was no correlation between247

plasticity and dietary compliance for either sex, implying that for diets with restricted carbs the248

microbiota might play a larger role in the proportion of nutrients extracted from foods and less of249

a role in appetite suppression. The correlations between 10-week plasticity and dietary compliance250

were positive for men on the low-fat diet and negative for women, again implying that sex-specific251

differences are likely in our measurement of dietary compliance and/or in the physiological impacts252

of gut microbiota on appetite suppression.253

Plasticity of the gut microbiota over ten weeks, and in response to the intervention, was higher254

for both diets than daily plasticity at either time point. This was expected as dietary changes can255

have strong influences on taxonomic composition and functional capability of the gut microbial256

community [21, 19, 38, 56, 45]. However, the non-standardized, self-titrated interventions did not257

lead to a convergence of subjects to similar gut microbiota communities. After 10 weeks on the258

dietary intervention, subjects’ community membership and structure were still more similar to their259

own pre-diet communities rather than to other subjects on the same diet. The repeated measures at260

both time points (pre-diet and 10 weeks) enabled us to observe that the plasticity of the microbial261

community in response to the diet was higher than daily variability at either time point. As we262

were unable to evaluate the robustness of these plasticity findings in our validation cohort due263

to differences in sampling regimes, there remains the need for other studies to corroborate these264
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plasticity findings. Future analyses should be stratified by sex, with specific attention paid to265

menopausal state of women included.266

Finally, our study highlighted the importance of validation cohorts in microbiota studies with267

small to moderate sample sizes. Contrary to our hypothesis, we found no specific taxonomy-related268

microbial features clearly associated with 12-month weight-loss success. This could be due to269

our small sample size (n=25-34 for any diet-cohort combination), indeed, only ∼ 20% of ASV-270

clusters were detected in at least half of the subjects on either diet, limiting our statistical power271

to identify differences between VS and US subjects. Although our sample size was comparable to272

other published studies investigating the gut microbiota and diet responsiveness [32, 38, 18], our273

analysis included stringent filtering of samples with at least 10,000 reads and ASV-clusters present274

in at least 10% of subjects on the focal diet. We also included replicate samples for most subjects275

in order to reduce false positive identification during differential abundance testing. The majority276

of pre-diet ASVs and ASV-clusters identified as differentially abundant between weight-loss groups277

on the low-carb diet were discordant across the discovery and validation cohorts in both magnitude278

and direction. In addition, our finding from the discovery cohort that subjects on the low-carb diet279

with higher pre-diet P/B ratio had higher 12-month weight loss was not confirmed in the validation280

cohort. These inconsistencies could be the result of the significantly lower dietary compliance281

and weight loss achieved by low-carb dieters in the validation cohort compared to subjects from282

the discovery cohort. The inclusion of a validation cohort illustrated the challenges in generalizing283

findings from an initial modest sample size to even a similar population. Future research, specifically284

designed and powered for the outcome of interest, will be necessary to determine if specific taxa or285

higher P/B ratio are important for 12-month weight loss in larger populations.286

Conclusions287

Our study is the first to examine the connection between gut microbiota and 12-month weight288

loss success on two common diets – low-carb and low-fat – and on the intermediary of dietary289

compliance. For subjects on the low-fat diet, higher weight loss was observed in subjects with290
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higher pre-diet daily microbiota plasticity but this appears to be mediated by adherence only for291

men. Low-carb dieters appear to obtain little benefit from daily pre-diet gut microbiota plasticity292

in terms of weight loss. Higher plasticity of gut microbiota over ten weeks, and in response to293

the dietary intervention, was seen for subjects who lost the most weight after 12 months of low-294

carb dieting, but we found no correlations for this group between plasticity and dietary compliance.295

Despite strong correlations between gut microbiota plasticity over ten weeks and dietary compliance296

for low-fat dieters, no significant difference in plasticity was noted between VS and US weight loss297

success groups.298

Gut microbiota plasticity has not been extensively studied in relation to sustained weight loss299

or dietary adherence. Here we present data that suggests the plasticity of the gut microbiota300

may be related to both in a sex-and diet-specific manner. Our work highlights the importance of301

investigating kinetic trends in gut bacterial community composition, including long-term shifts and302

daily plasticity, in addition to explicitly seeking static microbiota signatures and patterns, when303

studying individual differences and predisposition to successful weight loss.304

Methods305

Study population and sample collection306

Overweight and obese adults in the Diet Intervention Examining The Factors Interacting with307

