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Abstract

Inside individual cells, protein population counts are subject to molecular noise due to low copy numbers and
the inherent probabilistic nature of biochemical processes. Such random fluctuations in the level of a protein
critically impact functioning of intracellular biological networks, and not surprisingly, cells encode diverse
regulatory mechanisms to buffer noise. We investigate the effectiveness of proportional and derivative-based
feedback controllers to suppress protein count fluctuations originating from two noise sources: bursty expression
of the protein, and external disturbance in protein synthesis. Designs of biochemical reactions that function as
proportional and derivative controllers are discussed, and the corresponding closed-loop system is analyzed for
stochastic controller realizations. Our results show that proportional controllers are effective in buffering protein
copy number fluctuations from both noise sources, but this noise suppression comes at the cost of reduced static
sensitivity of the output to the input signal. Next, we discuss the design of a coupled feedforward-feedback
biochemical circuit that approximately functions as a derivate controller. Analysis using both analytical methods
and Monte Carlo simulations reveals that this derivative controller effectively buffers output fluctuations from
bursty stochastic expression, while maintaining the static input-output sensitivity of the open-loop system. As
expected, the derivative controller performs poorly in terms of rejecting external disturbances. In summary, this
study provides a systematic stochastic analysis of biochemical controllers, and paves the way for their synthetic
design and implementation to minimize deleterious fluctuations in gene product levels.

I. INTRODUCTION

Advances in single-cell technologies over the last decade have revealed striking differences between individual
cells of the same population. For example, the level of a given protein can vary considerably across cells within a
population, in spite of the fact that cells are identical clones of each other and are exposed to the same environment
[1]–[6]. Such intercellular stochastic differences in gene expression patterns have tremendous consequences for
biology and medicine [7]–[12], including stochastic cell-fate assignment [13]–[17], microbial bet hedging [18],
[19], bacterial and cancer drug-resistance [20], [21].

Stochastic variations in the level of protein primarily arise from two main sources:
• Low-copy number fluctuations in underlying biomolecular components (genes, mRNA, proteins). Moreover,

this shot noise is amplified by the fact that transcription of genes is not a continuous process but happens
in sporadic bursts [22]–[26].

• External disturbances in the protein synthesis rate due to fluctuations in expression-related machinery (RNA
polymerases, Ribosomes, etc.) or intercellular differences in cell-cycle stage/cell size [27]–[30].

Given these noise sources, cells encode diverse regulatory mechanisms to suppress stochasticity in the level
of a protein around a set point. Perhaps the simplest example of this is a negative feedback loop, where the
protein directly or indirectly inhibits its own synthesis [31]–[43]. Such naturally-occurring feedbacks have been
shown to be key motifs in gene regulatory networks [44]. Furthermore, design of in-vitro/in-silico synthetic
feedback system based on linear PID or nonlinear controllers is an intense area of current research [45]–[53].
In this contribution, we investigate design of biochemical circuits that function as approximate proportional and
derivative-based controllers, and systematically investigate their effectiveness in buffering protein noise levels.

In Section II, we introduce an open-loop model of stochastic gene expression where the protein is expressed
in random bursts, and its expression is impacted by an upstream noisy input (Fig. 1). We provide exact analytical
formulas for the protein mean and noise levels in open loop. Section II also introduces the mathematical tools to
be used throughout the paper for the analysis of stochastic dynamical systems. In Section III and IV, we discuss
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Fig. 1. Schematic of the gene expression process, where a gene is transcribed to produce mRNAs. Each mRNA is subsequently translated
to synthesize protein Y molecules. The expression process is impacted by an upstream external disturbance. Proportional-integral-derivative
(PID) controllers can be designed to minimize fluctuations in Y copy number around a desired set point. This paper focuses on the design
and stochastic analysis of proportional and derivative controllers, and integral feedback is omitted due to space constraints.

designs of nonlinear biochemical circuits that function as approximate proportional and derivate controllers,
respectively. Given the nonlinearities introduced by feedback loops, we use the linear noise approximation method
[54], [55] to investigate their noise suppression properties, and validate the results by performing exact stochastic
simulations of the feedback system.

