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Abstract: 
 
 Learning and memory are critical functions for all animals, giving individuals the ability to 
respond effectively to changes in their environment. Within populations, individuals vary in 
performance, however the mechanisms underlying this variation in performance are largely unknown. 
To uncover the genetic basis for variation in learning and memory performance, we used the DSPR, 
a multiparent mapping resource in the model system Drosophila melanogaster, consisting of a large 
set of recombinant inbred lines (RILs) that naturally vary in these and other traits. Fruit flies can be 
trained in a “heat box” to learn to remain on one side of a chamber (place learning), and can 
remember this (place memory) over short timescales. Using this paradigm, we measured place 
learning and memory for ~49,000 individual flies from over 700 DSPR RILs. We identified 16 different 
loci across the genome that significantly affect place learning and/or memory performance, with 5 of 
these loci affecting both traits. To identify transcriptomic differences associated with performance, we 
performed RNA-Seq on pooled samples of 7 high performing and 7 low performing RILs for both 
learning and memory and identified hundreds of genes with differences in expression in the two sets. 
Integrating our transcriptomic results with the mapping results allowed us to identify several promising 
candidate genes, advancing our understanding of the genetic basis underlying natural variation in 
learning and memory performance. 
 
Significance:  
 

What genetic factors cause an individual to have high learning ability, and what factors 
determine how well an individual will remember what they have learned? Traditionally, genes involved 
in learning and memory have been discovered via loss of function mutants or other large 
perturbations. However, these studies have not been able to inform how genetic variants currently 
segregating in a population affect learning and memory performance. Our study identifies multiple 
such variants that influence place learning and memory performance in the Drosophila melanogaster 
model system and characterizes the differences in gene expression in low versus high performers. 
These results are a critical first step towards characterizing the genetic differences that determine an 
individual’s learning and memory abilities.    

 
Introduction: 
 

The ability to learn and remember are critically important, allowing individuals to adjust their 
behavior in response to stimuli to cope with changing environments. Learning and memory 
performance vary widely in different contexts across the animal kingdom, with some species having 
evolved higher learning and/or memory abilities depending on the selective pressures they have been 
exposed to (1–5). Behavioral experiments in butterflies (6, 7), chickadees (8, 9), moths (10, 11), 
honey bees (12–14), fruit flies (15, 16), rodents (17–19), and humans (20) have shown collectively 
that there is genetically based variation in these traits and have established the different classes of 
learning and memory within species. This variation provides the raw material for natural selection to 
act on when higher or lower learning and memory performance is selected for in a population. 
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Experimental evolution studies have empirically demonstrated that populations can evolve higher or 
lower learning performance (21–23). These results show that there are natural genetic variants that 
give rise to differences in performance in learning and memory. The identity of the vast majority of 
these variants in nearly all populations, however, remains unknown (for exceptions see: (24, 25). 

Many empirical studies aim to understand the mechanistic basis of different classes of learning 
and memory within the broad context of animal behavior, using both classical and operant learning 
and memory paradigms. Specifically, many classical molecular genetic studies have identified 
individual genes involved in learning, and memory in many different animal models, such as 
Caenorhabditis elegans (C. elegans) (26–28), Mus musculus (29–31) and Drosophila melanogaster 
(D. melanogaster) (32–35). For example, in C. elegans, mutants with a defective nmr-1 encoding an 
N-methyl-D-aspartate (NMDA) receptor subunit fail to form both short-term and long-term memories 
(28). In fruit flies, mutations in the rutabaga (rut) gene (33, 35) and in the dunce (dnc) gene  (32, 36) 
have both been shown to influence multiple classes of learning and memory. These studies, along 
with follow up studies showing the mechanism of action of these genes (37, 38), have provided 
crucial information about which genes are required to function for proper learning and memory.  

Despite this success, it is not clear whether segregating variants within these same genes are 
causing the variation observed in performance among individuals in natural populations. It is possible 
that the genes identified via these approaches are so central to the processes of learning and 
memory that their function is highly conserved, and most of the individual-level variation in learning 
and memory is due to genetic variants in other genes (4). Another reason to expect that the variants 
identified via mutant studies might not correspond to those seen in natural populations is that many of 
these mutants show deleterious pleiotropic effects. For example, severe dnc mutant flies have female 
sterility and partial lethality (38, 39), phenotypes that would be strongly selected against in the wild. 
Thus, identifying the natural genetic variants underlying why some individuals in a population perform 
better or worse than others is critical to our understanding of the mechanistic basis of learning and 
memory.  

Given the complex processes that govern learning and memory, which certainly involve a large 
number of potentially interacting genes, single gene approaches do not necessarily capture what 
happens on a systematic or organismal level (4). Mapping studies in natural populations, such as 
quantitative trait loci (QTL) studies and genome-wide association studies (GWAS), have the potential 
to allow for the identification of multiple genetic variants influencing a complex trait in the real context 
in which the variants occur. However, genetic mapping studies have been challenging to perform for 
learning and memory phenotypes. Assaying learning and memory is often labor-intensive, requiring 
repeated behavioral trials (1), making it difficult to assay the large numbers of individuals typically 
required for high power to detect all but the highest effect QTL (40–42). In human populations, while 
learning, memory, and general cognitive function are known to be heritable (4, 20), they are also 
influenced strongly by a suite of environmental factors, which obviously cannot be systematically 
controlled in human studies. High levels of variation in those environmental factors will negatively 
affect the power to detect a genetic association (40–42). There have been a few successes where a 
causative natural variant for learning or memory has been identified. These include a GWAS in 
humans of short-term working memory that identified a polymorphism in the SCN1A gene, a voltage-
gated sodium channel (25), a study in fruit flies linking the foraging gene, a cGMP-dependent protein 
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Figure 1: Schematic of phenotyping process of 741 RILs (48,940 
individuals). RILs are stored at 18°C, until 1 day of “set up”, then 6 males 
and 10 females are placed into a flask and allowed to mate. Fourteen 
days post-oviposition adult F1 flies were collected into two separate vials. 
These flies were then phenotyped within the heat box. The rectangles 
depict a chamber within the heat box, blue (cool) and red (hot) represent 
24°C and 41°C respectively, which are the temperatures that are 
associated with one half of the chamber. If an individual is on the cool 
associated side of the chamber, then the whole chamber reflects that 
temperature, and the same is true for the hot associated side. After 30 s 
pre-testing, learning is phenotyped for 6 mins., and immediately after the 
same individual is phenotyped for memory for 3 mins. Traces are the 
activity within a chamber of an individual fly. This individual has a higher 
learning score, because it spent less time of the hot associated side, 
whereas the memory score is medium. 

