
Relative Concentration of Brain Iron (rcFe) Derived from Standard Functional MRI. 
 
 
Authors: Stan J. Colcombe1,4, Michael P. Milham1,2, Anna MacKay-Brandt1, Alex Franco1,2, F. 
Xavier Castellanos, R. Cameron Craddock1,2 Jessica Cloud1 
 
1 Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA. 
2 Center for the Developing Brain, Child Mind Institute, New York, New York, USA. 

3 New York University School of Medicine, New York, New York, USA. 
4 Correspondence: stan.colcombe@nki.rfmh.org; Nathan Kline Institute for Psychiatric Research, 140 

Old Orangeburg Rd, Orangeburg, NY. 10962 
 
 
 
Abstract 
 
Brain iron plays key roles in catecholaminergic neurotransmitter synthesis and early life brain 
development. It is also central to cellular energetics and neurotransmitter metabolism throughout the 
lifespan. Disturbances in brain iron have been implicated in a growing number of psychiatric and late-
life neurodegenerative disorders. Additionally, brain iron accumulations are thought to play a 
deleterious role in neuroinflammatory processes in later life. Despite its importance, the role of brain 
iron in development, aging, and psychiatric disorders remains comparatively understudied. This is 
partly due to technical challenges inherent in implementation and analysis of formal iron imaging 
protocols and practical constraints on scan session durations. Here, we introduce a method to estimate 
relative brain iron concentrations that is 1) computationally simple, 2) shows excellent correspondence 
with formal iron imaging in-vivo, 3) replicates clinically-relevant findings from formal iron imaging, 4) 
yields novel insights into brain iron and cognition across the lifespan, and 5) leverages a widely 
available and frequently shared brain imaging modality: functional MRI. The computationally simple 
nature of the measure, coupled with the availability of fMRI datasets across the lifespan and disorders, 
has the potential to transform our understanding of the complex and critical relationship between iron 
and brain health. 
 
Introduction 
 
Iron metabolism and accumulation are undisputedly essential to healthy brain function, but their roles in 
brain health are complex when considered across the lifespan. In prenatal life, iron serves to guide 
neuronal development, subserves myelination1 and dopamine receptor development2, and is essential 
for synthesis of catecholaminergic neurotransmitters. This is particularly evident throughout childhood3 
and into later life in areas such as the striatum, midbrain, and brainstem areas such as the substantia 
nigra, ventral tegmental area and locus coeruleus4,5.  As in most cells in the mammalian body, iron also 
plays a central role in brain cellular energetics6, as well as myelin maintenance throughout the 
lifespan1,7. Iron is poorly absorbed into the body, tightly regulated once incorporated, and crosses the 
blood-brain barrier via active transport8,9.  Unlike most other metals, active mechanisms to eliminate 
iron from the body do not exist10. Indeed, in areas where iron utilization is high, such as the striatum 
and other catecholamine-rich areas, iron tends to gradually accumulate throughout the lifespan11,12. 
Unfortunately, accumulation of iron results in cellular oxidative stress13, suggesting a potential 
deleterious role of brain iron accumulation in otherwise non-pathological aging. 
 
It is also, perhaps, not surprising that dysregulation of this key element is increasingly associated with a 
number of psychiatric disorders. Some, such as restless leg syndrome14, and Attention-Deficit 
Hyperactivity Disorder14,15 (ADHD) are associated with reduced brain iron levels, with evidence that iron 
supplementation can provide some symptom relief16–18. Other disorders such as Parkinson’s disease19–

21, and Alzheimer’s dementia20,22,23 are associated with excessive regional brain iron, leading to 
hypotheses about ferroptosis (iron-mediated cell death)4,24–26, and approaches to reduce iron levels as 
a target for intervention20,24,27 Given these observations, iron appears to be a useful index to track 
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Figure 1. Top panel: illustration of expected signal decay in a susceptibility-
weighted image at varying levels of iron content. Bottom panel: the same curves 
as in the top panel, but inverted to show how the expected signal decay at 
varying iron concentrations might be represented in a single-echo susceptibility 
image, an approach we have termed relative concentration of brain iron (rcFe). 

normative maturation from early to late-life, while also serving as a reliable indicator of pathological 
disruption from that normative trajectory.    
 
Unfortunately, despite the clear importance of brain iron, both as a boon for brain development and 
metabolism and as a hazard through later life oxidative stress, iron has been comparatively 
understudied with neuroimaging, particularly relative to modalities such as functional Magnetic 
Resonance Imaging (fMRI). This can likely be ascribed to the requirements for specialized imaging 
sequences in MRI studies, which tend to be deprioritized relative to functional, diffusion, and 
morphometric imaging protocols, as well as specialized knowledge required to analyze standard 
quantitative iron imaging protocols. These observations highlight the need for a computationally 
tractable method to quantify brain iron that can be generated without compromising or overburdening 
ongoing data collection efforts.   
 
