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ABSTRACT 

Aberrant DNA methylation is commonly heralded as a promising cancer biomarker; however, its inherently 

stochastic nature often leads to variable methylation patterns that can complicate the use of methylation 
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biomarkers for clinical diagnostics, particularly in dilute samples such as liquid biopsies. Here, we present 

a methylation density binary classifier, a statistical method for leveraging differential heterogeneous 

methylation to predict and optimize the performance of methylation biomarkers for clinical applications. We 

first developed and tested the classifier using methylation density profiles derived from reduced 

representation bisulfite sequencing reads of ovarian carcinoma at ZNF154, a recurrently methylated locus 

in multiple cancer types. We then used in silico simulations to predict the performance of the classifier in 

liquid biopsies and validated these predictions using quasi-digital melt curve analysis (DREAMing) of 

circulating cell-free DNA from individuals with versus without ovarian carcinoma. We found good agreement 

between predicted and observed classifier performance, and further demonstrated that implementation of 

this approach with ZNF154 outperformed CA-125 for use in etiologically-diverse ovarian cancer types. Our 

results indicate that methylation density profiles can be exploited to predict and facilitate implementation of 

methylation biomarkers for clinical applications, and that ZNF154 methylation shows promise as a clinically-

useful biomarker for ovarian cancer. 

 

INTRODUCTION 

A primary aim in cancer diagnostics is to identify and develop reliable biomarkers for malignancy detection 

that can ideally be detected with non-invasive detection methods. Epigenetic biomarkers are potentially 

useful cancer indicators, as many genomic loci become recurrently methylated during tumorigenesis and 

can thus serve as reliable indicators of disease (1-3). A particularly attractive application for methylation 

biomarkers is use in liquid biopsies, which represent minimally invasive assays to detect circulating tumor 

DNA (ctDNA), and associated epigenomic alterations, when shed from cancerous tissues into the blood 

(4).  While whole methylome analyses, such as whole-genome bisulfite sequencing (WGBS) (5) and 

Infinium BeadArrays (6), have identified scores of differentially-methylated genomic loci in cancers (7), only 

a handful of individual loci have ultimately become effective for use as biomarkers in clinical applications 

(8,9). This is due to a number of technical hurdles involved in translating promising methylation biomarkers 

for use in liquid biopsies, including (i) the small proportion of plasma ctDNA relative to cell-free DNA (cfDNA) 

derived from healthy cells (10), (ii) heterogeneity of methylation at a given locus (11-14), (iii) age-associated 

accrual of methylation confounding marker selection (15), and (iv) differences in the yield of extracted 
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cfDNA between samples (16). Collectively, these issues often make it difficult to achieve the high degrees 

of sensitivity and specificity necessary to attain reasonable clinical performance with a limited number of 

biomarkers (17). Thus, there remains a need for the development and implementation of new methods 

capable of increasing the signal to noise ratio in order to harness the diagnostic potential of methylated 

biomarkers in general. 

The overall aim of the present study was to investigate, and potentially exploit, differences in locus-

specific DNA methylation heterogeneity between case and control samples to optimize the use of 

methylation biomarkers in blood-based detection methods. We introduce a methylation density binary 

classifier (MDBC) aimed at maximizing the performance of methylation biomarkers by leveraging statistical 

differences in the profiles of epiallelic methylation densities between sample cohorts. Methylation density, 

or the proportion of methylated CpG-dinucleotides in a given genomic locus, leverages the degree of CpG 

methylation to overcome background methylation noise attributed to technical or biological conditions 

(8,18,19). The measurement is agnostic to changes within the methylation pattern and therefore has the 

potential to outperform methods that are reliant on methylated positions such as methyl specific PCR, and 

to achieve high sensitivity. Specifically, we examine methylation at the ZNF154 locus, which we previously 

demonstrated to be differentially-methylated in at least 14 different solid cancer types (2,20). More recently, 

reduced representation bisulfite sequencing (RRBS) of epithelial ovarian carcinomas (EOCs) also identified 

the ZNF154 locus among the most promising biomarker candidates in tissue and serum specimens (8).  

In the present work, we employ this RRBS data to develop a framework for the MDBC as well as 

to estimate the potential utility of the classifier to improve ZNF154 diagnostic performance in dilute samples 

such as liquid biopsies. We validate the MDBC in liquid biopsy specimens using our previously-reported, 

ultra-sensitive high-resolution melting assay, Discrimination of Rare EpiAlleles by Melt (DREAMing), which 

provides an inexpensive and straightforward means of evaluating locus-specific methylation density at 

single-molecule sensitivity and single CpG-site resolution (21). We employ DREAMing to assess the 

methylation density profiles of plasma samples obtained from 34 patients with refractory EOC and 57 

cancer-free controls. From this data we demonstrate significant improvement in the ability to distinguish 

between patient and controls plasma samples using MBDC compared to mean locus methylation signal. 

Lastly, we show that our method more accurately identifies EOC in liquid biopsies from etiologically diverse 
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tumor subtypes than measurement of blood CA-125, the most commonly-employed biomarker for 

monitoring EOC. Not only do these results suggest potential as an improved screening method for ovarian 

cancer, they more broadly offer a practical means of improving the diagnostic performance of DNA 

methylation-based biomarkers, particularly in challenging samples such as liquid biopsies. 

 

MATERIAL AND METHODS 

Datasets and samples 

450K Illumina Infinium HumanMethylation450 BeadChip datasets. Processed Illumina Human 450K data 

for EOCs (GEO accession GSE72021, described in (8)) from 221 tumor samples (171 serous, 18 

endometrioid, 14 clear cell, 9 mucinous and 9 other histological cancer subtypes) and WBCs (GEO 

accession GSE55763, described in (22)) from 2,664 individuals was downloaded from the NCBI’s Gene 

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). Data for TCGA solid tumor and control 

sample sets was downloaded from the Broad Institute (https://gdac.broadinstitute.org/) FireHose. Beta-

values for probes cg11294513, cg05661282, cg21790626, and cg27049766 were extracted using custom 

Python-2.7.14 (https://python.org) scripts. 

 

Reduced representation bisulfite sequencing data. Reduced representation bisulfite sequencing (RRBS) 

data was obtained for 12 EOCs, 10 healthy ovarian tissues, and 22 WBC samples used in Widschwendter 

et al. (8). The data was downloaded from the European Genome-phenome Archive (dataset accession: 

EGAD00001003822).  

 

Plasma samples. Plasma samples (n=107) were obtained from 34 patients with late-stage residual EOC 

and 57 pathologically normal control patients. The patients with EOC were part of two different clinical trials, 

described below, and controls were recruited by Fox Chase Cancer Center. Samples were split into two 

cohorts. One was used to assess the performance of the MDBC and establish optimal cutoffs in plasma 

and the second cohort was used to validate the MDBC cutoffs in plasma and compare the cutoffs to CA-

125.  
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The first cfDNA cohort contained plasma from 26 EOC-positive patients and 45 healthy women (1 

sample per patient). The patients with EOC had previously received standard-of-care treatment (a platinum- 

and taxane-containing regimen), relapsed after one or more subsequent treatment regimens, and been 

recruited into a clinical trial testing combined treatment with bevacizumab and dasatinib (NCT01445509). 

The plasma samples were taken at baseline before treatment was administered. Volumes of plasma 

processed and extracted cfDNA concentrations can be found in Supplemental Table 1. 

The second cohort encompassed 24 plasma samples from 8 patients with ovarian cancer (3 

samples per patient) and 12 control samples from healthy women (1 sample per patient). Here, too, patients 

with ovarian cancer were given standard of care, relapsed, and were recruited to a clinical trial, this one 

testing combined treatment with bevacizumab and sorafenib (NCT00436215). Ovarian cancer patient 

plasma samples were taken at three separate time points over 6 weeks (at baseline, 2 weeks after exposure 

to the first agent, and 2 weeks after exposure to the second agent). Blood was collected into standard EDTA 

tubes and maintained on ice for transport; plasma was separated immediately using centrifugation and 

frozen in 1.0- to 1.5-ml aliquots at -80oC. Additionally, CA-125 protein levels in the blood were measured 

every 4 weeks using standard immunoassay testing. 