Treatment Success (DIETFITS) study enrolled between Fall 2013 and Spring 2014 were approached308

for inclusion in this study. DIETFITS was a 12-month randomized clinical trial of low-carb and309

low-fat diets [57, 24] (clinical trial registration NCT01826591). The diets had no specific caloric,310

fat or carbohydrate restrictions, but instead involved counseling sessions focused on three main311

components central to sustaining a low-carb or low-fat diet. First, for the initial eight weeks,312

subjects were instructed to progressively reduce either carbohydrate or fat intake as much as possible313

(with an objective of achieving 20 g/day), and maintain their lowest possible intake for at least314

several weeks. Second, after the initial eight weeks they were then encouraged to titrate their intake315

by increasing fat or carbohydrate consumption by increments of 5-15 g/day and maintaining that316
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intake for a week or more while noting their satisfaction (e.g., satiety, palatability) and weight317

loss success. After settling on a sustainable target (one that left them feeling full but still able to318

lose weight), they were asked to maintain that intake level for the remainder of the study. The319

third component of the study’s strategy was promotion of a high-quality diet focused on whole,320

real foods, that are mostly prepared at home and that contain as many vegetables as possible.321

Subjects were assigned to attend 22 in-person instructional sessions related to nutrition, behavior,322

emotions, and physical activity. Participant data, including clinical outcomes, was collected and323

managed using REDCap electronic data capture tools hosted at Stanford University [27]. Subjects324

from the discovery cohort were asked to provide self-collected fecal samples from three consecutive325

days at two separate time points (pre-diet and 10 weeks after initiation of the dietary intervention).326

Subjects from the validation cohort were asked to provide two self-collected pre-diet fecal samples.327

Fecal samples were stored at -20◦C until delivered to the lab and then at -80◦C until processing.328

A total of 424 fecal samples with sufficient sequencing depth in high-quality reads were collected329

from 66 discovery cohort and 56 validation cohort subjects who provided complete weight data.330

DNA extraction and 16S rRNA gene sequencing331

DNA was extracted from 50-150mg fecal material using the Qiagen PowerSoil DNA Isolation Kit332

(Qiagen, Venlo, The Netherlands) with the following protocol modifications: samples were incu-333

bated in lysis buffer at 65◦C for 10 minutes, bead beating was conducted for 20 minutes, and all334

subsequent vortexing steps were replaced with gentle but thorough inversions. Extracted DNA was335

stored at -20◦C. The V4 region of the 16S rRNA gene was amplified using the protocol of Caporaso336

et al. [13]. Briefly, samples were amplified in triplicate 25ul PCRs in 96-well plates with the final337

volumes per reaction: water 10.9 ul, MasterMix (5 PRIME HotMasterMix) 10 ul, reverse primer338

0.1 ul, forward primer 1 ul, template DNA 3 ul. Replicates were run simultaneously on 3 thermal339

cyclers for 30 cycles of: 94◦C 45s, 52◦C 60s, 72◦C 90s with a ten minute extension at 72◦C at340

the end. Amplification was verified by gel electrophoresis on pooled replicates (failures were re-341

peated) and bands were excised and cleaned (MO BIO UltraClean-htp 96 Well PCR Clean-Up Kit)342

per manufacturer protocol. DNA was quantified (Invitrogen Quant-iT ds DNA Assay Kit, High343
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Sensitivity) using a microplate reader (FLEXstation II 384-Fluorescent 6), and amplicons were344

combined in equimolar ratios. This pooled DNA was concentrated via ethanol precipitation and345

then resuspended in nuclease-free water. DNA libraries were submitted to the Functional Genomics346

Facility at Stanford University for sequencing on an Illumina MiSeq (2 x 250bp) over 7 separate347

runs, yielding 73.3M raw reads.348

DADA2 Amplicon Sequence Variant (ASV) Sample Inference and Tree349

Building350

The DADA2 R package [10] was used for quality filtering, denoising, chimera removal and sequence351

inference (obtaining sequence counts). Forward reads were trimmed to length 240 in all but one352

sequencing run (length of 230 due to lower quality); reversed reads, commonly with lower quality,353

were trimmed to length ranging from 160-200 across sequencing runs. After merging, default settings354

were used for error estimation and denoising with the following exception: maxEE = 2, meaning that355

merged reads with expected error higher than maxEE were discarded (where EE =
∑

10−Q/10).356

Finally, after amplicon count inference, chimeras were removed and sequences of length 230-234357

bp were retained; 37.5M (51%) reads passed filtering criteria. Taxonomic assignment of the 4,234358

unique sequences was performed according to the Bioconductor workflow [10, 9] using RDP trainset359