Here, we report findings from targeted investigations examining whether standard fMRI images can be 
leveraged to estimate relative brain iron concentrations. We conclude that our approach, termed 
relative concentration of brain iron (rcFe), has substantial potential to facilitate the study of brain iron in 
development, aging, neurologic and psychiatric populations. We argue from first principles that fMRI 
sequences should be sensitive to brain iron concentrations, and proceed to report a series of findings 
supporting this claim and its intriguing implications. However, in the interest of transparency, we note 
that our results emerged serendipitously from explorations of possible confounds in the quality of fMRI 
skull stripping algorithms as a function of participant age. After resolving the skull stripping issue, the 

lead investigator had a large sample 
(n=341) of skull-stripped and 
coregistered 3D mean fMRI images. 
Out of curiosity, he regressed age 
against mean fMRI value at each 
voxel. The pattern of results was 
striking, resembling well-established 
patterns of iron accumulation in the 
striatum across the lifespan. What 
follows is a report of our attempts to 
refine these initial observations into a 
workable method and explore its 
utility.  
 
Our rcFe approach builds upon the 
well-established relationship between 
the paramagnetic properties of 
unbound iron and its impact on T2* 
image susceptibility. This general 
property of susceptibility is 
fundamental to imaging protocols 
designed to measure tissue iron 
levels 5,28,29, as well as fMRI30,31. A 
typical approach to quantitative iron 
imaging involves the collection of 
structural T2- or T2*-weighted 
images at varying delays in echo time 
(TE). Higher regional brain iron levels 
increase regional susceptibility, and 
therefore the rate at which the signal 
decays over time. It is then possible 
to fit a decay function to quantify iron 

content at each voxel 32–34. Similarly, 
fMRI sequences capitalize on the fact 
that deoxygenated blood is 
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paramagnetic and increases the rate of signal decay, much like unbound iron, while oxygenated blood 
is moderately diamagnetic and has the effect of slowing the rate of signal decay35. However, standard 
fMRI sequences use a fixed TE that optimally distinguishes oxygenated vs. deoxygenated blood levels 
(i.e., blood oxygen level dependent, or BOLD signal). fMRI sequences only collect a single TE, and 
therefore cannot be used to estimate a decay function at each voxel. However, they are, by design, 
sensitive to variations in magnetic susceptibility such as those caused by variations in brain iron. 
Although it is not possible to estimate absolute iron content from a susceptibility image with a single TE, 
it may be possible to provide an estimate of the relative iron content at each voxel, particularly for 
regions that are high in iron content such as the striatum. As an example, Figure 1, top, demonstrates 
how the signal in a susceptibility weighted image might decay given different levels of iron when 
sampled at 7 different echo times; these values would be fit to an exponential decay function; the 
reciprocal of this fit is linearly related to iron content (e.g., 1/T2=R2; 1/T2*=R2*).  Figure 1, bottom, 
illustrates how those same decay curves might be sampled at a single TE (e.g., 2E), and inverted to 
create an estimate of the relative concentration of brain iron, which we term rcFe.  
 
In this paper, we first describe our initial finding of age-related variability in mean fMRI signal. We then 
report on a series of studies carried out after observing the striking consistency of our initial findings 
with extant quantitative MRI and post-mortem studies of brain iron concentrations. Specifically, we 
report on our efforts to: 1) explore variability in our rcFe measure by evaluating a large lifespan sample 
through independent components analysis (ICA), we then 2) validate the sensitivity of rcFe to iron in an 
aqueous phantom containing iron levels selected to approximate known iron concentrations within the 
human brain, 3) examine the correspondence between rcFe measures and standard approaches to 
iron imaging, 4) replicate established findings related to subcortical iron concentrations in a clinical 
population, as well as reveal a novel finding in the relationship between brain iron and ADHD 
symptomatology in typically developing children, and 5) provide novel insights into the age-varying 
relationship between relative subcortical iron concentrations and IQ across the lifespan. 
 