 

Mean locus methylation and weighted sample fraction of methylation density at the ZNF154 locus 

from RRBS data 

The RRBS data were aligned to hg19 using Bismark-0.19.0 (23). Counts of RRBS reads that overlapped 

the region Chr19:58220000-58220800 were tallied for each sample and divided into subgroups based on 

their specific start coordinates and combinations of methylated and unmethylated cytosines. Based on 

sample metadata, counts of reads from replicate libraries of the same sample were pooled together. The 

three largest read pileups, which encompassed approximately 95% of the total reads, were found to have 

start coordinates located at chr19:58220394, chr19: 58220395, chr19: 58220396, chr19: 58220535, chr19: 

58220536, chr19: 58220537, chr19: 58220122, chr19: 58220123, and chr19: 58220124. Reads not 

containing these start coordinates were ignored. One WBC sample did not have any reads at these 

coordinates and therefore was removed from the analysis.  
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Methylation density was defined as the number of methylated CpGs (meCpGs) out of total CpGs 

in a given read or DNA molecule. The weighted methylation level of a locus, or henceforth the mean locus 

methylation, was defined as the total number of meCpGs out of all CpGs sequenced in reads from the locus 

in question (24). The sample epiallelic fraction was defined as the proportion of reads with a given 

methylation density out of all reads from a given locus.  

Reads with the same methylation density but having different numbers of CpGs were weighed in 

terms of their contribution to the overall sample methylation density by normalizing their epiallelic fractions 

in terms of the number of CpGs they covered out of the total CpGs covered in all of the reads. For this, we 

calculated the epiallelic fraction for a given set of reads by:  

𝐶
𝐶𝑡 

where C = # of CpGs covered by the reads with a methylation density above a given cutoff and Ct = total 

CpGs in all reads. 

 

Methylation density binary classifier (MDBC) procedure 

The DREAMing assay includes two parameters that must be specified before a sample can be called 

positive: 1) a minimum methylation density MDmin, and 2) a minimum epiallelic fraction EFmin.   A sample is 

considered positive if at least EFmin of the DNA fragments are methylated at a density above or equal to 

MDmin, where the optimal parameters are chosen to maximize sensitivity+specificity (or, equivalently, true 

positive rate (TPR) – false positive rate (FPR)). Given a set of training data, the MDBC procedure solves 

for these two parameters simultaneously by calculating TPR-FPR for various combinations of MDmin  and 

EFmin, choosing the pair of parameter values that maximizes the value.  

In practice we define a range of values for MDmin, from 0 to 1 in increments of 0.05, and let the data 

define an appropriate range of EFmin for each possible density MDi by considering the full set of epiallelic 

fractions that are observed in the training data, at the selected MDi. In the extreme case that MDmin=0, we 

consider fragments that have a density above but not equal to MDmin so that we are considering all except 

fully unmethylated reads for computing the sample EF.  

For the RRBS samples, the epiallelic fractions are the weighted sample fractions described above. 

For the plasma samples methylation density is derived from the melting temperatures as described below, 
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and epiallelic fractions are calculated from the DREAMing melt peaks representative of each DNA divided 

by the total genomic equivalents assessed.  

 

Simulated dilution and classification performance comparison between the mean locus methylation 

and MDBC using RRBS data 

To test the classification performance of either using mean locus methylation or the optimal methylation 

density and sample epiallelic fraction determined by the MDBC across a range of tumor signals, RRBS 

reads from EOCs or WBCs were randomly mixed together at different fractions at a set depth of total reads. 

A total depth of 10,000 reads was determined in order to simulate dilutions down to 0.01%. At each dilution, 

a simulated set of “spike-in” samples was made by randomly pairing each of the 12 EOCs with one of the 

22 WBC samples for a total spike-in sample set size of 22. For each pair, a distribution of read methylation 

densities was generated for the EOC and the WBC sample based on the weighted sample fractions of 

methylation densities. Reads were randomly sampled from each distribution at a ratio equivalent to the % 

tumor dilution in question with the total number of reads sampled equal to the total read depth. For each 

dilution, receiver operating characteristic (ROC) curves were built for classifying samples using either the 

mean locus methylation level or the sample epiallelic fraction based on the methylation density cutoffs 

selected by the MDBC. The spike-ins were used as cases and the original 22 WBC samples as controls. 

ROC area under the curve (AUC) for the mean locus methylation and the optimal methylation density were 

recorded. This simulation was repeated 50 times and the mean AUC and the 95% CI for the mean locus 

methylation and MDBC methylation density were computed.  

Using the same 50 iterations of the simulated dilution mentioned above, we compared the 

performance of using the mean locus methylation or a methylation density cutoff at high dilutions of EOC 

RRBS reads. For select tumor dilutions (1.0%, 0.1%, 0.01%), we recorded AUC values for each methylation 

density cutoff as well as the sensitivity and specificity resulting from the optimal epiallelic fraction cutoff for 

that methylation density. Using the AUCs, we then determined the probability of achieving an improved 

performance over mean locus methylation for each methylation density cutoff. Given that the AUC can be 

defined as: “the probability that a randomly selected case will have a higher test result than a randomly 

selected control,” (25) we considered each application of the methylation density cutoff a case and the 
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resulting AUC its test value whereas the mean locus methylation AUCs would be the test results for a set 

of controls. We constructed a new ROC based on these two sets of AUC values (n=50 for both methylation 

density and mean locus methylation) and the resulting AUC of this ROC was considered the probability that 

the methylation density cutoff would produce a higher AUC, or improved performance, than the mean locus 

methylation.  

 

Measurement of ZNF154 methylation using DREAMing 

Plasma cfDNA extraction and bisulfite conversion. To extract cfDNA, we employed the methylation-on-

beads protocol (26) using NeoGeneStar Cell Free DNA Purification kits with pretreatment reagents and 

NeoGeneStar magnetic beads (NeoGeneStar, Somerset, NJ). Extracted cfDNA was bisulfite converted 

using Zymo Lightning Conversion reagents (Zymo Research, Irvine, CA) and eluted twice in 50 µl Zymo 

Elution Buffer using 1.5 ml LoBind Eppendorf tubes (Eppendorf, Hauppage, NY). We quantified the resulting 

DNA by performing qPCR in duplicate, using a primer and a TaqMan probe set to amplify a 100-bp region 

overlapping the bisulfite-converted top strand of the beta-actin locus on a C1000 Touch Thermo Cycler 

(BioRad, Hercules, CA) using a CFX96 Real-Time System. 

 

Quantifying ZNF154 methylation in cfDNA with DREAMing. The DREAMing method quantifies methylation 

density via melting-peak analysis of bisulfite-treated sample DNA (21). Bisulfite conversion deaminates 

unmethylated cytosines to uracils, which eventually are replaced by thymines during amplification. By 

contrast, methylated cytosines remain intact. After PCR amplification, the difference in the base-stacking 

energy of C/G vs. A/T bases creates distinct melting temperatures in the products; more C/G pairs result in 

a higher melting temperature. DREAMing improves upon previous methylation-sensitive high-resolution 

melting assays (27,28) by diluting the sample to achieve quasi-digitization of the population of methylated 

fragments, such that each reaction contains target DNA fragments with no more than two different 

methylation densities (i.e., epialleles). This helps eliminate the formation of heteroduplexes, allowing us to 

determine the methylation density of the respective epialleles.  

We used DREAMing to calculate the fraction of ZNF154 DNA fragments with a given methylation 

density. First, we determined that the maximum number of genomic copies of cfDNA that could be loaded 
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into a well without compromising the detection of single epialleles of the targeted ZNF154 genomic region 

was approximately 400, based on our ability to detect single fragments of fully methylated synthetic ZNF154 

target in a known quantity of low-methylation bisulfite-treated genomic DNA. We partitioned each sample 

across 12 wells on a 96-well microtiter plate, for a total of 8 samples per plate. Thus, the maximum amount 

of a given sample that we could query in a single DREAMing assay would be 4,800 genomic copies (12 

wells times 400 genomic copies per well). Each sample was queried via DREAMing at least twice, for a 

total of 24 wells per sample, and the data for multiple runs of a given sample were pooled together. The 

fraction of methylated ZNF154 genomic fragments for each sample was determined by counting the number 

of melting peaks above a defined temperature cutoff (corresponding to a specific methylation density cutoff, 

or number of methylated CpGs out of 14 total positions for our ZNF154 locus; for conversion between these 

two values see next section), where each counted peak corresponded to a single methylated cfDNA 

fragment, inferred from Poissonian statistics. We divided these counts by the total number of genomic 

copies loaded into the DREAMing assay (representative of the total number of cfDNA fragments analyzed) 

to arrive at the sample epiallelic fraction of cfDNA fragments with a given methylation density. 