Symbols and Notation: Throughout the paper we denote chemical species by capital letters, and use
corresponding small letters for molecular counts. For example, if Y denotes a protein species, then y(t) is the
number of molecules of Y at time t inside the cell. We use angular brackets to denote the expected value of
random variables and stochastic processes. Given a scalar random process y(t) ∈ {0,1,2, . . .} that takes non-
negative integer values, then

〈y(t)m〉 :=
∞

∑
i=0

imP(y(t) = i), m ∈ {1,2, . . .} (1)

represent its mth order uncentered moment and P(y(t) = i) is the probability of having i molecules. Steady-state
statistical moments are denoted by

〈ym〉 := lim
t→∞
〈y(t)m〉. (2)

Finally, noise in the level of protein species is quantified by the steady-state coefficient of variation squared
(variance divided by mean squared) that is defined as

CV 2
Y :=

〈y2〉−〈y〉2

〈y〉2
. (3)

II. SYSTEMS MODELING OF GENE EXPRESSION

We start by introducing simple models of the gene expression process with a particular focus on incorporating
noise mechanisms that drive fluctuations in the level of a protein.

A. Incorporating bursty dynamics

Transcription of individual genes inside single cells has been shown to occur in bursts of activity, followed by
periods of silence [56]–[61]. Each burst corresponds to the gene stochastically switching to a transcriptionally
active state, and then becoming inactive after synthesizing a few messenger RNA (mRNA) transcripts. These
mRNAs are typically unstable with short half-lives, and each mRNA decays after translating a few protein
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molecules. The combined multiplicative effect of both these processes (single gene making multiple mRNAs,
single mRNA making multiple proteins) is to create a net burst of protein molecules, every time the gene
becomes active. Motivated by these experimental findings, we phenomenologically model protein copy-number
fluctuations via a bursty birth-death process [62]–[68]. More specifically, bursts arrive at a constant Poisson rate
ky that corresponds to the frequency with which the gene becomes active. Each bursts arrival event, results in
the synthesis of By ∈ {1,2, . . .} protein molecules, where the burst size By is an independent and identically
distributed random variable that is drawn from an arbitrary positively-valued probability distribution.

Let y(t) denote the intracellular copy number of protein Y at time t. Then, based on the above model description,
the probability of a burst event of size By = j molecules occurring in the next infinitesimal time interval (t, t+dt]
is

P(y(t +dt) = y(t)+ j|y(t)) = kyP(By = j)dt. (4)

Assuming each protein molecule decays with a constant rate γy, defines the probability for the protein death event
occurring in the time interval (t, t +dt] as

P(y(t +dt) = y(t)−1|y(t)) = γyydt. (5)

Having defined an integer-valued continuous-time Markov process y(t) via the probabilities (4)-(5), we now
focus our attention on its statistical moments. We refer the reader to [69]–[72] for a thorough analysis of moment
dynamics for stochastic systems of the form (4)-(5), and only provide the main result here – the time evolution
of the expected value of y(t)m is given by

d〈y(t)m〉
dt

= 〈G(y)〉, m ∈ {1,2, . . .} (6)

where the infinitesimal generator G takes the form

G(y) :=
∞

∑
j=0

kyP(By = j)[(y+ j)m− ym]+ γyy[(y−1)m− ym]. (7)

Intuitively, the right-hand-side of (7) is simply the product of the change in ym when an event occurs and the
probabilistic rate at which it occurs, summed across all possible events. Substituting the appropriate value of m
in (6) yields the following moment dynamics

d〈y〉
dt

= ky〈By〉− γy〈y〉 (8a)

d〈y2〉
dt

= γy(〈y〉−2〈y2〉)+ ky〈B2
y〉+2ky〈y〉〈By〉 (8b)

where 〈By〉 is the mean protein burst size, and 〈B2
y〉 is its second-order moment. Subsequent steady-analysis of