Results 
 
Initial observations 

 
The initial findings demonstrating the 
impact of age on the mean fMRI 
signal are shown in Figure 2, left 
panel. The peak clusters, 
thresholded at Z>18, clearly highlight 
the anatomical structure of the 
putamen. The overall relationship 
between age and mean fMRI signal 
in the displayed mask plotted in 
Figure 2, right panel, illustrate a 
striking relationship between age and 
mean fMRI signal (r(339)=0.81, 
p<0.001). This general observation is 
striking not only in the strength of the 
relationship, but also in that the peak 
effect centers on an area that is 
amongst the most intensely 
concentrated with iron in both MRI 
and post mortem studies28,29,36,37, and 
the consistency with the predicted 
impact of iron on a susceptibility 
weighted image such as fMRI.  
 
 
 

Figure 2. Initial observations. The results from a serendipitous assessment of 
variation in mean fMRI signal across the lifespan. Peak variation was apparent in the 
iron rich putamen (left). The mean within-mask values are plotted in the right panel. 
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Figure 3. Top panel: Independent components analysis of rcFe values revealed three subcortical components, putamen and caudate 
(RED), globus pallidus (BLUE), and thalamus (GREEN). Bottom panel: Mean rcFe values for each of the three ROIs plotted against 
age for each of the 1354 participants.  

 
 
 
 
 
 
 
 
Independent components analysis in larger NKI-Rockland Sample Initiative  
 
Our initial observation related to regional age-wise variation in mean fMRI signal was provocative and 
consistent with predictions that might be made regarding the accumulation of  brain iron across the 
lifespan. A further exploratory ICA investigation of the rcFe images within a larger NKI-RSI cross-

sectional sample yielded additional insights into the patterns of variation across the lifespan. Inspection 
of the ICA outcomes revealed three distinct spatial components encompassing three iron-rich 
subcortical structures. These components are shown in Figure 3, top panel, and include aspects of the 
putamen and caudate (red), globus pallidus (blue), and thalamus (green), overlain on the MNI152 T1 
template. Figure 3, lower panel shows the mean rcFe values within those three ROIs plotted against 
age. rcFe values were significantly correlated with age in all three ROIs, although the putamen 
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(r(1352)=0.72) and globus pallidus (r(1352)=0.62) correlations were notably stronger than that for the 
thalamus (r(1352)=0.15); all ps <0.0001. Again, these findings are generally consistent with previous 
MRI and post-mortem studies of striatal brain iron accumulations.  
 
 
Aqueous iron phantom 
 
To examine the sensitivity of rcFe images to known iron concentrations, we examined rcFe values from 
a phantom with varying aqueous iron concentrations, scanned under a well-established fMRI sequence. 
Figure 4, inset, shows a photograph of the aqueous phantom. Figure 4 shows a stripplot of all 216 rcFe 

voxel values for each iron 
concentration level, taken 
from 6x6x6 voxel regions of 
interest placed near the 
spatial center of the vials 
containing each iron 
concentration in the phantom. 
Voxel rcFe values for each 
iron concentration within the 
ROIs are non-overlapping, 
with reduced variance at 
higher iron concentrations. 
Overall, these results bear a 
striking resemblance to the 
expected pattern of results 
from a hypothetical single TE 
susceptibility weighted image, 
and appear to confirm the 
sensitivity of rcFe to 
biologically plausible iron 
concentrations. 
 
  
 
 
 

 
 
In-Vivo comparison between rcFe and formal iron methods 
 
Figure 5 illustrates the relationship between rcFe and iron levels estimated from three different iron 
imaging protocols in 10 subcortical regions of interest taken from the Harvard-Oxford subcortical atlas. 
The top panel plots the rcFe values against the normalized iron values for each ROI for 5 participants. 
Each colored line represents a best fit line for each participant. The overall correlations between ROI 
values for rcFe and the formal iron imaging protocols within subcortical structures was robust, with 
r(48)=0.92, r(48)=0.93, r(48)=0.84 for the Siemens clinical, 10-echo R2, and 6-echo R2* sequences, 
respectively; all p values < 0.0001. The lower panel shows a 25% subsampling of within-brain voxel-
values for rcFe plotted against values derived from each of the three iron imaging sequences for a 
single representative participant. These correlations were substantially lower than those constrained to 
subcortical regions of interest, with r=0.26, r=0.29, and r=0.27, for the Siemens clinical, 10-echo R2, 
and 6-echo R2* sequences, respectively; all ps < 0.0001. Overall, this pattern of findings suggests that 
there is good correspondence between rcFe and some more traditional iron imaging approaches, at 
least within well-defined subcortical areas. These findings, in combination with those from the aqueous 
iron phantom, suggest that rcFe has reasonable sensitivity to relative iron concentrations.  
 