Learning (6 ½ mins.)

Memory (3 mins.)

Same individual is 

assayed for memory 

immediately after

741 DSPR RILs

24°C-associated 41°C-associated 

All RILs 

are stored 

at 18°C

6 males and 10 

females moved to 

25°C two weeks 

before assaying 

Adult females are 

moved to two vials 

with ~40 individuals 

each

The entire chamber reminds cool, 

no matter which side the fly is on

kinase, to associative olfactory learning and memory (24), and a QTL mapping study in mice 
implicating the Hcn1 gene, a hyperpolarization-activated cyclic nucleotide-gated channel, in fear 
conditioning (43). However, by and large, very few QTL for learning and memory have been 
discovered (but see (44–47), and even fewer specific causative variants (aside from the few 
exceptions noted above) have been identified in any system thus far.   

Multiparental populations, consisting of a large number of recombinant inbred lines (RILs) 
generated from multiple inbred founder lines crossed for multiple generations, have the potential to 
allow for high-resolution, highly powered genetic mapping studies. The Drosophila Synthetic 
Population Resource (DSPR) is one such multiparental population, consisting of two sets of ~800 
RILs, each generated from an 8-way, 50-generation cross (41, 48, 49). This system, with a large 
number of RILs and a long period of crossing allows for highly powered QTL mapping to an interval 
that typically includes tens of genes rather than the wide intervals including hundreds of genes that 
are typical of more traditional 2-line QTL studies. In addition, in the D. melanogaster system, a 
specialized piece of equipment, the “heat box”, originally developed by Wustmann et al. (50), allows 
for a high-throughput assay of place learning and memory(33, 51). Place learning is a type of operant 
learning that occurs when a fly learns to associate a specific place with a consequence. In the heat 
box, up to 16 individuals can be assayed concurrently for place learning and memory in less than 10 
minutes, making it feasible to assay the large number of individuals necessary for QTL mapping for 
these key phenotypes.  
 In this study, we use the DSPR to genetically dissect place learning and memory. After 
assaying 48,940 individual flies from 741 RILs from the DSPR, we mapped 16 QTL, with 5 shared 
QTL between learning and memory. In addition, we performed RNA-Seq to measure differential gene 
expression of high versus low performing cohorts of RILs and used these data to narrow the set of 
candidate genes within our QTL intervals. The loci we identify have not been previously associated 
with place learning or memory, 
representing a step forward in 
understanding the genetic basis of these 
traits.  
 
Results:  
 
Phenotypic Patterns  – We measured 
place learning and memory in 741 RILs 
from the DSPR (Figure 1) and show 
these lines vary widely in both these 
traits (Figure 2). For each line, we 
measured a minimum of 30 females, with 
an average of 53 per line. The lines 
range in average learning performance 
index (PI) from 0.215 to 0.933 from the 
lowest performing RIL to the highest, 
while average memory PIs  range from -
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Figure 2: Phenotypic patterns in place 
learning and place memory among the DSPR 
RILs. a) Performance index (PI) scores for 
learning for each RIL in the DSPR. The RILs 
are sorted from lowest average learning to 
highest average learning. The PIs for each 
individual measured for a given RIL are 
displayed (black points) and the mean value 
±1 SE for each RIL is plotted in red. RILs 
selected for RNA-Seq in the low performing 
cohort are labeled with cyan triangles, and the 
high performing cohort is labeled with purple 
triangles. b) PI scores for memory for each RIL 
in the DSPR plotted in the same way as 
learning in (a). c) The relationship between 
learning and memory. The mean values for 
learning and memory for each RIL are plotted 
with black points. Horizontal red bars show the 
learning mean ±1 SE and the vertical blue bar 
shows the memory mean ±1 SE. 

0.016 to 0.874 (Figure 2). The estimated broad-sense heritabilities are moderate (Learning: H2 = 
0.20, 95% CI = 0.18–0.22 ; Memory: H2 = 0.10, 95% CI = 0.09–0.12), and the effect of RIL (i.e., 
genotype) is highly significant (Learning 𝜒"

# = 6747, p < 0.0001; Memory 𝜒"
# = 2585, p < 0.0001), 

demonstrating a genetic basis for these traits. Learning 
and memory are genetically correlated (rg = 0.53, 95% CI = 
0.47–0.59; Figure 2), indicating that some of the same loci 
influence both learning and memory. This relationship 
would be expected given memory formation cannot occur 
without learning, though high learning performance does 
not necessarily guarantee high memory performance. 
Indeed, while most RILs with high learning PIs also have 
high memory PIs, some RILs show high learning but poor 
memory, indicating some independence between these 
processes as well.   
Genomic Scans (QTL) – To identify loci affecting place 
learning and memory, we performed a genome scan 
following established methods for mapping QTL in the 
DSPR (41, 48). To establish both a 5% family-wise 
significance threshold (FWER) and a 5% false-discovery 
rate threshold (FDR), we performed permutations (see 
Methods for details). We identified 16 QTL (Q1 - Q16) at a 
5% FDR: 9 are unique to the learning phenotype, 2 are 
unique to the memory phenotype, and 5 were mapped for 
both phenotypes (Figure 3; Table 1). Of these, 10 QTL are 
also significant at the FWER threshold (Table 1). For each 
QTL, we obtained a 95% Bayesian Credible Interval (BCI) 
(40, 52) to define the region in which the causative variants 
are expected. With the exception of Q12 for learning, 
which spans the centromere, these intervals are narrow, 
averaging 643 kb in physical distance and 2 cM in genetic 
distance. All of the QTL we identified are of moderate 
effect, with the percentage of phenotypic variance 
explained by a locus averaging 4% and ranging from 3% to 
7% (Table 1). In the DSPR, we are able to assign the likely 
haplotype identity to every genomic segment in every RIL 
(41). Therefore, for our mapped QTL, we can estimate the 
effect of harboring each of the 8 founder haplotypes at the 
QTL location on our phenotypes of interest. We show 
these estimates, along with the haplotype assignments for 
each individual RIL measurement for all shared QTL in 
Figure 4. As has been found previously in the DSPR (53, 
54) and in other mapping panels (55, 56), these effect 
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Figure 4: Haplotype means at each shared QTL. The average learning (power 
transformed) and memory PI are plotted for each RIL. Each RIL is colored by its 
most likely haplotype identity at the location of the QTL. The large black outlined 
points are the estimated average effect of each haplotype and the horizontal and 
vertical bars show ±1 SE of this estimated effect for learning and memory 
respectively. The individual RILs are plotted with semi-transparent points. 
 

estimates show evidence for multiple causative variants resulting in an allelic series, not a single 
causative biallelic SNP that would show haplotype effects in defined “high” and “low” groups. The 
similar patterns in our effect estimates for learning and memory for a single shared QTL also support 
the hypothesis that these are pleiotropic loci, rather than separate linked QTL, which would be 
expected to show contrasting patterns in the two phenotypes. 