The reaction conditions for DREAMing were as follows: Master PCR mixes were made so that each 

well would have a final volume of 25 µl with 200 µM dNTP mixture, 300 nM forward ZNF154 DREAMing 

primer, 300 nM reverse ZNF154 DREAMing primer, 1X EvaGreen (Biotium Inc, Fremont, CA), 0.04 U/µl 

Platinum Taq (Thermo Fisher Scientific, Bothell, WA), and 1X in-house “Magic Buffer” (16.6 mM ammonium 

sulfate, 67 mM Tris pH 8.8, 2.7 mM magnesium chloride, and 10 mM beta-mercaptoethanol). DREAMing 

reactions were run on a C1000 Touch Thermal Cycler using a CFX96 Real-Time System. Reactions were 

run at 95°C for 5 minutes for 1 cycle; 95°C for 30 seconds, 61.4°C for 30 seconds, and 72°C for 30 seconds 

for 50 cycles; followed by a temperature gradient beginning at 65°C and ramping up to 90°C in 0.2°C 

increments, each held for 10 seconds, before SYBR/FAM fluorescence was imaged. After DREAMing, 

melting temperature peaks were visualized using the accompanying CFX Manager 3.1 software to analyze 

the negative derivative of the change in fluorescence (-d(RFU)/dT) versus temperature plots for each well. 

 

Validation and calibration of DREAMing melt peak temperatures to methylation densities. Because accurate 

determination of methylation density depends on efficient bisulfite conversion, we used bisulfite amplicon 
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sequencing to validate the results of at least one well per sample in the training set from the DREAMing 

assay. We focused on wells that contained a temperature peak indicative of a high methylation density 

cfDNA fragment and when possible, selected multiple wells that together were representative of the overall 

methylation profile for a given sample. In this way we included wells that had cfDNA fragments with low 

methylation densities and wells that had high methylation densities and sought to test the validity of the 

assay across this methylation range. 

For each selected DREAMing well, 20 µl was pipetted into a new well on a 96-well plate and 

cleaned using Ampure XP beads (Beckman Coulter, Brea, CA) according to the manufacturer’s protocol, 

at a ratio of 1.8 µl beads to 1 µl sample. The DNA was then eluted with 35 µl EB buffer (Qiagen, 

Germantown, MD), and 30.75 µl of the elution was combined with 5 µl 10X TaKaRa EpiTaq PCR Buffer 

(Mg2+ free; TaKaRa, Mountain View, CA), 5 µl 25 mM MgCl2, 6 µl 2.5 mM dNTP mixture, 1 µl 12.5 µM 

forward primer (175-bp forward ZNF154 DREAMing primer with sequencing adapter), 1 µl 12.5 µM reverse 

primer (175-bp reverse ZNF154 DREAMing primer with sequencing adapter), 1 µl DMSO, and 0.25 µl of 5 

U/µl TaKaRa EpiTaq DNA polymerase, for a total reaction volume of 50 µl. This mixture was placed in a 

SimpliAmp thermal cycler (Applied Biosystems, Foster City, CA) using the following conditions: 95°C for 

five minutes and one cycle; 95°C for 30 seconds, 50°C for 30 seconds, and 72°C for 30 seconds, for nine 

cycles; and 72°C for seven minutes for one cycle. We then performed a second Ampure XP beads cleanup 

by combining 46 µl each PCR reaction with 55 µl beads, eluting in 27 µl EB buffer. Next, 23 µl elution was 

combined with 25 µl 2X High Fidelity Phusion Master Mix (NEB, Ipswich, MA), and 1 µl i7 and i5 barcoding 

primers for a total reaction volume of 50 µl. Another round of PCR was performed under the following 

conditions: 98°C for 30 seconds and one cycle; 98°C for 10 seconds, 65°C for 30 seconds, and 72°C for 

30 seconds, for nine cycles; and 72°C for five minutes and one cycle. After this, each reaction was cleaned 

again with Ampure XP beads using 55 µl beads and 46 µl sample and eluted in 30 µl EB buffer. Then 3 µl 

elution was run on a 2% agarose gel to confirm the expected band of 300-bp (size of amplicon with adapter 

and barcodes). Samples were submitted to the NIH Intramural Sequencing Center for quality control and 

sequencing on a MiSeq using 300-bp paired end sequencing. Using Bismark-0.19.0, analysis of reads, 

bisulfite conversion efficiency, and determination of meCpG patterns was performed as described 
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previously (20). Wells with sequenced amplicons that had less than 95% bisulfite conversion efficiency 

were discarded. 

We implemented a linear regression model to convert DREAMing melt peak temperatures to 

methylation density values determined by the bisulfite amplicon sequencing. Patterns of meCpGs 

computed from the sequencing reads were kept for a given well if their abundance was above 1%. 

Sequencing patterns were ordered based on methylation density and abundance and the pattern with the 

highest methylation density from this list was then matched to the highest melt peak temperature. Given 

that our unmethylated controls consistently melted between 80°C and 80.4°C, we also discarded melt 

temperatures below 80°C for this calibration. We found good agreement between the DREAMing melt peak 

temperature and the actual methylation density determined from the bisulfite amplicon sequencing (Fig S3). 

We used the generated linear model to convert all melt peak temperatures into methylation densities and 

rounded these to the nearest 7% given that we would expect each additional meCpG in our locus of 14 

potential meCpG sites to increase the methylation density by 1/14 or approximately 7%.  

 

Mean locus methylation in plasma. The epiallelic fraction of all detected epialleles via DREAMing except 

fully unmethylated DNA fragments (based on a methylation density cutoff of 0%) was used as an estimate 

of the sample mean locus methylation. This was based on the fact that, unlike the RRBS reads, the number 

of CpG sites covered (14) was the same for each DNA fragment targeted in the DREAMing assay. 

Therefore, the fraction of these CpGs that were methylated would be proportional to the fraction of total 

methylated epialleles.  

 

Statistical analyses and plotting 

Plotting and statistical analyses were performed using custom Python-2.7.14 (https://python.org) and R-

3.4.4 (29) scripts. To compare epiallelic fractions or mean locus methylation between groups, boxplot 

comparisons were performed. Statistical significance was evaluated using the two-sided Wilcoxon rank 

sum test. The true and false positive rates, associated thresholds, as well as the area under the curve 

(AUC) for the receiver operating characteristic analyses were generated using the python package sklearn 

(v0.19.1) (30) with the module sklearn.metrics. AUC 95% confidence intervals were computed using the R 
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library pROC (31) and using the ci.auc() command with method=”bootstrap” on the data using 2000 

stratified replicates. Statistical significant difference between ROC curves was computed using the roc.test() 

command. 

 

RESULTS 

RRBS profiling of ZNF154 methylation density in healthy and cancerous tissues  

We used the ZNF154 locus as our model cancer methylation biomarker given its propensity to be 

specifically and recurrently hypermethylated in numerous cancer types as compared to healthy control 

tissues, including white blood cells (WBCs), the predominant source of cfDNA in liquid biopsy specimens 

(32). As shown in Figure 1A, data derived from analysis of publicly-available Illumina Infinium 

HumanMethylation450 BeadChip data [including Widschwendter et. al. (8), Lehne et. al. (22) and The 

Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov/)] demonstrated cancer-specific 

hypermethylation throughout the entire ZNF154 CpG island (CGI), and most differentially near the 5’ end 

of the gene. Therefore, we focused our study on a 175-bp locus covering this region of the CGI (highlighted 

in yellow, Figure 1A).  We next performed an initial analysis of RRBS data (8) generated from EOCs, healthy 

ovarian tissues, and WBCs.  We defined methylation density as the ratio of methylated CpG dinucleotides 

(meCpGs) to total CpG sites within a given DNA molecule (i.e., epiallele) from a defined genomic locus. 