Figure 4. Inset: Aqueous iron phantom used to assess the sensitivity of rcFe to known 
iron concentrations selected to be biologically plausible. Stripplot showing the rcFe 
values for all 216 voxels extracted from the center of each iron phantom vial. 
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Figure 5. In-vivo comparison between rcFe and three standard iron imaging approaches. Top panel: 
Mean rcFe and iron values for each of 10 subcortical ROIs taken from the Harvard Oxford Subcortical 
Atlas. Bottom panel: voxelwise plots of rcFe and iron estimates for a single subject. 

 
Examination of rcFe clinical relevance within the ADHD200 Sample 
 
Conceptual replication of NKI-RSI ICA. Having established the sensitivity of rcFe to iron content in the 
aqueous phantom and good correspondence between rcFe and more standard assessments of brain 

iron, we next examined the utility of rcFe in 
a clinical population. Specifically, we 
examined rcFe in an openly available 
sample of ADHD and typically developing 
children (TDCs), given the well-established 
reductions in brain iron associated with 
ADHD. As an initial examination, we 
conducted a conceptual replication of the 
ICA analysis (reported above) from the 
NKI-RSI dataset. Specifically, rcFe images 
were computed from the ADHD200 
dataset, preprocessed, and submitted to 
exploratory ICA. Visual inspection of the 
resulting component maps readily 
identified three subcortical components 

showing a striking similarity to those identified in the NKI-RSI dataset. Figure 6 shows these 
components overlain on the MNI152 T1 template; again these include aspects of the putamen and 
caudate (red), globus pallidus (blue), and thalamus (green).  

Figure 6. Conceptual replication of NKI-RSI ICA findings. 
Similar subcortical components are evident in the 
ADHD200 sample to those identified in the NKI-RSI.  
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Group differences in subcortical iron. Perhaps not surprisingly, initial comparisons of ROI values 
revealed a significant effect of age in the putamen (F[1,616]=5.67, p<0.018), globus pallidus 
(F[1,616]=,7.91, p.<0.005), and thalamus (F[1,616]=8.16, p.<0.004). However, there were also 
substantial site effects for putamen (F[1,616]=68.75, p<0.001), globus pallidus (F[1,616]=99.04, 

p.<0.005), and thalamus 
(F[1,616]=8.16, p.<0.004), 
suggesting that z-scaling rcFe 
values within-volume is not 
sufficient to completely remove 
sitewise differences in hardware 
or scanning protocols. 
Importantly, however, rcFe was 
significantly lower for ADHD 
participants, compared to 
controls in the putamen 
(t[616]=6.97, p.<0.0001), globus 
pallidus (t[616]=5.25, p.<0.0001), 
and thalamus (t[616]=4.99, 
p.<0.0001).  See Figure 7. 
Moreover, accounting for the 

effects of age and site in the contrast between ADHD and TDCs resulted in a more robust effect of 
diagnosis for putamen (t[614]=8.61, p.<0.0001), globus pallidus (t[614]=7.07, p.<0.0001), and thalamus 
(t[614]=6.82, p.<0.0001), suggesting that while sitewise differences in protocol may contribute noise to 
datasets pooled across disparate sites and protocols, the overall effect of rcFe-estimated iron content in 
ADHD vs. TDCs was quite robust and consistent with expectations regarding typically iron-deficient 
ADHD participants. 
 
ADHD symptom severity in ADHD and TDC 
 
ADHD symptom severity and subcortical rcFe. The overall pattern of group differences in diagnostic 
status was consistent with the idea that participants with ADHD had lower subcortical brain iron than 
TDCs. However, iron deficiency has been proposed as a causal mechanism for ADHD 
symptomatology38, symptom severity appears to be modifiable by iron supplementation, and symptom 
severity is correlated with serum iron levels in blood38. This suggests that estimated brain iron levels 
may predict ADHD symptom severity along a continuum.  
To investigate this possibility, we restricted analyses to participants from the ADHD200 sample who 
had valid ADHD symptom scores on the ADHD Rating Scale IV (ADHD-RS)39 provided with the 

ADHD200 phenotypic 
information; this resulted 
in a sample of 374 
participants (155 ADHD, 
219 TDC). No significant 
difference in age existed 
(11.7 and 12.01 years 
for ADHD and TDCs, 
ns.).  There was, as 
expected, a significant 
difference in adhd 
symptom severity score 
as a function of 
diagnostic status. 
Participants with ADHD 
scored significantly 
higher on symptom 
severity than TDC 
participants (57.1 vs. 

Figure 7. Bar graph showing rcFe values for children with ADHD and 
TDCs. These findings are consistent with previous observations of 
depleted brain iron levels in ADHD.  