16 [63] and Silva v128 [51] databases.360

Phylogenetic tree estimation In accordance with the Bioconductor workflow [9], two R pack-361

ages were used to estimate a phylogenetic tree from obtained sequences. DECIPHER [66] was used362

to perform multiple alignment, and phangorn [54] to fit a Generalized time-reversible Gamma rate363

variation (GTR+G+I) maximum likelihood tree initialized at the neighbor-joining tree (parameters364

k=4 and inv=0.2 were used for phangorn::pml function).365

Sequence clustering using phylogeny Due to high resolution of the DADA2 pipeline, the ob-366

tained amplicon sequence variant (ASV) count-matrix was very sparse. In order to attain more367

overlap in organism counts between samples and subjects, we clustered ASVs into phylogenetically368
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similar sequence groups using the estimated phylogenetic tree. These clusters were generated by369

cutting an associated phylogenetic tree at the height, h = 0.1, corresponding to median difference370

between member sequences equal to 7.5 bp (out of 233 bp). This is equivalent to 96.8% sequence371

identity, which correlates with thresholds to differentiate genera [5, 61]. We used both the original372

ASV data and ASV-clusters for downstream analysis. This ASV-clustering approach is more accu-373

rate than the traditional OTU clustering, as the phylogenetic distance is considered in the sequence374

grouping process.375

Statistical Analyses376

Ordination To visualize the data we used Principal Coordinate Analysis (PCoA) with Bray-377

Curtis distance applied to inverse-hyperbolic-sine (asinh) transformed count data. The transforma-378

tion prevents the Bray-Curtis dissimilarity metric from placing too much weight on species/ASVs379

highly abundant in all samples. All samples were included together in the computation of the380

ordination projection. The plots were then faceted into distinct dietary intervention assignments.381

Differences in community composition were tested using PERMANOVA (adonis function from the382

vegan package [48], permutation = 999).383

Microbiota Diversity and Plasticity Gut microbiota phylogenetic α-diversity was estimated384

using the procedure of Nippress et al. [47], based on rarefaction curves. Phylogenetic diversity was385

evaluated at a depth of 11,000 sequence reads – the level of the minimum library size of samples386

post-filtering.387

Daily pre-diet gut microbiota variability was estimated using pairwise β-diversity between each388

subject’s pre-diet samples. If a subject provided three samples, only the pairwise β-diversity for389

consecutive days were used to compute the average. Consecutive samples in the discovery cohort390

were taken a median of 1 day apart (IQR 1, 2) with an exception of a few subjects who provided391

samples up to 5 days apart. The time span between an individual subject’s samples was balanced392

across weight-loss groups. To estimate variability between gut microbiota pre-diet and 10 weeks393

into the dietary intervention, we calculated the pairwise β-diversity between each pre-diet and 10-394
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week sample for each subject, and then calculated the mean across all pairwise comparisons. For all395

plasticity measures, Jaccard dissimilarity and unweighted UniFrac distance were used to asses the396

variability in taxa presence/absence, whereas Bray-Curtis dissimilarity, weighted UniFrac distance,397

and Jensen-Shannon divergence were used to estimate variability in abundances. The difference in398

variability between VS and US subjects was tested for significance separately for each diet using399

non-parametric Wilcoxon rank-sum test.400

Differential abundance testing We looked for pre-diet ASV-clusters, and single ASVs, that401

were differentially abundant with respect to 12-month weight loss. The inclusion of consecutive402

daily samples (repeated measures) for subjects allowed for a more accurate estimation of the un-403

derlying processes and helped reduce false discoveries. The limma differential abundance (DA)404

testing framework [52] is the most conservative analysis that allowed us to model variability of405

repeated measurements as within-subject random effects. Before using limma we transformed the406

raw count data by first computing the library size factors using estimateSizeFactors from DESeq2407

package [43] with the argument type ‘‘poscounts", which was specifically developed for sparse408

sequencing data. We used a customized version of limma::voom function, where we substituted409

the log2-counts per million (logCPM) transformation intended for bulk human RNA-seq data, with410

an inverse-hyperbolic-sine (sinh−1(x) = log(x +
√

1 + x2)) transformation shown to be more ap-411

propriate for data which follows a negative binomial distribution (as is the case for 16S rRNA412