For comparison, the mean locus methylation was calculated as the number of meCpGs over all CpGs 

covered by the epialleles derived from the locus in question, as previously defined (24). According to the 

methylation density profiles of the three samples types, (Figure 1B, C, and D; depicting the relative 

prevalence of epiallelic fractions as a function of locus methylation density) there was a higher proportion 

of heavily-methylated epialleles in EOC samples when compared to either control or WBC samples. 

 

Development and performance of a methylation density binary classifier in tissue 

We developed a basic framework for a methylation density binary classifier (MDBC; see Figure 2A for 

schematic), aimed at identifying ideal parameters for classifying samples according to their respective 

methylation density profiles. In short, the MDBC incorporates an iterative process to identify cutoff values 

for methylation density and epiallelic fractions that maximize discrimination (true positive rate [TPR] minus 
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false positive rate [FPR]) between two defined cohorts. This is achieved by the incremental application of 

a methylation density cutoff to define sample epiallelic fractions followed by the iterative calculation of the 

TPR-FPR values for the cohorts as a function of the epiallelic fraction cutoff. In this approach a sample is 

called positive if its epiallelic fraction is above the candidate cutoff values. The resulting data can then be 

used to identify parameters to achieve the maximum TPR – FPR value based on a given methylation density 

dataset.  

We first investigated the potential of the MDBC to identify optimal cutoff values using the RRBS 

data generated from the three aforementioned sample types. For discriminating EOCs from healthy ovarian 

tissue or WBC controls, the MDBC identified optimal methylation density cutoff values of 40% or 85%, and 

optimal epiallelic fraction cutoff values of 7.9% or 1.1%, respectively. Figure 2 B-C contrasts the 

performance of the MDBC and classification by mean locus methylation with respect to receiver operating 

characteristic (ROC) analysis and sample classification. We found that the MDBC provided a marginal 

improvement over mean methylation with respect to AUC values but no improvement for discriminating 

EOC from healthy ovarian tissues (at 100% specificity). In contrast, when comparing ZNF154 methylation 

in EOCs to WBCs, our use of MDBC provided considerably better discriminatory power, as evidenced by a 

substantially lower p-value of 1.41e-5, compared to 7.57e-3 when measured by mean locus methylation. 

Here, the measurement of respective (densely-methylated) epiallelic fractions provided improved 

discriminatory potential to classify samples and improve the clinical sensitivity (i.e., TPR) by a factor of 

roughly 30% (66% vs. 92%), while also maintaining absolute clinical specificity (i.e., 100% true negative 

rate). 

 

MDBC performance on simulated dilute admixtures  

We next explored how the MDBC might be expected to perform in dilute admixture solutions, such as 

cfDNA. Toward this end, we created simulated cfDNA solutions using in silico admixtures from RRBS reads 

of EOCs (n=12) and WBCs (n=22). Positive cfDNA samples were simulated by combining 10,000 randomly 

sampled RRBS reads from each of the EOC samples after being randomly-paired and mixed with a WBC 

background sample at various EOC:WBC admixture ratios ranging from 100% down to 0.01%. These were 

then compared with the RRBS reads exclusively from the WBCs. The methylation density profiles from the 
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WBCs and the simulated positive cfDNA samples were then used, as above, to calculate the discriminatory 

power (TPR – FPR) of the MDBC over the entire range of methylation density and epiallelic fraction cutoff 

values. Data from this evaluation were then used to identify those methylation density cutoff values 

achieving the highest AUC value based on the MDBC at each admixture ratio. Lastly, the AUC values 

achieved by implementation of the MDBC to classify the samples were compared to those achieved using 

mean locus methylation. 

Figure 3A shows the results of the AUC performance of MDBC versus average methylation 

classification over the entire range of simulated EOC:WBC admixture ratios. The results of this analysis 

indicate that MDBC classification outperformed average methylation at all admixture ratios, particularly as 

the EOC:WBC ratio approached the 0.01-1% range commonly reported for ctDNA in cfDNA from cancer 

patients (33). To further evaluate the predicted MDBC performance in liquid biopsies, we generated a 

second simulated cohort of 50 cancer-positive and 50 cancer-free cfDNA samples, to observe the variance 

in MDBC performance in simulated cfDNA solutions of 1%, 0.1% and 0.01% EOC:WBC admixture ratios. 

The results of these simulations, shown in Figure 3B and Supplemental Figure S1, indicate that while the 

probability of improving sample classification relative to mean locus methylation steadily increases as the 

methylation density cutoff increases from 20 to approximately 80% at all admixture ratios, the anticipated 

performance improvement is less significant as the admixture ratio approaches 0.01%, as the ctDNA 

fraction becomes only stochastically present.  

 

Implementation of the MDBC with DREAMing in liquid biopsies 

We next aimed to validate the utility of the MDBC by assessing its performance for classifying samples 

based on ZNF154 methylation profiles obtained directly from liquid biopsy samples. To determine these 

profiles, we first designed and optimized a DREAMing-based assay targeting 14 CpGs located in the 175-

bp segment of the ZNF154 CGI (Figure 1A). We validated the performance of this assay by performing 

quasi-digitization of discrete copy numbers of synthetic equivalents of bisulfite treated (BST) methylated 

epialleles in a large excess of BST unmethylated genomic DNA and observed the resulting DREAMing high 

resolution melt (HRM) profiles, as previously described (21). The results of the validation demonstrated the 

anticipated Poissonian distribution of wells exhibiting a secondary negative derivative melt profile peak 
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(melt temperature, Tm) between 83.6°C and 84.0°C, indicative of single copy sensitivity for fully methylated 

ZNF154, while the remainder of the wells exhibited a single melt peak between 80.0°C to 80.4°C 

temperature, ostensibly derived exclusively from unmethylated genomic DNA (Supplementary Figure S2).  

We next employed the ZNF154 DREAMing assay to assess ZNF154 methylation density profiles 

in a cohort of liquid biopsies from 71 patients (26 women with late-stage ovarian cancer and 45 cancer-free 

women; Supplementary Table S1). Each sample was first divided into a sufficient number of wells to 

achieve quasi-digitization based upon an anticipated epiallelic fraction of 0.01 – 0.1%. Following PCR 

amplification and HRM, the melt temperature of each detected epiallele was determined and enumerated 

for each respective sample. We performed next-gen amplicon bisulfite sequencing of 77 wells 

encompassing 131 epialleles, identified as positive by DREAMing analysis, in order to validate and calibrate 

the linearity of the relationship between the amplicon melt temperatures and epiallelic methylation density 

(Supplementary Figure S3). Overall, results of this analysis demonstrated that melt temperatures 

determined by DREAMing correlated linearly with the methylation density of the corresponding epialleles. 

Based on this calibration, methylation density profiles were then created for each liquid biopsy specimen 

(Supplementary Table 1). As shown in Figure 4A, preliminary meta-analysis of the methylation density 

profiles obtained via DREAM analysis of EOC-positive and cancer-free women revealed that while both 

cohorts exhibited a large fraction of ZNF154 epialleles with little to no methylation, only cfDNA from cancer-

positive patients exhibited the presence of a significant proportion of densely-methylated ZNF154 

epialleles. 

We next employed the MDBC to identify methylation density and epiallelic fraction cutoffs which 

would optimize the diagnostic performance for classifying EOC-positive women based solely on their 

respective liquid biopsy ZNF154 methylation density profiles. The MDBC analysis, shown in Figure 4B, 

identified 45% and 0.14% as the optimal cutoff values for methylation density and epiallelic fraction, 

respectively. Figure 4C shows the classification performance as a function of methylation density threshold 

(using corresponding optimal epiallelic cutoffs) in comparison to classification by mean methylation alone. 

Data from this analysis demonstrate that overall performance increases as the methylation density 

threshold is increased to 20% and remains largely flat until reaching 90%, at which point it declines, 

indicating that consideration of heterogeneously methylated epialleles can significantly improve 
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classification performance over assessment of only heavily-methylated epialleles, as typically determined 

by MSP-based assays. In contrast, consideration of epialleles at methylation densities below 20% reduces 

overall performance by effectively reducing assay specificity. These points are further illustrated in Figures 

4D, which shows that the MDBC achieves significantly better ROC performance than classification using 

either a 0% or 90% methylation density threshold. Figure 4E illustrates that implementation of the optimal 

thresholds is able to achieve a sensitivity and specificity of 73.1% and 95.6%, respectively, compared with 

65.4% and 77.8% via discrimination by mean methylation, inferred from considering all epialleles, and 

53.8% and 100% if only heavily methylated epialleles are considered. 