Figure 8. rcFe values for each of the 3 subcortical ROIs, corrected for age and site, plotted against 
ADHD symptom severity separately for children with ADHD (Green) and TDCs (Blue). 
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37.5, respectively; t[372]=11.37, p<0.001).  
We entered diagnostic status (ADHD vs TDC) and mean rcFe values into separate regression models 
predicting ADHD symptoms for each of the 3 ROIs40. However, given the impact of site and age on 
mean rcFe value seen above, we first residualized the rcFe values for each ROI by regressing out site 
and age. Regression analyses revealed that, collapsing across diagnostic status, rcFe was significantly 
related to ADHD symptomatology for the putamen (F[3,374]=44.01, p.<0.001), globus pallidus 
(F[3,374]=34.12, p.<0.001), and thalamus (F[3,374]=33.51, p<0.001). Interestingly, however, a 
significant interaction between diagnostic status and rcFe value predicting ADHD symptom severity for 
putamen (F[3,374]=24.95, p.< 0.001), globus pallidus (F[3,374]=6.69, p.<0.01), and thalamus 
(F[3,374]=4.15, p.<0.042). Figure 8 shows the rcFe values plotted against ADHD symptom score, split 
by diagnostic status. In all three ROIs, it is apparent that the symptom severity overall is negatively 
related to rcFe intensity, with the suggestion that with reduced rcFe estimated iron levels ADHD 
symptom severity increases. This is generally consistent with the hypothesis that depletion of 
subcortical iron is related to ADHD symptomatology. It is also apparent from the plots in Figure 7 that 
symptom severity is related only to variation in rcFe values in the TDC sample.  
 
rcFe, age, and IQ in the larger NKI-RSI 
 
Within a developmental sample, it appears that reduced brain iron is detrimental to brain health, while 
later in life accumulation of brain iron appears to be associated with oxidative stress and a host of 
neurodegenerative disorders. We returned to the NKI-RSI to address the potential implications of brain 
iron and its effects on brain health from a lifespan perspective. We again leveraged the 3 subcortical 
ROIs identified in the NKI-RSI, and conceptually replicated in the ADHD200 sample. Specifically, for 
each of the ROIs we examined the relationship between putative regional brain iron as assessed by 
rcFe and full-scale IQ as a function of age, using a varying coefficient model framework41. We modeled 
the relationship between full-scale IQ and rcFe in each of the three subcortical ROIs, examining the 
varying effect of age on that relationship, assuming a gaussian smoother function and identity linkage. 
Figure 9, top panel, shows the age-varying relationship between rcFe estimates of brain iron and IQ 
across the lifespan. In each of the three ROIs, higher brain iron is associated with better performance 
on the IQ test in childhood, while in middle and later life rcFe estimates of brain iron levels become 
irrelevant or detrimental to IQ performance. The age by iron smoother terms predicting IQ were 
statistically significant in the putamen (F[9.48, 1304]=54.4, p<0.0001), globus pallidus (F[8.5, 
1304]=26.7, p<0.0001) and thalamus (F[9.7, 1304]=51.9, p<0.0001). 
Figure 9, lower panel shows a simplified representation of these effects by presenting the correlation 
between rcFe ROI values in each of three age bands: Child (6-17), Adult (18-45), and Older (46-85). In 
all three ROIs, the child age band demonstrated a significant positive correlation with rcFe brain iron 
estimates (ps <0.01). Notably, however, that pattern was significantly reversed in the putamen for 
adults, and globus pallidus ROI older adults (ps. < 0.01).  
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Figure 9. Top panel: Relationship between rcFe and IQ, as a function of age. Bottom panel: A simplified 
representation of the varying coefficient model above, showing correlations between rcFe and IQ for 
child, adult and older participants. In both cases, it is apparent that rcFe and IQ are positively correlated 
in childhood, but either irrelevant or detrimental in adulthood. This pattern is consistent with the 
opposing effects of brain iron and brain health in development, compared to aging. 
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Discussion 
 