gene sequencing) [40, 34, 7, 35]. Functions for differential abundance estimation from limma were413

then used to fit the pre-diet ASV or ASV-cluster abundances. For increased modeling accuracy414

and higher power, the method was applied to all samples from both diets together. Testing was415

performed by evaluating the contrast between weight-loss success categories within each diet sepa-416

rately (using diet-weight loss interaction terms in the model design). An additional fixed-effect term417

corresponding to sample sequencing “lane” assignment was included in the model to account for418

batch effects from different sequencing runs. For each of the two diets we tested both the contrast419

between subjects from the VS compared to US weight-loss group, and also conducted secondary420

analyses modeling the outcome as a continuous variable (percent weight lost at 12-months). Only421
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the taxa found in at least 10% of subjects on the given diet and significant after adjusting for422

multiple hypothesis testing (Benjamini-Hochberg method [4]) at level α = 0.05 were retained.423
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(a) Discovery Cohort

(b) Validation Cohort

Figure 1: Pre-diet microbial community composition not correlated with weight-loss success. Pre-
diet fecal microbiota collected from subjects in the discovery (a) and validation (b) cohorts prior
to a low-carb (left) or low-fat (right) dietary intervention. Each point represents a single fecal
sample and samples corresponding to the same subject are connected forming edges or triangles.
Colors indicate 12-month weight-loss success: very successful (VS), moderately successful (MS),
and unsuccessful (US). The faded background polygons show convex hulls for corresponding success
categories. PCoA was computed with Bray-Curtis distance on inverse-hyperbolic-sine transformed
counts.
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Figure 2: Gut microbiota plasticity over different periods. Pairwise β-diversity is shown between
daily pre-diet samples (BL v. BL), between daily samples taken 10 weeks after initiation of the
dietary intervention (10wk v. 10wk), and between BL and 10-week samples (BL v. 10wk). Bray-
Curtis dissimilarities are shown for low-carb (left) and low-fat (right) diets. Grey points indicate
computed pairwise dissimilarities between samples; colored points correspond to the average dis-
similarity for each subject and are colored by weight-loss category: US – Unsuccessful, < 3% weight
loss; MS – Moderately successful, 3 − 10% weight loss; VS – Very successful, > 10% weight loss.
Results with other β-diversity metrics are shown in Figs. S3,S4
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Figure 3: Gut microbiota plasticity correlated to dietary compliance in a sex- and diet-dependent
manner. Spearman’s rank correlations between dietary compliance and plasticity (measured as
Bray-Curtis dissimiliarity) between daily pre-diet samples (BL v. BL) and between pre-diet and
10-week samples (BL v. 10wk) are shown for low-carb (left) and low-fat (right) diets. Male (purple)
and female (green) subjects show opposite correlations in many cases. Results with other β-diversity
metrics are shown in Fig. S6.
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(a) Discovery Cohort

(b) Validation Cohort

Figure 4: Differences in Prevotella/Bacteroides (P/B) ratio for subjects on a low-carb (left panels)
or low-fat (right panels) diet. Grey points indicate P/B ratio for individual samples; colored points
correspond to the average P/B ratio for each subject. Data from the discovery cohort (a) and the
validation cohort (b) is displayed by subject’s weight-loss success category at 12 months after the
start of the dietary intervention: US – Unsuccessful, < 3% weight loss; MS – Moderately successful,
3−10% weight loss; VS – Very successful, > 10% weight loss. P-values shown for Wilcoxon rank-sum
test comparing US and VS groups.
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Figure 5: Taxa differentially abundant between weight loss success groups. ASV-clusters found
differentially abundant when comparing subjects that were VS compared to US at 12-month weight
loss on the low-carb diet. ASV-clusters were normalized and asinh-transformed for variance stabi-
lization prior to analysis; the normalized, transformed values are shown on the y-axis. ASV-clusters
have a median 96.8% sequence similarity (a taxonomic description can be found in Table 2). No taxa
were found differentially abundant on the low-fat diet. Grey points represent individual samples
and triangles represent the mean value for each subject.