 
Gene Expression – We performed RNA-Seq on pooled sets of female heads to identify differentially 
expressed genes in cohorts of high or low performing RILs for place learning and memory. For each, 
we selected 7 high performing and 7 low performing RILs and pooled a total of 35 female heads in a 
single sample, with 5 heads from each RIL contributing to each sample (Figure 2). We then 
performed RNA-Seq on 5 biological replicates of these pooled samples (see Methods for details). 
This design allowed us to account for individual- and RIL-level variability while keeping the number of 
RNA-Seq samples reasonable. 
The resulting dataset provides a 
genome-wide expression profile 
of high and low performers for 
place learning and memory 
(Figure 5). For place learning, 
2076 genes were differentially 
expressed between the high 
performing and low performing 
cohorts. Of these, 947 genes 
were upregulated and 1129 were 
downregulated in the high 
learning cohort relative to the low 
learning cohort. For place 
memory, 590 genes were 
differentially expressed between 

 
Figure 3: Genome scan of learning and memory phenotypes. Different colors denote the different 
phenotypes of learning and memory. Dotted horizontal line denotes the 5% family-wise error rate  
threshold and the solid horizontal line denotes the 5% false discovery rate. QTL peaks reaching 
either threshold are labeled with the QTL id. Shaded blue boxes denote chromosome arms. 
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Figure 5: RNA-Seq expression levels between high and low cohorts of 
learning and memory in the DSPR. a, b) MA plot of learning cohorts (a) 
and memory cohorts (b) showing the log2FC versus the normalized 
average expression for each gene. Colors indicate the adjusted p-value 
for a given gene. c, d) Volcano plots of the comparison between high 
and low performing cohorts for learning (c) and memory (d). Log2FC are 
shrinkage adjusted and represent the high performing cohort relative to 
the low performing cohort. Colors indicate the overall average 
expression level. The points corresponding to a set of genes that have 
been previously associated with place learning and memory are 
labeled.  
 

the high and low performing cohorts, with 347 upregulated genes and 243 downregulated genes in 
the high memory cohort relative to the low memory cohort. There are 220 genes that are significantly 
differentially expressed in both the learning dataset and the memory dataset, the majority of which (n 
= 169) trend in the same direction for both phenotypes. There are several genes, including dunce, 
amnesiac, white, radish, rutabaga, arouser, and tribbles, have been previously implicated as playing 
a role specifically in place learning and memory (57), which are labeled on Figure 5. Of these, only 
radish is significantly differentially expressed between high and low learning cohorts, with higher 
expression in the low learning cohort (log2FC: -0.4, padj = 2.4 x 10-5). Comparing memory cohorts, 
only dunce and white were significantly differentially expressed, and both were more highly 
expressed in the high memory cohort (dunce: log2FC: 0.38, padj = 0.005; white: log2FC= 0.6, padj = 1.6 
x 10-5).  
Identification of candidate genes – 
While our QTL credible intervals are fairly 
narrow, they do not provide the single 
gene resolution that would be necessary 
to immediately identify a potential 
causative gene. We used our RNA-Seq 
data to identify potential regulatory 
candidate genes within our QTL BCI. For 
QTL shared between learning and 
memory, the causal gene should lie within 
the overlapping region of the learning and 
memory BCIs, assuming these QTL truly 
represent a shared causal gene. This 
assumption allowed us to further narrow 
the search intervals for these shared 
QTL. We then determined which 
significantly differentially expressed 
genes fall within the interval of interest for 
the 16 identified QTL. We used two 
additional sources to inform the 
identification of potential candidate 
genes. First, the DSPR is a widely used 
resource, providing datasets that have 
the potential to integrate with this study. A previous study by King et al. (53) performed genome-wide 
eQTL mapping of female heads for ~600 RIL crosses. These RILs were crosses between the 
population A RILs and the population B RILs, while our assays only used the population A RILs. 
Nevertheless, this dataset allows us to identify which genes within an interval have been previously 
identified as having a significant cis eQTL in the DSPR. Second, we examined the FlyBase 
(FB2018_06) controlled vocabulary terms associated with the genes in our QTL intervals to identify 
any genes with a potential role in learning or memory (58). Each QTL BCI is shown in Figure 6, with 
the significantly differentially expressed genes within the interval labeled, except for Q12, which 
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spans the centromere and thus has an interval too wide to display effectively. Some QTL are fairly 
wide, such as Q1, Q2, Q6, Q7, and Q13, and thus include a moderate number of differentially 
expressed genes with several as possible candidates. In one case, Q12, the interval of interest 
includes no significantly differentially expressed genes. For all of our other QTL, we were able to 
identify potential candidate genes.  