Despite the clear importance of brain iron in development, aging, and psychiatric disorders, it remains 
relatively understudied. Here, we presented evidence in support of rcFe, a computationally tractable 
method to assess relative brain iron concentrations that avoids overburdening or compromising 
ongoing efforts. The current study resulted from an initial serendipitous observation that resembled 
well-established patterns of brain iron accumulation across the lifespan. We argued that the idea that 
mean fMRI images are sensitive to brain iron content has reasonable construct validity given the nature 
of fMRI sequences and of unbound iron in a magnetic field. We suggested a simple method to compute 
a marker that would correct for variability in site-wise or individual scaling of an fMRI image, and 
intuitively convey potential relative iron content. We then validated this approach with an aqueous 
phantom of water vials titrated to biologically plausible levels of iron, as well as in-vivo subcortical 
regions compared against three common iron imaging approaches. We also demonstrated the 
emergence of three subcortical regions through independent components analysis in two independent 
samples (NKI-RSI and ADHD200). We then leveraged these ROIs to evaluate the relationship between 
rcFe-based estimates of brain iron in both samples. We conceptually replicated previous findings 
demonstrating reduced brain iron content in participants with ADHD compared to TDCs using rcFe. We 
demonstrated predictive validity of the rcFe estimate to classify the sample by diagnosis (ADHD or 
TDC)..  In addition, we found that rcFe was significantly related to ADHD symptomatology in the TDC 
sample however, this association was not observed in the ADHD sample. Finally, we presented a novel 
finding demonstrating that the relationship between rcFe and IQ is critically dependent on age, with 
higher levels of estimated brain iron being beneficial early in life, but either irrelevant or detrimental later 
in life. This pattern of results is highly consistent with predictions from models of iron and its impact on 
brain in development vs later life.  
 
The clinical and lifespan findings reported here demonstrate the potential utility of rcFe as an indicator 
of relative brain iron concentrations. The public availability of large-scale fMRI datasets such as the 
NKI-RSI, Healthy Brain Network, Human Connectome Project, UK Biobank, and ADNI, underscores the 
potential for broad-scale reanalysis of existing fMRI data to advance the study of brain iron across 
multiple dimensions. In particular, rcFe could be a powerful tool to identify early and midlife markers for 
later life pathological processes that may elucidate environmental and genetic contributions to both 
normal aging and age-related disease. It should also be noted that our ADHD results, derived from the 
ADHD200 dataset, demonstrate the power of aggregating rcFe datasets across disparate sites, 
hardware configurations, and imaging protocols. As such, rcFe also holds promise in the application to 
a growing number of ad-hoc aggregations of fMRI datasets acquired from clinical populations, including 
disorders where iron has been implicated in the etiology (e.g. autism [ABIDE], schizophrenia [COBRE]).  
 
While the initial findings with rcFe and its potential to open new avenues of inquiry to brain iron are 
promising, there are limitations to both the method and the current study. The most obvious limitation of 
rcFe is that, unlike quantitative approaches, rcFe can at best provide only a relative estimate of brain 
iron. In the current study, we restricted our analyses to subcortical structures, which by nature have 
high iron concentrations. The utility of the rcFe method to cortical areas, or even other subcortical 
areas, remains unexplored. Our approach to calibrating the rcFe by a linear scaling factor worked 
reasonably well as a first-approximation, but is almost certainly suboptimal. This was readily apparent 
in the robust site-wise rcFe effects in the ADHD200 sample. Future work evaluating other approaches 
that better match the predicted signal decay at a fixed TE (e.g.inverse log) are likely to prove fruitful. 
Unclear what range of parameters might be appropriate (e.g. variation in TE), or specifically how they 
might affect the contrast seen here. This is highlighted by the robust main effect of site on rcFe intensity 
within the ADHD200 sample. Future investigations into this question are likely to be highly fruitful. 
Similarly, despite the successful aggregation of rcFe across the ADHD200 datasets, it remains unclear 
what limitations exist in fMRI sequence parameters appropriate for rcFe generation. Future work 
addressing sequence parameter variation (e.g. TE, bandwidth), combining rcFe, quantitative iron 
imaging, and phantoms of known iron concentration could provide useful information about the impact 
of sequence parameters, and perhaps even generate an effective post-hoc calibration algorithm for a 
range of fMRI sequence permutations.  
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Materials and Methods 
 
Initial observations 
 
341 MRI datasets and basic phenotypic information (age, sex), were drawn from the publicly available 
NKI-RSI sample42, a large scale community ascertained dataset that includes extensive imaging and 
phenotypic assessments. Participant ages ranged from 6-85 (mean = 44.1yoa, 196 females), as a 
methodological examination of variation in fMRI image skull stripping efficacy as a function of age. 
Each dataset consisted of the NKI-RSI 1400ms multiband 4 (MB4) resting state fMRI sequence 
(TR=1400ms; TE=30ms, alpha=80, 64 slices; FOV=224; acquisition voxel size = 2.0mm iso, multiband 
factor = 4; duration = 10min) and a high resolution T1 structural image (MPRAGE, TR=2500ms; 
TE=3.5ms; TI=1200ms; voxel size: 1.0mm iso; alpha=8; 174 slices, FOV=256mm; Grappa=2). Images 
were subjected to the following procedures: fMRI images were motion corrected to the middle image in 
series43, skull stripped44, and coregistered to the T1 structural image. The T1 image was warped to the 
MNI152 T1 template45, and the combined spatial transformation was applied to the mean EPI image. 
Out of curiosity, the values at each voxel were regressed against the participants’ age using FSL’s46 
Feat 47, and mean EPI values within the thresholded z-stat mask were plotted against age for visual 
inspection. 
 