 

Independent validation of MDBC threshold values 

We validated the methylation density and epiallelic fraction thresholds identified by the MDBC from our 

initial cohort by applying them to the analysis of a second, independent cohort. For this validation cohort, 

we used archived plasma samples (n=36), comprising 3 separate blood draws obtained from 8 women over 

a period of 8 weeks (n=24), as well as plasma samples obtained from cancer-free women (n=12; 

Supplementary Table S2). As before, plasma-derived cfDNA from each sample was analyzed via ZNF154 

DREAMing assay to determine its corresponding methylation density profile. Initial analysis, shown in 

Figure 5A, indicated that these samples exhibited a similar overall methylation density profile as the first 

cohort. We then blindly classified these samples according to the 45% optimal methylation density and 

0.14% epiallelic fraction thresholds established by MDBC analysis of the first sample cohort, the results of 

which are shown in Figure 5B and Supplementary Figure S3. Overall, implementation of these threshold 

values performed similarly well in the validation cohort, achieving a classification performance of 87.5% 

sensitivity and 91.7% specificity. 

Independent evaluation of the DREAMing data from the validation cohort, shown in Supplementary 

Figure S4, demonstrated that the ideal methylation density cutoff values identified by the MDBC were highly 

similar for both the initial (20-50% density) and validation (20-35% density) cohorts. These results indicate 

that experimentally-determined methylation density thresholds are likely consistent and applicable when 

evaluating independent cohorts with similar patient characteristics. 
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Lastly, we compared the diagnostic performance of the MDBC optimized cutoffs with commonly-

employed CA-125 diagnostic criteria (34) for blood-based detection and monitoring of ovarian cancer. In 

the second plasma cohort, CA-125 measurements were available for all but one of the blood draws. The 

MDBC cutoffs correctly classified 20 of 23 (87.0%) samples, significantly exceeding the performance of 

CA-125, with which only 11 of 23 (47.8%) samples were classified correctly using the standard cutoff of 35 

U/mL (Figure 5D). More specifically, CA-125 misclassified all of the patients with non-serous ovarian cancer 

subtypes (n=9). By contrast, employment of the MDBC with ZNF154 DREAMing data correctly classified 7 

of the 9 non-serous samples. This finding suggests that optimizing the diagnostic performance of ZNF154 

methylation by way of the MDBC may represent a substantial improvement over CA-125, particularly for 

women with non-serous ovarian cancer. 

 

DISCUSSION 

In the present work, we report a method for leveraging disease-associated differences in epiallelic 

methylation density profiles to improve performance of methylation biomarkers for use in clinical diagnostic 

assays, particularly when evaluating challenging samples such as liquid biopsies. Our results demonstrate 

that assessing methylation density information of individual DNA fragments can be used to establish 

effective thresholds capable of overcoming the inherent biological noise associated with methylation from 

background sources such as healthy tissues or age-related epigenetic drift (35). Using the methylation 

biomarker ZNF154 in the context of ovarian carcinoma as an example, we demonstrated that methylation 

density profiles can be inferred from sequencing data from tissues to predict performance of candidate 

methylation biomarkers. We employed an ultra-sensitive technique called DREAMing to determine the 

methylation density of individual DNA fragment epialleles in plasma at this locus and used the resulting 

information to validate the effectiveness of classifying samples based upon their respective ZNF154 

methylation density profiles.  

 While the MDBC can be used to predict and improve the performance of newly-identified 

methylated biomarkers, it also has the potential to prompt reevaluation of promising methylated loci that 

may have been overlooked or excluded due to perceived background noise resulting from heterogeneous 

methylation. As this noise depends not only on the locus in question but also on the cohort of samples 
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analyzed, the MDBC could be used to prescreen for methylated loci that would have the highest 

performance specific to the clinical context of interest. Moreover, the optimal methylation density cutoff 

could also be used to inform the type of assay to be designed for the identified methylated biomarker. For 

example, an identified locus with a high methylation density optimal cutoff would imply that an MSP-based 

assay targeting these epialleles would be sufficient for diagnostic purposes instead of developing a more 

in-depth sequencing approach.  

 We observed that the optimal thresholds identified by the MDBC can vary considerably between 

distinct datasets as seen in the notable difference in methylation density thresholds between the ovarian 

tissue and plasma sample sets. This likely reflects inherent differences in the composition of the tissue 

types and suggests that care should be taken when employing MDBC-identified thresholds in disparate 

sample types. Nonetheless, our results indicate that consideration of heterogeneously methylated epialleles 

can likely improve diagnostic performance over a wide range of threshold values, regardless of sample type 

or cohort.  

 Recent analyses of cancer methylomes have shown that while cancer-specific hypermethylation 

can be highly deterministic, methylation patterns between tumor subpopulations at these loci can also be 

highly polymorphic (13). Methylation assays, such as MSP, that rely on heavily methylated signatures may 

become ineffective at detecting early stage tumors in part due to their inability to discriminate subtle 

changes in methylation density that likely arise early during carcinogenesis. In theory, MDBC thresholds 

can potentially be adjusted to differentiate even marginal changes in methylation density to increase early 

stage sensitivity while balancing specificity.  Future studies will be needed to establish the relationship 

between the extent of heterogeneous methylation at each tumor stage across genomic loci and the optimal 

MDBC cutoffs for each. 

 The MDBC approach is critically reliant upon sensitive and accurate assessment of methylation 

density at the individual epiallele level. This can pose technical or logistic barriers, particularly for 

sequencing-based approaches, which require significant time and cost to achieve adequate sensitivity and 

statistical power to determine accurate methylation density profiles in samples containing dilute tumor DNA, 

such as liquid biopsies. Alternatively, the DREAMing-based system we describe here offers several 

advantages for targeted profiling of methylation density. In particular, the short turnaround time for 
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DREAMing (results in several hours) and low cost (approximately $10.00 per sample) make it a practical 

option for profiling methylation density. Secondly, single molecule sensitivity is readily achievable by 

DREAMing, which is particularly important when working, as here, with limited (plasma) sample volumes. 

Furthermore, unlike bisulfite sequencing, DREAMing does not require analysis of sequencing results or 

patterns, drastically reducing the turnaround time for determining optimal thresholds for maximizing 

performance or applying established thresholds in a given clinical application.  

There are a number of drawbacks worth considering when employing the DREAMing technique. 

Perhaps the most notable limitation of DREAMing is its reliance upon nonspecific DNA-binding dyes that 

all but preclude its amenability to multiplex analysis or large biomarker panels. Accurate enumeration of 

heterogeneously-methylated epialleles also the requires that each sample undergo quasi-digital dilution to 

enable Poissonian quantitation, which ultimately limits target quantification to three orders of magnitude or 

less when using standard microtiter plates. Nonetheless, for the vast majority of applications, it is the rarer, 

more densely-methylated epialleles that are of primary interest. Taking this into account, selective absolute 

quantification can be achieved by performing limiting dilution targeted to only rare epialleles over a specific 

methylation density cutoff. This thereby requires less partitioning and diluting of samples and increases 

overall throughput. More recently, we have successfully incorporated DREAMing into a highly-parallelized 

microfluidic array that drastically enhances the dynamic range of the assay, allowing simultaneous 

methylation density analysis of millions of molecules per sample, obviating the need to quantify sample 

DNA concentrations to achieve precise dilution (36). Lastly, it is worth noting that the exquisite sensitivity 

and resolution of DREAMing make it potentially susceptible to issues such as inefficient bisulfite conversion 

or low fidelity polymerases that can lead to amplicons that do not accurately reflect the sequences or 

methylation statuses of the template epialleles. Likewise, it is strongly recommended to use only 

established and validated protocols and reagents for sample processing and analysis.  

In the present work, we employed ZNF154 as a model methylation biomarker based upon previous 

reports by us and others showing it to be recurrently methylated in numerous cancer types. The findings in 

our present study confirm and extend these observations by demonstrating that methylation of ZNF154 can 

reliably distinguish cfDNA from liquid biopsies of EOC-positive women from those of healthy, noncancerous 

controls. Furthermore, our results also indicate that, unlike CA-125, the broad cancer specificity of ZNF154 
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methylation can be leveraged for the detection of all EOC subtypes, including non-serous cases. On the 

other hand, while the broad cancer specificity of ZNF154 makes it attractive as a potential pan-cancer 

biomarker, it would likely need to be paired with follow up analyses such as a panel of other, tissue-specific 

markers to identify the cancer tissue of origin (18,37). 