Among the QTL mapped only for learning, Q3, Q8, Q10, Q14, and Q16 are narrow enough to 
suggest a small number of possible candidate genes. Only six genes that fall within the Q3 interval 
(Figure 6c) are differentially expressed, and just one has a cis eQTL in the King et al. (53) dataset: 
CG7058. The log2(Fold Change) (hereafter log2FC) shows CG7058 is expressed at higher levels in 
the low learning cohort relative to the high learning cohort (log2FC= -0.7, padj = 9.3 x 10-5). Little is 
known about the function of this gene beyond it is known to be expressed in the nervous system (59). 
Of the eight genes that fall within the interval for Q8 (Figure 6h), four have a cis eQTL in the King et 

 
Figure 6: Individual QTL BCI regions showing possible candidate genes. Each panel from a-o shows one QTL BCI. When a peak 
is shared between learning and memory, both BCIs are shown. The dotted vertical lines denote the BCI limits on either side. Each 
point shows the location and the log2FC for a gene that occurs within the BCI. Significantly differentially expressed genes are 
plotted with solid points and non-significant genes are plotted with semi-transparent points. A given gene is labeled if it falls within 
the interval of interest (within the BCI for a single trait or within the region of overlap of BCIs if it is shared) and is significantly 
differentially expressed. Circles show genes that do not have evidence for a cis eQTL and triangles are genes that do have a 
significant cis eQTL. olors denote the different phenotypes with red corresponding to learning and blue to memory.  
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al. (53) dataset. Two of these genes have been shown previously to be involved in the nervous 
system. Liprin-γ is expressed at higher levels in the low learning cohort relative to the high learning 
cohort (log2FC= -0.27, padj = 0.016) and is one of three Liprin genes in the D. melanogaster genome 
that are involved in synapse formation. Astigarraga et al. (60) used null mutants of all three of the 
Liprin genes to show that Liprin-α and Liprin-β both promote synapse formation, and Liprin-γ acts 
antagonistically to both of these. In addition, windpipe (wdp) was more highly expressed in the high 
learning cohort relative to the low learning cohort (log2FC= 0.37, padj = 0.001). This gene has been 
implicated in synaptic target recognition in the neuromuscular junction via a screen in which wdp was 
overexpressed in the target tissue in larvae and the number of mistargeting events was quantified 
(61). In the Q10 (Figure 6j) interval, of the six differentially expressed genes, three have previous 
evidence for a  cis eQTL (53). Multiplexin (Mp) is more highly expressed in the low learning cohort 
relative to the high learning cohort (log2FC= -0.38, padj = 0.029), encodes a Collagen XV/XVIII type 
protein, and has been shown to be critical for presynaptic homeostasis in the neuromuscular junction 
(62). Within the Q14 (Figure 6m) interval, three significantly expressed genes have previous evidence 
for a cis eQTL (53). One of these genes, Octopamine β1 receptor (Octβ1R), is one of the octopamine 
receptors in flies and is more highly expressed in the low learning cohort relative to the high learning 
cohort (log2FC= -0.41, padj = 0.008). In insects, octopamine is a major neurotransmitter that has been 
shown to play a critical role in learning, particularly reward-based learning (63, 64). A previous study 
by Sitaraman et al. (65) found no difference in place learning in flies with greatly reduced 
octopaminergic signaling, suggesting octopamine signaling is not necessary for place learning. 
However, Koon and Budnik (66) also showed that the Octopamine β1 receptor (Octβ1R) inhibits 
synaptic growth, acting in opposition to Octopamine β2 receptor (Octβ2R), which promotes synaptic 
growth. The Octβ1R inhibitory effect occurs via inhibition of the cAMP pathway, which is the same 
pathway affected by the well-known learning and memory mutants dnc and rut (66). Only four genes 
are significantly differentially expressed within the Q16 interval (Figue 6o), and two of these have a 
known cis eQTL (53). One of these, CG34353, has been classified with terms such as axon guidance 
and synapse organization via the PANTHER classification system (67), though these functions have 
not been confirmed in the D. melanogaster system. This gene is more highly expressed in the low 
learning cohort relative to the high learning cohort (log2FC= -0.46, padj = 0.01).  

We mapped just two QTL specifically for our memory phenotype, and only Q15 (Figure 6n) 
was sufficiently narrow to identify possible candidate genes. There were just four significantly 
differentially expressed genes within this interval, none of which have a cis eQTL in the King et al. 
(53) dataset. All four of these genes are more highly expressed in the high memory cohort relative to 
the low memory cohort. The gene with the largest difference is the well-known hedgehog gene (hh; 
log2FC= 0.90, padj = 6.4 x 10-5), which has multiple, critical roles in development (58).  

For the QTL mapped for both learning and memory, our ability to narrow the interval of interest 
to the region of BCI overlap between both traits leads to a substantially smaller list of possible 
candidates. Within the interval of interest for Q4 (Figure 6d), both Mothers against dpp (Mad) and α/β 
hydrolase 2 (Hydr2) have a cis eQTL in the King et al. (53) dataset. In addition, both of these genes 
are significantly differentially expressed between the high and low learning cohorts, with higher 
expression in the low learning cohort relative to the high learning cohort (Mad: log2FC: -0.37, padj =  
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ID Chromosome Traits(s) Position 
(Mbp) 

Lower 
(Mbp) 

Upper 
(Mbp) 

-log10(P-value) PVE (%) Hypothesized 
candidate 

genesb   
Q1 X Learning  7.02 5.79   7.69 3.25 3.43 - 
Q2 X Learning  15.75 15.24  16.74 3.20 3.40 - 
Q3 X Learning  18.81 18.72  19.06 4.71a 4.48 CG7058 
Q4 2L Shared  L: 3.19 3.06   3.22 5.58a 5.07 Mad 

M: 3.16   3.04 3.25 3.66 3.73 
Q5 2L Shared  L: 7.59 6.75  7.77 4.19 4.12 - 

M:7.48 7.47 7.61 5.25a 4.85 
Q6 2R Memory  10.16 9.70  10.35 6.63a 5.78 - 
Q7 2R Learning  18.68 18.51  19.35 4.28 4.18 - 
Q8 2R Learning  22.34 22.28  22.46 5.12a 4.76 Liprin-γ; wdp 
Q9 3L Shared  L: 1.68  1.20 2.71 4.13 4.07 mwh 

M: 1.30 0.82 1.36 3.56 3.67 
Q10 3L Learning  6.92 6.59   7.13 5.31a 4.89 Mp 
Q11 3L Shared  L: 8.57 8.50   8.58 5.89a 5.28 ergic53 

M: 8.61 8.31   8.90 3.52 3.63 
Q12 3L Shared  L: 15.64 3L:15.41   3R:4.52 3.44 3.58 - 

M: 15.66 15.64  15.67 4.71a 4.48 
Q13 3R Learning  19.60 19.46  21.32 4.17 4.10 - 
Q14 3R Learning  22.45 22.43  22.68 7.78a 6.53 Octβ1R 
Q15 3R Memory  23.06 23.02  23.15 4.37 4.24 - 
Q16 3R Learning  27.55 27.48  27.86 6.89a 5.95 CG34353 
aThese QTL significant at the more stringent 5% FWER. All QTL in the table are significant at a 5% FDR 
bHypothesized candidate genes under the QTL peak. A gene is only listed if there are multiple sources of evidence for the gene. See 
text for details 
 