Independent components analysis in larger NKI-Rockland Sample Initiative 
 
As a further exploratory examination, we replicated the preprocessing applied to the fMRI and structural 
images described in the Preliminary Observation section, above. However, we expanded the sample 
size to include 1354 cross-sectional participants from the NKI-RS ranging from 6 to 86 years of age 
(mean = 41.26 +/- 21.43; 836 females).   
 
rcFe image creation. All rcFe images were generated with the following procedures. The fMRI 
sequence was motion corrected43, averaged across time, and skull stripped to remove non-brain 
tissue44. The mean skull-stripped image was then z-scaled (zero-meaned and unit variance normalized 
within the 3D volume mask) to account for any differences in overall image intensity scaling. The 
images were then sign-inverted so that higher numbers reflected putative increases in relative iron 
concentration. We termed the resulting voxel map a relative concentration of iron (rcFe) image. This 
image was smoothed with a 4mm iso FWHM Gaussian kernel and forwarded for further analysis. 
 
Study-specific template. Prior to spatial normalization of the rcFe image, we created a study-specific 
template by warping each participant’s T1 image to the MNI 152 2mm T1 template and subsequently 
averaging across each participant’s image. The spatial transformation from native EPI space to 
template space was achieved by applying the by combined spatial transforms from the mean skull-
stripped EPI to the high resolution T1 structural MRI 43, and the transformation from T1 structural MRI 
study-specific template45. 
 
Independent components analysis. The spatially smoothed and normalized rcFe images were 
submitted to independent components analysis via FSL’s46 MELODIC, allowing the algorithm to select 
the optimal number of components. The resulting components were inspected for correspondence with 
iron-rich subcortical brain structures.  
 
Aqueous iron phantom 
 
To examine the potential sensitivity of standard fMRI sequences to biologically plausible iron levels, an 
aqueous iron phantom was created using 50ml plastic tubes, each filled with distilled water and titrated 
with commercially available monocrystalline iron oxide nanoparticle solution (AMAG Pharmaceuticals, 
Inc, Waltham, MA) to achieve solutions of 5, 10, 15 and 20 micromolar iron concentrations. These 
tubes were submerged in a 250ml beaker of distilled water prior to imaging. 20 fMRI volumes were 
collected using the standard NKI-RSI 1400ms MB4 sequence. These images were motion corrected43 
and averaged across time to create a mean volume. This volume was masked to include only the 
phantom and its contents. The values within the mask were z-transformed to scale the values within the 
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volume, and sign-inverted so that higher values might reflect higher iron concentration.  Four regions of 
interest containing 64 contiguous voxels (8x8x8) were created near the spatial center of each vial, and 
the values at each voxel were extracted and plotted against the millimolar iron concentration for each 
vial.  
 
In-Vivo comparison between rcFe and formal iron methods 
 
We next examined the correspondence between fMRI sensitivity to iron concentration and more 
standard measures of brain iron. Five volunteers participated in this experiment, aged 28 to 68 yoa, 3 
males. Following consenting procedures, they were asked to remain motionless while scanned in 
several MRI protocols. Siemens Clinical (TR=2500ms; TE=19.0ms, 136ms, 252ms, 64 slices; 
FOV=210; acquisition voxel size=1.0x0.8x2.0mm; duration=5min), 10-echo R2 (TR=3910ms; 
TE=13.2ms, 26.4ms, 39.6ms, 52.8ms, 66.0ms, 79.2ms, 92.4ms, 105.6ms, 118.8ms, 132ms, 28 slices; 
FOV=210; acquisition voxel size=1.1x1.1x3.0mm; duration= 7min), and a 6-echo R2* (TR=2223ms; 
TE=5.92ms, 25.16ms, 30.32ms, 35.48ms, 40.64ms, 45.80ms, 44 slices; FOV=220; acquisition voxel 
size=1.1x0.9x3.0mm; duration=4min) imaging protocol as representative iron imaging protocols, as well 
as the NKI-RSI standard 1400ms fMRI protocol TR=1400ms; TE=30ms, alpha=80, 64 slices; FOV=224; 
acquisition voxel size = 2.0mm iso, multiband factor = 4; duration = 1min), and T1 (MPRAGE; 
TR=2500ms; TE=3.5ms; TI=1200ms; voxel size: 1.0mm iso; alpha=8; 174 slices, FOV=256mm; 
Grappa=2) structural imaging protocol.  
 
rcFe processing.  rcFe images were calculated, as described above, for each participant in the sample, 
then smoothed with a 4mm iso gaussian spatial kernel and forwarded to further analysis. The spatial 
transformation from native EPI space to template space was achieved by applying the by combined 
spatial transforms from the mean skull-stripped EPI to the high resolution T1 structural MRI 43, and the 
transformation from T1 structural MRI study-specific template45.  
 