Overall, the MDBC approach presented here is a relatively simple, but effective technique for 

overcoming issues related to the heterogeneous methylation patterns that arise from the infidelity and 

stochasticity of the cellular processes associated with the accumulation and maintenance of DNA 

methylation. Likewise, this approach is likely to be largely suitable not only for optimizing the performance 

of methylation biomarkers for clinical diagnostic applications, but also more generally for the study and 

evaluation of any biological phenomena associated with the dynamic accumulation or loss of DNA 

methylation.  
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A ‘beta version’ of the MDBC Python code and input files is available at the GitHub website: 
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analyses and figures presented in this study. Work is underway to extend the program for general use with 

other datasets and genomic loci. Interested parties may contact the authors for more details. 
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TABLE AND FIGURES LEGENDS 

Figure 1. Methylation density at the ZNF154 genomic locus. A) The ZNF154 gene is encoded on the reverse 

strand of Chromosome 19 and contains a 328-bp CpG island (CGI) that extends from the 5’-UTR through 

into the ZNF154 gene body itself. Schematic showing average methylation at multiple CpG sites determined 

from Illumina Infinium HumanMethylation450 array data for tumor (red lines) and control (blue lines) tissues. 

The target locus assessed in the DREAMing assay is highlighted (yellow). B-D) Heatmaps showing the 

relative fractions and corresponding methylation density profiles derived from RRBS reads of the ZNF154 

target locus for ovarian carcinomas (n=12), healthy ovarian tissues (n=10), and WBCs (n=22). 

Abbreviations: ovals below the CpG island represent CpG positions; EOCs = epithelial ovarian carcinomas 

(n=221); WBCs = white blood cells; * indicates data taken from Widschwendter et. al; ** indicates data from 

Lehne et. al; remaining 4 letter acronyms correspond to TCGA tissue codes: BLCA = bladder carcinoma 

(tumors = 412, controls = 21); COAD = colon adenocarcinoma (tumors = 295, controls = 38); HNSC = head-

neck squamous cell carcinoma (tumors = 528, controls = 50); LIHC = liver hepatocellular carcinoma (tumors 

= 377, controls = 50); LUSC = lung squamous cell carcinoma (tumors = 370, controls = 42); PRAD = 

prostate adenocarcinoma (tumors = 498, controls = 50); STAD = stomach adenocarcinoma (tumors = 395, 

controls = 2); UCEC = uterine corpus endometrial carcinoma (tumors = 431, controls = 46). 

 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/579839doi: bioRxiv preprint 

https://doi.org/10.1101/579839


 26 

Figure 2. MDBC classification of ovarian carcinomas using RRBS read data. A) Schematic illustrating the 

MDBC procedure for determining optimal methylation density and epiallelic fraction cutoffs. B-C) MDBC 

heatmaps indicating the true and false positive rate differences for each combination of methylation density 

and epiallelic fraction cutoffs for identification of EOCs versus healthy ovarian tissue or WBC controls. Aqua 

rectangles highlight the optimal methylation density and epiallelic fraction cutoffs. The maximum true and 

false positive rate difference is indicated with a black arrow. The performance of the optimal methylation 

density cutoff is shown as a ROC curve below the MDBC heatmap and the performance of the optimal 

epiallelic fraction cutoff at the optimal methylation density is shown as a boxplot. Abbreviations: TPR = true 

positive rate; FPR = false positive rate; MD = methylation density; EF = epiallelic fraction; AUC = area under 

the curve; MDBC = methylation density binary classifier; EOC = epithelial ovarian carcinomas (n=12); 

Healthy OV = healthy ovarian tissue control samples (n=10); WBC = white blood cell control samples 

(n=22); *, **, and *** indicates p < 0.05, p < 0.01, and p < 0.001, two-sided Wilcoxon rank-sum test. 

 

Figure 3. Simulated performance of the MDBC using varying admixture ratios of ovarian carcinoma (EOC) 

to WBC RRBS reads. A) The performance of the methylation density binary classifier (MDBC, red) and 

mean locus methylation classifier (blue) at increasing dilutions of EOC RRBS reads in a background of 

WBC RRBS reads acquired from Widschwendter et al. B) Plots showing the probability of achieving a 

higher AUC than the mean locus methylation classifier using the MDBC for each methylation density cutoff 

at various admixture ratios. Lower panels show the TPR, 1-FPR, and AUC achieved by using the MDBC at 

each methylation density cutoff. Solid lines indicate the mean value and shaded regions indicate the 95% 

confidence interval for 50 iterations of the simulation. Abbreviations: AUC = area under the curve; MDBC = 

methylation density binary classifier; TPR = true positive rate; FPR = false positive rate. 

 

Figure 4. Performance of the MDBC in EOC patient and control plasma samples. A) The pooled epiallelic 

fractions of cfDNA methylated epialleles with varying methylation densities in EOC (red, n=26) and healthy 

(blue, n=45) patient plasma samples. Purple shaded regions indicate overlap between the two plasma sets. 

B) MDBC heatmap indicating the true and false positive rate differences for each combination of 

methylation density and epiallelic fraction cutoffs for identification of EOC versus healthy control plasma 
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samples. C) Performance of the MDBC at each methylation density cutoff for the EOC and healthy control 

plasma samples. Dotted line shows the AUC of the mean methylation cutoff. D) ROC curves showing the 

classification performance of using the optimal methylation density cutoff determined by the MDBC (red), 

90% methylation density cutoff (yellow), or mean methylation cutoff (blue) to identify the EOC and healthy 

control plasma samples. E) Boxplots showing the performance of the optimal epiallelic fraction cutoffs for 

either the optimal 45% methylation density cutoff determined by the MDBC (red), 90% methylation density 

cutoff (yellow), or mean methylation cutoff (blue) to classify the EOC patient (red, n=26) or healthy control 

(blue, n=45) plasma samples. Dotted lines indicate the optimal epiallelic fraction cutoff for each of the 

methylation density cutoffs. Mean methylation was inferred from the fraction of all methylated epialleles. 

Abbreviations: EOC = epithelial ovarian carcinoma; TPR = true positive rate; FPR = false positive rate; AUC 

= area under the curve; MDBC = methylation density binary classifier; MD = methylation density cutoff; * 

and *** indicates p < 0.05 and p < 0.001, two-sided Wilcoxon rank-sum test.  

 

Figure 5. Validation of MDBC cutoff values and corresponding performance in comparison to CA-125 

assessment for identifying EOC from patient plasma. A) The pooled epiallelic fractions of cfDNA methylated 

epialleles with varying methylation densities in the second EOC (red, n=24) and healthy (blue, n=12) patient 

plasma sample cohort. Purple shaded regions indicate overlap between the two plasma sets. B) Receiver 

operating characteristic curve for the optimal 45% methylation density cutoff on the second plasma cohort. 

C) Boxplots showing the performance of the optimal epiallelic fraction (dotted line; 0.14%) and methylation 

density (45%) cutoffs to classify the second EOC patient (red, n=24) and healthy control (blue, n=12) 

plasma sample cohort. D) Fractions of non-serous or serous EOC subtype patient plasma samples from 

the second cohort above the CA-125 or MDBC cutoffs. Abbreviations: EOC = epithelial ovarian carcinoma; 

MDBC = methylation density binary classifier; AUC = area under the curve; *** indicates p < 0.05, two-sided 

Wilcoxon rank-sum test. 
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Fig S1
A B

Supplemental Figure S1. Simulated performance of the MDBC using 

varying admixture ratios of ovarian carcinoma (EOC) to WBC RRBS reads 

sampled at 100 total reads per simulated sample. A) The performance of 

the methylation density binary classifier (MDBC, red) and mean locus 

methylation classifier (blue) at increasing dilutions of EOC RRBS reads in 

a background of WBC RRBS reads acquired from Widschwendter et al. B) 

Plots showing the probability of achieving a higher AUC than the mean 

locus methylation classifier using the MDBC for each methylation density 

cutoff at various admixture ratios. Lower panels show the TPR, 1-FPR, 

and AUC achieved by using the MDBC at each methylation density cutoff. 