0.015; Hydr2: log2FC= -0.38, padj = 0.015). While these genes are not significantly differentially 
expressed between the memory cohorts, the trend is in the same direction in the learning cohorts for 
both genes (Mad: log2FC: -0.13, padj = 0.67; Hydr2: log2FC= -0.19, padj = 0.45). Mad is a transcription 
factor that regulates the expression of BMP response target genes (68) and has also been shown to 
play a role in inhibiting synapse formation, as one part of two antagonistic signaling pathways that act 
together to produce the correct number of synapses (69). In the Q5 interval of interest (Figure 6e), 
just two genes are significantly differentially expressed, Odorant-binding protein 28a (Obp28a) and 
Cyp4d21, neither of which have evidence for a cis eQTL in the King et al. (53) dataset. Both of these 
are significant only between the learning cohorts, with higher expression in the high learning cohort 
(Obp28a: log2FC: 0.96, padj = 1.9 x 10-4; Cyp4d21: log2FC= 0.52, padj = 0.01). Neither of these genes 
have any previous evidence implicating their involvement in place learning or memory. There are six 
significantly differentially expressed genes within the Q9 interval of interest (Figure 6i), all of which 
have a cis eQTL in the King et al. (53) dataset. Of these, mwh is the only gene that is significantly 
differentially expressed between both the learning cohorts and the memory cohorts (Learning: 
log2FC: 0.37, padj = 0.004; Memory: log2FC= 0.36, padj = 0.01). In both cases, mwh is expressed more 
highly in the high performing cohorts. This gene is primarily involved in the formation of hairs (58). 
Within the Q11 interval (Figure 6k), there are two significantly differentially expressed genes, 
Glutathione S transferase O1 (GstO1) and ergic53, both of which have a cis eQTL in the King et al. 
(53) dataset. GstO1 is more highly expressed in the high learning cohort but is more lowly expressed 
in the high memory cohort, though the difference is only significant for learning (Learning: log2FC: 
0.47, padj = 0.03; Memory: log2FC= -0.21, padj = 0.56). The gene ergic53 is more highly expressed in 
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the low learning and low memory cohorts relative to the high performing cohorts (Learning: log2FC: -
0.41, padj = 0.03; Memory: log2FC= -0.37, padj = 0.11). An RNAi screen specific to neurons identified 
ergic53 as a candidate gene involved in the perception of very high temperatures (70). Given the 
punishment in our learning paradigm is high temperature, this is a potentially exciting candidate gene; 
however, it is counterintuitive that the low learning cohort shows higher ergic53 expression compared 
to the high learning cohort.  
 
Discussion: 
 
 We successfully used a large multiparent population to identify multiple loci affecting place 
learning and memory in the fruit fly model system. We integrated an RNA-Seq dataset that provided a 
genome-wide characterization of differential expression between high and low performing cohorts to 
identify potential candidate genes at mapped loci. All of the identified loci represent novel loci not 
previously associated with place learning or memory.  

Our study joins a small set of previous studies that have identified naturally occurring genetic 
variants influencing learning and/or memory (24, 25, 43–47), none of which examined place learning 
and memory. Selection and quantitative genetic approaches have long suggested that natural 
variants in the genome support variation in learning and memory. But specifically how genetic 
variation gives rise to better or worse performance has been challenging. Selection experiments in 
systems such as blow flies (21) and fruit flies (22, 23) have shown that natural genetic variants can be 
combined to yield better performance in learning tasks. However, only rarely have QTL for learning 
and memory been successfully mapped (44–47), as we have done here, and even more rarely have 
the specific genetic variants within a gene influencing learning and/or memory been identified (but 
see (24, 25, 43). As we build a larger collection of QTL that influence learning and memory in different 
systems, ideally validating the specific variants involved, we will gain a much greater understanding of 
the genetic mechanisms governing these processes.   
 Some of the major advantages of using a stable multiparent mapping panel such as the DSPR 
include the ability to measure multiple phenotypes on the same set of lines and the availability of 
additional datasets from other studies that can be integrated to address major questions. With these 
strengths we achieve a comprehensive picture of the genetic basis of both place learning and place 
memory. By measuring both phenotypes on the same set of lines, we showed that both traits are 
genetically correlated and identify specific loci that influence both traits. A constant challenge for QTL 
studies following mapping is determining which genes within the mapped interval are the most likely 
candidate genes. In traditional two-way QTL mapping, these intervals are typically very wide and 
usually include hundreds of genes (71). The multiple generations of crossing in the DSPR lead to 
smaller haplotype segment sizes and thus higher mapping resolution (41) however, single gene 
resolution is still not possible, requiring strategies for identification of likely candidate genes. Mapping 
the same QTL for multiple traits allowed us to focus on an even narrower interval of interest. This 
approach also allowed us to significantly narrow the interval of interest by considering only the area of 
overlap between the two BCI’s. By bringing in additional phenotyping, in the form of RNA-Seq of high 
performing and low performing cohorts, we could focus on genes that were significantly differentially 
expressed between these cohorts. Changes in gene expression in identified shared QTL in the same 
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direction lent more support for a given gene. Finally, a particularly useful feature of the DSPR is the 
constantly increasing database of previous studies using this same set of lines (http://FlyRILs.org). 
We specifically used a large, genome-wide eQTL dataset (53) to identify which genes within our 
intervals of interest had previously been shown to harbor a cis eQTL. This is a powerful approach to 
identify genes that are affecting learning and memory via changes in gene expression. Other studies 
using multiparent populations have used a similar approach of data integration to more effectively 
identify candidate genes for traits such as resistance to toxins in fruit flies (54, 72), grain yield and 
flowering time in maize (73) and body weight in mice (74).  
 While we successfully identified potential candidate genes for many of our QTL, our approach 
does rely on several important assumptions. First, we focused on identifying candidate genes that are 
affecting learning and memory via regulatory variants, with a change in gene expression leading to a 
phenotypic change. However, it is also possible some of the genes underlying our mapped QTL are 
coding variants that do not lead to differences in the expression of the candidate gene. Our method of 
identifying candidate genes would miss such genes. Some of the few previously identified natural 
variants that have been found to influence learning and/or memory in other systems do show 
differences in gene expression (24, 25), and it has been hypothesized that many of the variants 
underlying QTL may be regulatory (75, 76). Second, we did not expose the lines we used for RNA-
Seq to the heat box prior to sample collection. The training and memory test in the heat box happens 
over a short timescale, with the entire assay lasting just under 10 minutes, and thus we considered 
the differences in the baseline gene expression levels between cohorts to be a more likely predictor 
of the RILs’ performance on this test. Third, we performed RNA-Seq on pooled samples of female 
heads, which is an efficient way to average over a substantial amount of inter-individual and inter-RIL 
variability to pull out the set of genes consistently differentially expressed between high and low 
performers. However, it is also possible that this approach misses more subtle, but potentially 
important variation. For example, if differences in learning and memory are dependent on differences 
in gene expression in a specific set of cells, we could miss this effect using our approach. Future 
studies employing higher resolution expression analysis, such as the single cell approaches that are 
currently being used to characterize expression patterns across the fly brain (77), have the potential 
to provide this fine scale data. Finally, we note that we do not yet have additional functional 
information confirming that the genes we identify as candidate genes are causative, and it is certainly 
possible that the true causative gene for any QTL is one we have not identified here. Future follow up 
studies using approaches such as quantitative complementation (78, 79) or targeted studies of gene 
expression of potential candidate genes in the DSPR RILs along with learning and memory 
measurements will allow us to begin to determine exactly which of the genes in our intervals are 
causative.  