Iron Image Preprocessing. Image series were initially masked for in-brain content by automated skull-
stripping of the shortest TE image in each sequence, followed by manual inspection and mask editing. 
A monoexponential decay function was fit at each voxel against echo time within the brain mask to 
estimate T2 (10-echo sequence) and T2* (6-echo sequence) decay. R2 and R2* images were created 
by calculating the reciprocal of the T2 and T2* estimates. The combined transform from the native-
space lowest TE to high-resolution T1 structural image 43, and the T1 to MNI 152 2mm T1 template 
transformation 45 was subsequently applied to the R2 images. 
 
ROI creation. We created 10 subcortical ROIs derived from a-priori masks provided with the Harvard-
Oxford subcortical atlas provided with FSL46.  Atlas probability maps were extracted for the nucleus 
accumbens, caudate, putamen, globus pallidus, and thalamus for the left and right hemisphere 
separately, thresholded at a 75% probability level and binarized, yielding 10 distinct subcortical ROIs. 
These ROI masks were used to extract mean regional rcFe and iron content estimates, which were 
then forwarded for direct comparison.  
 
Examination of rcFe clinical relevance within the ADHD200 Sample. To examine the potential of rcFe 
images to replicate well-established findings regarding diminished brain iron levels in ADHD 
participants, as well as associations with ADHD  clinical features, we took advantage of the publicly-
available ADHD20048. Specifically we downloaded the NeuroBureau’s Athena pipeline preprocessed 
fMRI data49 already coregistered to MNI template space.  A total of 617 participants ranging from 7 to 
21 years of age (mean = 12.34, +/- 3.20; 392 males), were entered into the analysis. rcFe images were 
created (see rcFe preprocessing). These rcFe images were then upsampled to 2mm iso resolution, 
spatially smoothed with a 4mm iso Gaussian kernel and subjected to interrogation at several levels. 
Phenotypic data including age, sex, handedness, diagnostic status, measures of symptom severity, and 
IQ were downloaded from the ADHD200 site (http://fcon_1000.projects.nitrc.org/indi/adhd200/). For the 
purposes of all analyses here, we collapsed across ADHD subtypes (hyperactive/impulsive, inattentive, 
and combined) to form a single binary ADHD diagnosis. This resulted in 226 participants with an ADHD 
diagnostic label and 392 TDCs.  
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Conceptual replication of NKI-RSI ICA analysis and ROI creation. As an initial step, we subjected the 
ADHD200 rcFe images to independent components analysis and manually inspected the resulting 
component maps for correspondence with iron-rich subcortical brain structures. We identified 3 
subcortical ICA components; these roughly corresponded to the thalamus, putamen, and globus 
pallidus components previously identified in the NKI-RSI sample. Regions of interest were created by 
thresholding and binarizing these component maps.  
 
rcFe sensitivity to ADHD status and symptomatology. Using the subcortical ROIs identified above, we 
extracted the mean rcFe values within each mask for each participant, and forwarded them to a series 
of interrogations. We first examined differences in overall rcFe intensity in each of ROIs according to 
ADHD status (ADHD vs. TDC) in a series of between-Ss t-test. We then investigated the utility of 
subcortical ROI rcFe values to predict ADHD status under logistic regression, evaluating the 
prediction’s receiver-operator characteristics (ROC) and area under the curve (AUC). Finally, we 
examined whether subcortical rcFe ROI values were predictive of ADHD symptomatology in ADHD and 
TDC participants.   
 
rcFe, age, and IQ in the larger NKI-RSI 
 
We extracted rcFe values for each of 3 subcortical ROIs identified via ICA in the NKI-RSI sample from 
each of the 1354 participants described previously. These, along with age and the full scale IQ score 
from the NKI-RSI phenotypic battery, were forwarded for analysis via varying coefficient model 
framework41 predicting the relationship between each of the subcortical rcFe values and IQ 
performance as a function of age. As a secondary illustration of the pattern, we split the sample into 
three groups by age: child (6-17), adult (18-45), and older (46-86), and computed the correlation 
between mean rcFe ROI values and IQ.  
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