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/580217doi: bioRxiv preprint 

https://doi.org/10.1101/580217
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: Subject characteristics and dietary intake for discovery and validation cohorts.

width=1

Low-carb Low-fat
Discovery Validation Discovery Validation
(n = 32) (n = 31) (n = 34) (n = 25)

Sex, n (%)
Female 22 (68.8) 25 (80.6) 17 (50) 19 (76)
Male 10 (31.2) 6 (19.4) 17 (50) 6 (24)

Age, yr (SD) 43.1 (6) 42.5 (6) 40.5 (6.9) 39.6 (6)
Race/ethnicity, n (%)

White 25 (78.1) 23 (74.2) 25 (73.5) 16 (64)
Hispanic 4 (12.5) 5 (16.1) 7 (20.6) 4 (16)
Asian 3 (9.4) 2 (6.5) 2 (5.9) 3 (12)
Other 0 (0) 1 (3.2) 0 (0) 2 (8)

Baseline weight, kg (SD) 92.9 (16.8) 90 (13.9) 96.1 (12.4) 92.6 (12.7)
Body mass index, kg/m2 (SD) 33.4 (3.7) 32.8 (3.5) 33.2 (3.3) 33.2 (3.5)
Weight loss1, % (SD) 8.4 (7.7) 4.8 (6.2) 6.3 (7.7) 5.4 (7.6)
Weight loss1success category, n (%)

US 9 (28.1) 14 (45.2) 11 (32.4) 10 (40)
MS 10 (31.2) 11 (35.5) 15 (44.1) 7 (28)
VS 13 (40.6) 6 (19.4) 8 (23.5) 8 (32)

Dietary Intake
Fat, % kcal

Baseline 38.9 (6.1) 37.3 (6.4) 36.8 (6.5) 36.1 (5.2)
3 months 57 (9.1) 48.3 (8.7) 21.4 (7.2) 24.9 (7.5)
6 months 53.6 (9.1) 44.9 (7.5) 25.6 (7.6) 27.8 (9.1)
12 months 47.5 (10) 43.2 (8.4) 28.6 (8.2) 31.3 (7.9)

Carbohydrates, % kcal
Baseline 44.6 (7.6) 45.9 (6.6) 46.4 (7) 46.8 (6.5)
3 months 17.6 (11) 27.7 (10.5) 59 (9.1) 54.4 (9.3)
6 months 22.1 (11.7) 31.4 (10.4) 55.6 (8) 52.3 (9.6)
12 months 27.3 (12.5) 35.4 (10.2) 53.3 (8.1) 48.1 (8.5)

Protein, % kcal
Baseline 16.6 (3.4) 16.8 (2.9) 16.8 (3.4) 17.1 (3.4)
3 months 25.4 (6) 24 (6.1) 19.5 (4.6) 20.7 (5.4)
6 months 24.3 (5.2) 23.6 (6.8) 18.7 (4.2) 19.9 (5)
12 months 25.2 (7.1) 21.4 (4.9) 18.1 (3.9) 20.5 (4.5)

Dietary compliance2

Portion of diet from non-restricted foods3, % kcals (SD) 77.4 (10.3) 68.5 (9.1) 74.7 (5.7) 72.3 (7.4)
Reduction in restricted foods4, % kcals (SD) 21.9 (10.5) 14.4 (10.4) 11.4 (7.3) 8.4 (6.1)

1 Measured after 12 months of dietary intervention
2 Averaged over 3-, 6-, and 12-month dietary recall periods
3 Carbohydrate restriction for subjects on low-carb diet; fat restriction for subjects on low-fat diet
4 Decrease from baseline levels
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Table 2: Log-fold changes of ASVs and ASV-clusters found differentially abundant when modeled
against weight-loss success category at 12 months. Values represent log-fold changes between the
US and VS groups. Bold values were significant for the cohort indicated. No clusters or ASVs were
found differentially abundant in either cohort for the low-fat diet. ∗ = p < 0.05, ∗∗ = p < 0.001

width=1
Cohort

ASV level Cluster/Seq Organisms Included No. Seqs Discovery Validation

ASV-clusters

low-carb
Cluster94 Ruminococcaceae UCG-013 sp. & Clostridium III sp. 10 -2.24** 0.35
Cluster266 Enterorhabdus sp. 2 0.74* -0.12
Cluster65 Ruminococcaceae UCG-014 sp. 69 2.45* -1.81

ASVs

low-carb
Seq175 Ruminococcaceae UCG-013 sp. 1 -2.19* -0.31
Seq64 Bacteroides sp. 1 -1.71* 0.08
Seq77 Bifidobacterium sp. 1 -0.59 -2.30*
Seq169 Ruminococcus2 sp. 1 -0.25 -1.78*
Seq90 Faecalibacterium prausnitzii 1 0.48 2.78*
Seq746 Enterorhabdus sp. 1 0.88* -0.15
Seq182 Ruminococcaceae UCG-002 sp. 1 1.30* -0.63
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(a) Discovery Cohort: Low-carb (b) Discovery Cohort: Low-fat