Despite these caveats, our study represents a critical first step towards a more holistic 
characterization of the genetics of learning and memory in an important model system. The majority 
of previous investigations of the genetic basis of learning and memory have focused on single gene 
approaches. Several mutants have been identified that specifically affect place learning and/or 
memory (57). However, despite the success of these studies, a disconnect remains between the 
genes identified via single gene approaches and the identity of the genetic variants leading to 
individual-level variation in learning and memory in natural populations. In this study, none of the 
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previously identified genes shown to specifically influence place learning and memory via mutant 
studies (e.g., dunce, amnesiac, white, radish, rutabaga, arouser, and tribbles) are within our QTL 
intervals. In addition, very few of these previously identified genes were significantly differentially 
expressed between high and low performing cohorts (see Results). This result is not wholly 
unexpected, given that learning and memory are expected to be highly complex, polygenic traits, and 
the mutations identified in single gene approaches are of large effect, are often quite deleterious, and 
would presumably be selected against in any natural population (4, 39). A similar disconnect between 
candidate gene approaches and the identity of natural causative variants has been found for other 
traits such as lifespan (80–82). Our study has instead taken a genome-wide approach, identifying loci 
involved in learning and memory without making major perturbations to the system, such as null 
mutations, blocking neurotransmitters, or eliminating major cell types. With this approach we have 
localized multiple QTL that influence whether a genotype learns and remembers well or poorly. 
Several of these QTL are likely pleiotropic loci, influencing both learning and memory. Others only 
map to a single phenotype and are potential loci contributing to some independence in these two 
processes. We also characterize genome-wide expression differences between high and low 
performing cohorts for these two phenotypes, providing a valuable profile of how high vs. low learning 
and high vs. low memory genotypes differ at the transcriptome level. Several other studies 
investigating the role of gene expression in learning have taken a before versus after approach, 
studying expression changes following training to identify which genes alter expression during and 
following learning (83–85). Our dataset instead provides a high performing versus low performing 
approach, identifying a set of hundreds of genes, whose regulatory differences potentially influence 
whether an individual will learn and remember well or poorly.   

There is a growing appreciation for the complexity of learning and memory and the need to 
study these traits in realistic settings (4, 86). Recently there has been a shift from investigating single 
genes to identifying the sets of neurons and circuits involved in learning and memory  (51, 63, 87, 
88). In addition, mapping studies in humans are beginning to uncover the natural genetic variants 
influencing learning and memory (25, 89). Although it is still early, the challenges associated with 
studying human learning and memory suggest that a complete picture of how a genome can support 
fundamental learning and memory mechanisms remains in the future. Examination of these 
processes in animal models like fruit flies, with systems genetic resources such as the DSPR, provide 
a chance to identify mechanisms comprehensively through careful behavioral measures, the 
integration of intermediate phenotypic data, and advanced quantitative genetics approaches.  
 
Methods: 
 
Mapping population – We used a multi-parental population of D. melanogaster, the DSPR (41, 48, 
49) (http://FlyRILs.org). The DSPR consists of two sets of approximately 800 RILs (genotype), each 
created via an 8-way advanced intercross design. To create these RILs, eight inbred founder lines 
were crossed and allowed to randomly mate for 50 generations followed by 25 generations of 
inbreeding. This creates a set of recombinant inbred lines whose genomes are mosaics of the eight 
original founder lines. The founder lines have been fully re-sequenced, and the RILs have been 
genotyped at over 10,000 SNPs. King et al. (41) developed a hidden Markov model that infers the 
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likely founder ancestry at all genomic locations for all RILs, providing full genome information for all 
RILs. King et al. (41, 48) give the complete details of the formation of the DSPR and associated 
resources. In this experiment, we used nearly all of the lines in one of the two sets of RILs, the 
population A RILs, which consisted of 741 RILs. 
 
Fly husbandry – All stock flies were raised on the standard cornmeal-yeast diet, and kept at 18° C, 
with 60% relative humidity, in wide vials (Fisher Scientific, Cat. No.: AS-513). Two weeks before the 
behavioral assays, about 6 males and 10 female flies were flipped onto a new flask (Fisher Scientific, 
Cat. No.:AS-355) of food and allowed to mate at 25°C  and lay eggs. Seven days post-oviposition, all 
the adults were removed from the flask to ensure that only the F1 generation remained in the flask. 
Fourteen days post-oviposition, adult flies were anesthetized on ice, and we collected 60-80 female 
flies for the behavioral assay. These female flies were placed onto two separate new food vials in 
groups of 30-40 individuals per vial. The flies were then allowed to recover for at least 24 hrs before 
the assay. Flies included in the assay ranged in age from In. For each RIL we phenotyped a minimum 
of 40 individuals, with an average of 66, and a range of 40-117. A total of 10-15 RILs were set-up and 
phenotyped in any given week.  
 