EOCs (n=12) were randomly paired with a WBC (n=22) sample and RRBS 

reads were sampled from an EOC-WBC pair to generate a simulated 

spike-in sample. Simulated samples (n=12) were compared to the original 

WBC samples (n=22). 50 iterations of the simulation were performed. 

Solid lines indicate mean values and shaded regions indicate 95% 

confidence intervals. Abbreviations: MDBC = methylation density binary 

classifier; AUC = area under the curve; TPR = true positive rate; FPR = 

false positive rate. Abbreviations: AUC = area under the curve; MDBC = 

methylation density binary classifier; TPR = true positive rate; FPR = false 

positive rate.
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Supplemental Figure S2. Melting traces from DREAMing assay 
for wells containing a mixture of synthetic fully methylated (M) 
and unmethylated male sperm genomic DNA (U) fragments 
originating from the ZNF154 genomic region of interest. 
Abbreviations: -d(RFU)/dT = negative derivative of the change in 
relative fluorescent units. 
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Fig S3

Supplemental Figure S3. ZNF154 locus methylation density vs. DREAMing melt 
temperature in cfDNA. DREAMing melt peak temperatures and corresponding 
methylation density measurements identified via bisulfite sequencing for 131 
post-DREAMing epiallele amplicons. The numbers on the plot represent the 
number of times a detected melt peak had the corresponding melt temperature 
and produced an amplicon with the corresponding methylation density. The red 
line denotes the best fit regression line. The linear regression model and R-
squared value is shown above the plot. 
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Fig S4
A B

Supplemental Figure S4. MDBC analysis of cfDNA DREAMing data 
from the validation cohort. (A) MDBC heatmap indicating the true and 
false positive rate differences for each combination of methylation 
density and epiallelic fraction cutoffs for identification of EOC patient 
(n=24) versus healthy control (n=12) plasma samples of the second 
cohort. (B) Performance of the MDBC at each methylation density 
cutoff for the plasma samples of the second cohort. * mean 
methylation determined from methylation density cutoff of 0%.
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Sample Age Volume 
plasma (mLs) ng/mL genomic 

equivalents loaded 0% 7% 14% 21% 28% 35% 42% 49% 56% 63% 70% 77% 84% 91% 98% 100%

Ovarian 1 68 1.25 12.6 3528 5 9 11 1 0 1 1 1 2 0 0 0 0 1 0 0
Ovarian 2 77 1.25 18.7 4812 1 3 9 5 2 1 0 1 0 0 1 0 1 1 1 2
Ovarian 3 72 1.25 30.0 7452 2 3 1 0 1 3 0 0 0 0 0 1 5 8 1 7
Ovarian 4 27 1.25 38.7 8748 8 4 8 1 0 0 0 0 0 0 0 0 0 0 0 0
Ovarian 5 61 1.25 7.2 1992 9 3 2 0 1 0 0 0 0 0 0 0 2 0 3 3
Ovarian 6 59 1.25 18.3 4380 6 1 2 0 0 0 0 0 0 2 3 0 1 0 0 0
Ovarian 7 75 1.25 15.6 3924 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Ovarian 8 55 1.25 33.2 6000 1 2 2 0 0 1 0 0 1 1 0 0 5 4 11 3
Ovarian 9 40 1.00 62.3 12888 15 23 7 1 0 1 1 1 0 1 0 1 2 1 0 0
Ovarian 10 61 1.00 19.9 3624 3 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0
Ovarian 11 51 1.00 24.1 4968 3 2 1 0 0 0 0 0 0 0 0 0 4 1 0 2
Ovarian 12 60 1.00 20.9 3216 4 9 0 1 1 1 0 1 4 0 0 1 2 0 0 0
Ovarian 13 61 1.00 38.6 9348 1 19 14 4 1 2 0 0 1 0 1 0 0 0 0 0
Ovarian 14 69 1.20 55.6 6000 18 2 0 0 0 0 0 0 0 0 0 0 0 0 7 17
Ovarian 15 63 1.00 18.3 3696 8 3 0 0 0 2 0 0 0 0 2 0 2 1 0 0
Ovarian 16 52 1.00 15.0 3120 8 5 1 2 0 3 1 1 1 0 2 0 0 1 0 0
Ovarian 17 54 1.00 6.0 1284 5 1 1 2 0 0 0 0 0 1 0 0 2 1 1 0
Ovarian 18 49 1.00 10.8 2244 3 0 2 0 0 3 0 0 0 0 0 0 2 9 10 3
Ovarian 19 53 1.00 10.5 2292 7 2 2 0 2 2 0 0 1 0 0 1 3 7 2 2
Ovarian 20 72 1.00 15.1 3036 4 4 5 0 1 1 0 1 0 0 0 1 3 2 3 3
Ovarian 21 66 1.00 19.2 4128 4 2 3 1 1 1 0 1 0 0 2 2 9 1 2 3
Ovarian 22 52 1.00 8.6 1920 3 2 1 1 0 0 0 2 0 0 0 1 1 1 4 0
Ovarian 23 33 1.00 14.8 3036 3 1 0 0 0 1 0 1 0 0 0 1 7 6 0 3
Ovarian 24 59 1.00 8.4 1968 6 4 3 1 2 1 2 0 2 0 0 0 0 0 0 0
Ovarian 25 67 1.00 34.9 6000 4 1 2 0 0 1 1 1 4 4 2 3 5 4 0 1
Ovarian 26 57 1.50 14.3 4584 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0
Normal 1 47 1.60 17.8 6240 4 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0
Normal 2 47 1.50 32.4 8760 4 6 4 2 0 3 1 2 3 0 0 1 2 0 0 0
Normal 3 48 1.50 31.6 9840 5 3 9 4 2 3 1 0 0 0 1 0 1 0 0 1
Normal 4 51 1.60 68.6 17484 0 4 12 7 1 7 2 3 3 1 2 1 1 0 0 0
Normal 5 63 1.60 33.6 9492 4 5 4 1 3 3 4 1 2 0 0 0 1 0 0 0
Normal 6 45 1.60 21.6 7236 4 9 7 2 3 7 0 1 1 0 0 0 3 1 0 1
Normal 7 48 1.80 30.0 9264 2 6 9 3 0 0 0 0 0 0 0 0 0 0 0 0
Normal 8 52 1.80 30.4 9268 1 2 10 2 2 2 0 0 0 1 0 1 0 0 0 0
Normal 9 53 1.80 16.5 7620 0 10 5 3 1 3 1 0 0 0 0 1 0 0 0 0
Normal 10 61 1.70 47.2 14064 4 3 13 4 1 1 0 1 0 0 0 0 0 0 2 0
Normal 11 65 1.80 159.7 37416 1 0 18 5 3 1 0 0 1 0 0 1 1 0 0 0
Normal 12 54 1.80 14.7 5580 6 11 7 0 0 0 0 0 0 0 0 0 0 0 0 0
Normal 13 60 2.00 18.8 6000 0 17 7 0 0 0 0 1 0 2 0 1 1 0 0 1
Normal 14 60 2.00 12.5 4836 7 10 6 0 0 0 0 0 0 2 0 0 0 0 0 1
Normal 15 59 1.80 31.4 12203 0 15 31 2 0 0 0 0 3 0 1 0 1 1 0 0
Normal 16 57 1.70 7.5 2580 7 8 1 0 0 0 1 0 0 0 1 0 0 0 1 0
Normal 17 54 1.70 13.8 4872 4 6 5 0 1 3 1 2 0 1 0 0 0 0 0 0
Normal 18 65 2.00 21.3 6000 10 8 4 0 0 1 1 1 1 0 1 1 0 0 0 1
Normal 19 57 2.20 10.5 4452 1 3 13 0 1 6 1 0 3 1 0 0 0 0 0 0
Normal 20 50 2.00 16.6 6000 3 9 9 2 1 0 0 0 0 0 0 0 0 0 0 0
Normal 21 55 1.90 15.5 5364 3 16 5 0 0 0 0 0 0 0 0 0 1 0 0 0
Normal 22 55 2.00 66.0 16000 0 3 48 7 2 1 0 0 1 1 3 2 1 2 1 0
Normal 23 58 2.00 10.8 3996 3 9 3 1 0 1 0 0 0 1 0 0 0 1 0 0
Normal 24 58 2.00 17.8 6132 6 3 10 0 0 1 0 1 0 0 0 0 0 0 0 1
Normal 25 64 2.00 502.7 18712 0 1 46 0 1 0 0 0 0 0 5 1 7 0 1 2
Normal 26 50 2.00 23.0 6000 7 15 2 0 0 0 0 0 0 0 2 0 1 0 0 0
Normal 27 63 2.00 692.7 6384 0 0 24 0 0 0 0 0 0 0 0 0 1 0 1 0
Normal 28 51 2.40 341.2 18085 1 0 59 0 0 0 0 0 0 0 0 1 0 1 0 0
Normal 29 51 2.20 15.9 6000 13 7 1 1 1 0 0 0 1 2 0 0 0 0 0 0
Normal 30 51 1.80 82.1 16000 0 9 29 1 0 0 0 0 0 1 3 0 1 0 0 0
Normal 31 61 2.10 26.0 11427 7 24 17 0 0 0 0 0 2 3 3 0 4 0 1 0
Normal 32 46 3.50 24.6 12568 2 32 7 2 0 1 1 1 1 0 0 0 0 0 0 1
Normal 33 46 3.50 5.9 2628 5 2 4 0 0 3 0 0 0 0 0 0 0 0 0 0
Normal 34 46 3.50 9.4 6502 4 21 6 1 2 1 0 0 1 1 0 0 2 1 0 1
Normal 35 46 3.50 7.8 5580 7 11 11 2 2 3 2 0 1 0 0 1 3 0 0 0
Normal 36 46 3.50 4.2 1776 1 4 0 0 1 0 2 0 1 0 0 0 0 0 0 0
Normal 37 46 3.50 2.5 1044 1 2 7 2 0 0 0 0 0 0 0 0 0 0 0 0
Normal 38 46 3.50 7.0 5606 4 17 11 0 0 3 1 1 2 1 2 2 2 0 0 0
Normal 39 47 3.50 12.2 7638 19 7 7 2 0 2 0 0 0 2 0 0 0 0 0 1
Normal 40 47 3.50 7.6 5138 3 7 1 1 1 0 0 0 2 0 0 0 0 0 0 0
Normal 41 47 3.50 3.7 1536 1 4 4 0 0 0 1 0 0 0 0 0 1 0 0 0
Normal 42 54 3.50 46.9 12448 0 19 10 4 0 3 0 0 0 0 1 0 2 0 0 0
Normal 43 53 3.50 2.3 936 6 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Normal 44 48 3.50 6.9 5052 0 0 0 0 0 0 0 0 2 0 1 0 1 0 0 0
Normal 45 48 3.50 3.7 1560 3 3 1 1 0 2 0 0 0 0 0 0 0 0 0 0