(c) Validation Cohort: Low-carb (d) Validation Cohort: Low-fat

Figure S1: Phylogenetic α-diversity in pre-diet samples. Rarefaction curves for low-carb (left) and
low-fat (right) diet, separated by discovery (top) and validation (bottom) cohorts. Curves were
computed using the methods described in [47]. Inset boxplots report non-significant differences in
α-diversity (at rarefaction level = 11,000 reads) between subjects from the VS and US 12-month
weight loss success categories.
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Figure S2: Beta diversity negatively correlated with alpha diversity. Mean baseline bacterial com-
munity diversity levels are negatively correlated with baseline bacterial plasticity for subjects on
Low-fat diet.
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(a) ASV analysis (b) ASV-cluster analysis

Figure S3: Day-to-day plasticity (β-diversity) between pre-diet fecal samples from subjects in the
discovery cohort, grouped by 12-month weight loss success. Jaccard, unweighted UniFrac, Jensen-
Shannon-Divergence, Bray-Curtis, and weighted UniFrac distances are shown for low-carb diet (left
panels, in blue) and low-fat diet (right panels, in orange). Grey points indicate computed pairwise
dissimilarities between samples; colored (low-carb and low-fat) points indicate the average sample-
to-sample dissimilarity for each subject.US – Unsuccessful, < 3% weight loss; MS – Moderately
successful, 3 − 10% weight loss; VS – Very successful, > 10% weight loss. P-values shown for
Wilcoxon rank-sum test comparing US and VS groups. The analysis was done at the level of
individual ASVs (a) and also ASV-clusters (b).
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(a) ASV analysis (b) ASV-cluster analysis

Figure S4: Microbial community composition shift over ten weeks, and in response to dietary
intervention. β-diversity between pre-diet (baseline) and post-diet samples (taken at 10 weeks after
initiation of the dietary intervention) from each subject was computed using Jaccard, unweighted
UniFrac, Jensen-Shannon-Divergence, Bray-Curtis, and weighted UniFrac distances. Results shown
for discovery cohort subjects on a low-carb (left panels, in blue) or low-fat (right panels, in orange)
diet. Grey points indicate each computed pairwise dissimilarity between samples; colored points
correspond to the average baseline-to-10-week plasticity for each subject. US – Unsuccessful, < 3%
weight loss; MS – Moderately successful, 3-10% weight loss; VS – Very successful, ≥ 10% weight
loss. P-values shown for Wilcoxon rank-sum test comparing US and VS groups. The analysis was
done at the level of individual ASVs (a) and also ASV-clusters (b).
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Figure S5: Microbiome shift in response to dietary intervention. Subject centroids (coordinates
averaged over sample replicates) before (green) and 10 weeks after the start of the intervention
(purple) for low-carb (left) and low-fat (right) diet. Data points are labeled with corresponding
unique subject ID. Vertical panels correspond to weight loss success categories – very successful
(VS), moderately successful (MS) and unsuccessful (US).36
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(a) Pre-diet daily plasticity (b) Plasticity over 10 weeks

Figure S6: Sex- and diet-specific correlation between microbial community composition plastic-
ity and dietary compliance. Plasticity across various β-diversity measures between daily pre-diet
samples (a) and between pre-diet and 10-week samples (b) from each subject compared to dietary
compliance. Results shown for discovery cohort subjects on a low-carb (left panels) or low-fat (right
panels) diet. Male (purple) and female (green) subjects show opposite correlations in many cases.
Spearman’s rank correlation coefficients are shown for each subgroup.
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(a)

(b)

Figure S7: Taxa identified differentially abundant for subjects on low-carb diet. Analyses were con-
ducted with ASV-clusters testing for difference in abundance across a continuous response variable
– percent weight loss (a) and also with individual ASVs and tested for contrast between categorical
weight-loss groups: VS compared to US subjects. Note: Cluster94 contains Seq175, as can be seen
in the similarity of plots. Individual ASVs and ASV-clusters were normalized and asinh-transformed
for variance stabilization prior to analysis; the normalized, transformed values are shown on the
y-axis. Grey points represent individual samples and triangles represent the mean value for each
subject. No taxa were found differentially abundant on the low-fat diet for either analysis.
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