Phenotyping – Through a behavioral assay known as place learning, we are able to train flies with a 
highly sensitive apparatus, the “heat box” (50, 90, 91). Single flies are placed in individual chambers 
that are lined top and bottom with Peltier elements, which allow for fast temperature changes within a 
chamber. The cooling (24°C), and warming (41°C) of the chambers – which takes about 4 seconds to 
change from one temperature to the other – are entirely controlled by the position of the fly. If the fly 
is positioned on the cool-associated side (24°C), then the entire chamber reflects that temperature, 
the same is true for the hot-associated side (41°C). There is an infrared light within each chamber 
that tracks the position of the flies during the assay. Because as 41°C is a highly aversive stimulus, a 
typical fly will learn to remain on the cool-associated side of the chamber. In addition, most flies will 
remember to remain on the cool-associated side of the chamber once the punishment is removed 
(i.e., the chamber no longer heats when the fly enters the hot-associated side).  

Using the above paradigm, we assayed learning and memory in a high throughput way. When 
all chambers are functioning, a total of 16 flies can be tested within the heat box concurrently, with 
both learning and memory assays performed consecutively on a single individual fly. We define 
learning as the increasing avoidance of the hot-associated side, and memory as the persistent 
avoidance of the hot-associated side, even if the aversive stimulus no longer exists (1–5). To quantify 
learning and memory, flies are given a total of 9.5 mins within the chamber: 30 secs for pre-testing, 6 
mins for learning, and 3 mins memory testing (Ostrowski et al., 2015). During these testing periods, 
performance indices (PIs) were calculated with a specialized software (Heat Calc 2.14, Sitaramen et 
al., 2008 and LaFerriere et al., 2008), which reflect the relative position preference of an individual fly. 
We calculated PIs for both phenotypes, using the amount of time an individual spends on one side of 
the chamber divided by the total amount of time of the assay (Figure 1): 

𝑃𝐼 = 	
(𝑡𝑖𝑚𝑒	𝑠𝑝𝑒𝑛𝑡	𝑜𝑛	𝑐𝑜𝑜𝑙	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑	𝑠𝑖𝑑𝑒	 − 	𝑡𝑖𝑚𝑒	𝑠𝑝𝑒𝑛𝑡	𝑜𝑛	ℎ𝑜𝑡	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑	𝑠𝑖𝑑𝑒)

𝑡𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑎𝑦	𝑡𝑖𝑚𝑒	  
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The maximum PI is 1, which corresponds to a fly that has perfect avoidance of the hot-associated 
side.  A PI of zero indicates preference for neither side, and a PI of -1 indicates a fly that remains on 
the hot-associated side for the entire assay.  

Several quality control filters allowed us to remove any individual assays with problems and 
ensure the validity of all measurements. These analyses and all following were performed in R (92). 
First, we eliminated any individuals that did not cross the midline of the chamber at least once, to 
ensure all individuals experienced the aversive stimulus. Second, the temperature of each chamber is 
tracked over the course of the assay, and we used these data to identify problematic chambers (i.e., 
any chamber that was not warming or cooling to the correct temperature). Most often, these were 
chambers that were not reaching the target temperature of 41°C. We flagged any chamber as 
problematic if the average difference between the actual temperature within the chamber and the 
target temperature exceeded 5°C during the assay. Finally, we eliminated any individual that showed 
a long period of inactivity at the end of the assay to remove any individuals that were potentially 
immobilized for any reason, which would skew their learning or memory PI.  
 
Heritabilities and QTL mapping – We estimated the broad sense heritability of learning and 
memory and the genetic correlation between these phenotypes by estimating the genetic and 
phenotypic variance and covariance components from a linear mixed model using the lme and 
VarCorr functions in the nlme package (93), followed by a jackknife, which allowed us to obtain 
standard errors of our estimate (94, 95). Prior to fitting this model, both learning and memory were 
quantile normalized to ensure normality.  This transformation was particularly important for the 
individual-level data because with the PIs bounded by -1 and 1, the data are highly non-normal. The 
jackknife removes each observation once, the model is then fit and the quantitative genetic parameter 
(e.g., heritability or the genetic correlation) is estimated, and a pseudovalue is calculated. Thus, for 
our dataset of 741 RILs, each RIL is deleted, one at a time, to produce 741 pseudovalues. Because 
the lme function uses restricted maximum likelihood, it is possible for the model to not converge. This 
occurred for 28 cases for the heritability of learning, 50 cases for the heritability of memory, and 77 
cases for the genetic correlation, thus, these pseudovalues were not included in the calculation of our 
estimates. Our estimate did not differ substantially from the estimate obtained from fitting the mixed 
model alone without using the jackknife. We also performed a model comparison using a likelihood 
ratio test to determine the significance of RIL (i.e., genotype). We compared the model fitting only the 
intercept to the model including RIL, fitting both via maximum likelihood such that model comparisons 
would be valid.  

For each of the 741 RILs we measured, we took the average PI for learning and memory from 
each RIL, and applied Haley-Knott regression (Haley and Knott, 1992). This statistical approach 
regresses each phenotype on the eight founder haplotype probabilities (40, 41) by fitting the following 
model: 

𝑦9 = ∑ 𝑝9;𝑏9; + 𝑒9>
;?" , 

where yi is the phenotype (i.e., learning or memory) of the ith RIL, pij is the probability that the ith RIL 
has the jth haplotype at the locus, bij is the vector of effects for the jth haplotype, and ei is the vector 
of residuals. We fit this model at ~10,000 regularly spaced positions across the genome. Prior to 
performing this genome scan we transformed the learning phenotypic data, using a power 
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transformation, raising our average learning values to the third power, which improved the normality 
of the data (Figure S1). To identify statistically significant QTL, we performed a 1000 permutations 
(96) of the dataset and performed a genome scan on each permuted dataset as above. The same 
individuals were assayed for learning, memory, and thermal tolerance. We do not report the results of 
thermal tolerance here; however, because all three phenotypes are part of the same experiment, we 
permuted these three phenotypes together and performed genome scans at once. We then 
determined the number of false positive QTL at different significance thresholds. We identified 
individual, distinct QTL by removing any QTL that were within 2 cM of a more significant QTL. We 
calculated the empirical false discovery rate (FDR, expected false positives/total positives) for each 
threshold and determined the threshold corresponding to a 5% FDR. We also calculated the 
threshold corresponding to a 5% family-wise error rate (FWER, the probability of one or more false 
positives experiment wide) by determining the lowest p-value for each set of genome scans from 
each permutation and calculated the 95% quantile of the resulting set of p-values (96). For each 
peak, we calculated the estimated effects of each haplotype at each QTL, the percent variance 
explained by the QTL (PVE), and the Bayesian Credible interval (BCI), following the methods 
described previously for the DSPR (41). We considered QTL as separate QTL if their BCIs did not 
overlap. One memory QTL, Q15 is near a wider learning QTL, Q14, and thus it is possible Q15 is a 
shared, pleiotropic QTL. However, within learning, the peak at Q14 and a smaller peak near Q15 
cannot be distinguished as their BCIs overlap. Additionally, while Q14 and Q15 are near one another, 
their BCIs do not overlap. Thus, we decided to be conservative with respect to concluding Q15 was a 
shared QTL and consider it a QTL for memory only.  