DREAMing Profile (peak counts for each % methylation density)

Supplementary Table S1: First patient cohort of EOC 
(n=26) and normal control (n=45) plasma samples. 
Patient age, volume of plasma processed, cfDNA 

concentration (ng/mL), estimated genomic equivalents 
assessed in DREAMing, and number of observed 

melt peaks with a given methylation density for each 
sample are reported. 
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Sample Patient blood 
draw timepoint Age

Volume 
plasma 
(mLs)

ng/mL CA125 
U/mL subtype genomic 

equivalents loaded 0% 7% 14% 21% 28% 35% 42% 49% 56% 63% 70% 77% 84% 91% 98% 100%

Ovarian 1 Patient 1, P001 53 1.00 2.45 297 serous 288 15 2 1 1 0 2 4 0 0 0 0 2 5 1 1 0
Ovarian 2 Patient 2, P001 73 1.00 17.86 22 serous 2071 10 5 1 0 0 3 1 1 0 1 4 0 5 2 1 1
Ovarian 3 Patient 3, P001 44 1.00 3.13 serous 339 10 4 2 0 0 0 0 0 0 0 1 1 0 1 0 2
Ovarian 4 Patient 4, P001 70 1.00 12.17 326 serous 1476 2 11 1 1 1 2 0 0 2 1 0 0 1 1 1 0
Ovarian 5 Patient 5, P001 58 1.00 2.34 2.5 nonserous 254 6 5 7 0 0 1 1 1 3 1 2 1 3 0 0 0
Ovarian 6 Patient 6, P001 58 1.00 0.75 27 nonserous 84 2 2 1 0 1 0 1 0 1 0 0 0 3 0 0 0
Ovarian 7 Patient 7, P001 61 1.00 3.39 5.6 nonserous 372 2 14 1 0 1 0 0 1 4 1 2 1 2 1 0 0
Ovarian 8 Patient 8, P001 56 1.00 0.34 137 serous 48 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
Ovarian 9 Patient 1, P002 53 1.00 4.52 358 serous 461 2 11 3 3 1 1 1 0 2 0 1 1 5 1 2 0
Ovarian 10 Patient 2, P002 73 1.00 23.21 15 serous 2710 15 4 1 1 0 1 1 0 0 1 1 0 6 1 1 0
Ovarian 11 Patient 3, P002 44 1.00 4.08 153 serous 485 2 15 0 2 2 2 1 0 1 1 1 1 5 1 0 0
Ovarian 12 Patient 4, P002 70 1.00 7.74 315 serous 919 3 9 2 1 2 2 0 0 2 1 0 0 1 0 1 0
Ovarian 13 Patient 5, P002 58 1.00 0.41 3.6 nonserous 48 2 3 3 0 0 0 1 0 0 0 1 1 2 0 0 0
Ovarian 14 Patient 6, P002 58 1.00 0.32 34 nonserous 48 0 1 0 2 0 0 0 0 1 0 1 0 2 0 1 0
Ovarian 15 Patient 7, P002 61 1.00 5.24 5.2 nonserous 584 2 12 2 1 0 1 1 1 3 0 2 2 2 0 0 0
Ovarian 16 Patient 8, P002 56 1.00 1.96 40 serous 225 5 9 0 1 0 0 0 0 1 0 0 1 1 0 0 0
Ovarian 17 Patient 1, P003 53 1.00 4.38 182 serous 530 14 2 1 1 0 1 1 0 0 1 0 0 0 1 0 2
Ovarian 18 Patient 2, P003 73 1.00 4.69 14 serous 521 11 2 1 5 0 4 1 0 1 0 0 1 2 0 0 0
Ovarian 19 Patient 3, P003 44 1.00 0.38 191 serous 24 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0
Ovarian 20 Patient 4, P003 70 1.00 7.34 180 serous 882 2 9 3 1 1 3 3 1 2 0 2 2 2 1 0 0
Ovarian 21 Patient 5, P003 58 1.00 7.03 3.7 nonserous 777 12 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Ovarian 22 Patient 6, P003 58 1.00 40.80 26 nonserous 4720 6 3 5 2 1 3 1 0 1 0 1 1 0 0 0 0
Ovarian 23 Patient 7, P003 61 1.00 7.14 5.1 nonserous 823 1 12 2 0 0 1 0 1 2 1 0 0 2 0 0 0
Ovarian 24 Patient 8, P003 56 1.00 0.32 51 serous 24 3 3 1 0 0 0 1 0 1 0 1 3 0 0 0 0
Normal 1 56 1.6 12.50 2317 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0
Normal 2 53 1.4 10.76 1309 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Normal 3 51 1.6 7.54 1397 8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Normal 4 51 1.6 3.75 579 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Normal 5 52 1.6 2.17 301 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Normal 6 45 1.8 2.64 458 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Normal 7 48 1.5 3.27 474 3 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0
Normal 8 49 1.4 2.64 392 10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Normal 9 65 1.6 9.98 1851 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Normal 10 65 1.6 3.43 635 0 10 0 0 0 1 0 0 0 1 0 0 0 0 0 0
Normal 11 48 1.8 3.59 747 0 11 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Normal 12 63 1.5 3.53 614 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DREAMing Profile (peak counts for each % methylation density)

Supplementary Table S2: Second patient cohort of EOC (n=24) and normal control (n=12) plasma samples. Blood draw timepoint, patient age, volume of plasma processed, cfDNA concentration (ng/mL), blood concentration of measured 
cancer antigen 125 (CA125, U/mL), EOC subtype, estimated genomic equivalents assessed in DREAMing, and number of observed melt peaks with a given methylation density for each sample are reported.
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