Rna-sequencing and Analysis – We selected 14 RILs from the high (n = 7) and low (n = 7) 5% for 
learning and memory of the first 140 RILs we phenotyped. Since the maximal and minimal PIs are 
bounded by 1 and -1, we felt confident the RILs in the top and bottom cohorts would still have higher 
or lower than average PIs after assaying all RILs. Obviously, the ranking of these RILs changed once 
we assayed an additional 601 RILs, however, they do still fall within the high and low cohorts. We 
collected 25 female heads from each of the 7 RILs in the high and low cohorts. Five heads from each 
RIL within a cohort were pooled into 5 biological replicates, totaling 35 heads per tube. To optimally 
identify consistent differences in expression between high and low cohorts, we chose to pool RILs 
together to average over biological differences and reduce the number of samples for RNA-Seq. We 
also included 5 heads per RIL to account for individual-level variability.  
   To prepare the samples, first the 7 selected RILs underwent the same set-up protocol as done 
in the phenotypic assay (see phenotyping section above for details). Briefly, female flies (fourteen 
days post-oviposition) were selected by anesthetizing them on ice between 0800 and 1000 and 
allowed to recover for 24 hrs at 25°C. Immediately after, the flies were flash frozen in liquid nitrogen. 
Second, the samples were vortexed for no more than 10 seconds to remove heads from bodies and 
stored at -80°C. Third, the samples were freeze dried overnight to prevent degradation using a 
lyophilizer (Labconco, Cat No.: 77550-00). Both the high and low cohorts were processed in the same 
batch for each phenotype. 

The samples were then shipped to RaPiD Genomics, LLC (fee for service) where the total 
RNA was extracted with Dynabeads mRNA direct kit from life technologies, mRNA was then 
fragmented and converted into double stranded cDNA, followed by the standard proprietary library 
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prep for one lane of Illumina HiSeq 3000 instrument to generate paired-end (PE) reads. The first 16 
samples were PE 150-bp, while the remaining samples were PE 100-bp.  

Before aligning the reads, we trimmed the samples using the software cutadapt (97), then ran 
a quality control test using fastqc (98). The fastqc analysis did not reveal any major problems with the 
reads. We specifically assessed the summaries for per base sequence qualities and the per 
sequence quality scores. We aligned reads to the D. melanogaster reference transcriptome (Ensembl 
Release Version: 84) using HISAT2 (99) and assembled and quantified transcripts using StringTie 
(100, 101). We did not allow the assembly of novel transcripts not present in the D. melanogaster 
reference. We used the "prepDE" python script available from the StringTie manual to calculate the 
read counts for each gene. To assess differentially expressed genes between our high and low 
cohorts, we used the DESeq2 package (102). First, we filtered all genes that had zero counts in all 
samples. We then performed surrogate variables analysis (SVA) on normalized counts using the sva 
package (103, 104) to estimate for unknown batch effects while accounting for treatment. The SVA 
identified one surrogate variable, which we included as a covariate when testing for differentially 
expressed genes. To identify significantly differentially expressed genes we used the DESeq2 
package (102) to test for overall treatment effects. We then performed contrasts between the high 
and low cohorts of learning and the high and low cohorts of memory to identify significantly 
differentially expressed genes. To visualize and rank the genes we used the function lfcShrink, 
which performs shrinkage on log2(Fold Changes), which have been shown to produce better 
estimates. All log2(Fold Changes) reported here are the shrinkage estimated values using the 
“normal” estimator.  

To identify possible candidate genes within our QTL intervals, we first determined which of the 
genes within each interval of interest were significantly differentially expressed between high and low 
performing cohorts. For QTL mapped to a single phenotype, this interval was the BCI. For QTL 
mapped to both phenotypes, we considered only the overlap region between the BCI’s for both 
learning and memory. In addition, we integrated a previous genome-wide eQTL dataset using the 
DSPR. King et al. (53) performed eQTL mapping on ~600 RIL crosses, crossing the population A and 
population B RILs and measuring expression of nearly all genes in the D. melanogaster genome 
using microarrays. We used this dataset to identify which genes show evidence for a cis eQTL in the 
DSPR. Finally, we identified differentially expressed genes with previous evidence implicating a 
potential role in learning and memory by manually examining the annotation for these genes in 
FlyBase (58) and noting annotations such as neurological process, behavior, or neurotransmitter, 
which might implicate the gene could be involved in the process of learning or memory.  
 
Data Availability – Raw learning and memory phenotypic data are available from zenodo 
(https://zenodo.org/): http://doi.org/10.5281/zenodo.2595557. RNA-Seq data is available from the 
NCBI Short Read Archive (105) under SRA accession number: PRJNA527143. Raw re-sequencing 
data of the founder lines is deposited in the NCBI SRA under accession number SRA051316, and the 
RIL RAD genotyping data are available under accession number SRA051306. Founder genotype 
assignments from the hidden Markov model are available as two data packages in R 
(http://FlyRILs.org/) and are available from the Dryad Digital Repository 
(http://dx.doi.org/10.5061/dryad.r5v40). See King et al. (41, 48) for details of the DSPR datasets. All 
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data associated with the DSPR eQTL dataset is also available publicly (see (53) for experimental 
details) in NCBI’s Gene Expression Omnibus (106) and are accessible through GEO Series 
accession number GSE52076. All of the above DSPR data are also available centrally at 
http://FlyRILs.org. The complete code to used to perform all analyses is available at GitHub 
(https://github.com/EGKingLab/LearnMem_DSPR).  
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