(8) reveals the protein mean and noise levels to be

〈y〉=
ky〈By〉

γy
, CV 2

Y =
〈By〉+ 〈B2

y〉
2〈By〉〈y〉

, (9)

respectively. By = 1 with probability one leads to Poissonian fluctuations in Y copy numbers with CV 2
Y = 1/〈y〉.

If the burst size By is assumed to be a geometrically-distributed random variable with mean burst size 〈By〉 (as
shown experimentally for an E. coli gene [73]), then 〈B2

y〉= 2〈B2
y〉−〈By〉, and the above noise levels reduce to

CV 2
Y =
〈By〉
〈y〉

=
γy

ky
. (10)

A key point worth mentioning is that the product CV 2
Y ×〈y〉 is independent of the burst frequency ky, while

CV 2
Y in (10) is independent of the mean burst size 〈By〉. Thus, simultaneous measurements of both the mean

and protein noise levels allows for discerning whether a change in 〈y〉 is a result of alterations in ky or 〈By〉.
Interestingly, this noise-based method works quite well in practice, and has successfully elucidated the bursty
kinetics of several genes [74]–[77].
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B. Incorporating external disturbance

Next, we introduce another important source of stochasticity that arises from external disturbances in the protein
synthesis rate. These disturbances correspond to fluctuations in the abundance of enzymes, such as, transcription
factors, RNA polymerases, etc. We lump these factors into a single species X and model its stochastic dynamics
via a bursty birth-death process analogous to (4)-(5):

P(x(t +dt) = x(t)+ j|x(t)) = kxP(Bx = j)dt, (11a)

P(x(t +dt) = x(t)−1|x(t)) = γxxdt. (11b)

Here kx is the arrival rate of bursts in X , Bx is the burst size, and γx is the decay rate of X . Then, as per (9)

〈x〉= kx〈Bx〉
γx

, CV 2
X =
〈Bx〉+ 〈B2

x〉
2〈Bx〉〈x〉

. (12)

The disturbance is connected to the synthesis of Y by assuming that the frequency of protein Y bursts is
proportional to x(t), and is given by kyx(t)/〈x〉. The division by 〈x〉 ensures that the average burst arrival rate is
ky. This leads to a system of coupled bursty birth-death processes given by (11) and

P(y(t +dt) = y(t)+ j|y(t),x(t)) =
kyx

〈x〉
P(By = j)dt (13a)

P(y(t +dt) = y(t)−1|y(t),x(t)) = γyydt. (13b)

The statistical moments of this joint process evolve as per
d〈y(t)m1x(t)m2〉

dt
= 〈G(y,x)〉, m1,m2 ∈ {0,1,2, . . .}

G(y,x) :=
∞

∑
j=0

kyx

〈x〉
P(By = j)[(y+ j)m1xm2− ym1xm2 ]

+
∞

∑
j=0

kxP(Bx = j)[ym1(x+ j)m2− ym1xm2 ]

+ γxx[ym1(x−1)m2− ym1xm2 ]+ γyy[(y−1)m1xm2− ym1xm2 ] (14)

[69]–[72]. To write moment dynamics in a compact form we define a vector

µ = [〈x〉,〈y〉,〈xy〉,〈x2〉,〈y2〉]T (15)

that consists of all the first and second order moments of x(t) and y(t). Then, its time evolution is given by a
system of linear differential equations

µ̇ = â+Aµ, (16)

where vector â and matrix A are obtained via (15) by choosing appropriate values of m1, m2. Steady-state analysis
of (16) results in the same mean Y level as (9), and the following noise level

CV 2
Y =

Intrinsic
noise︷︸︸︷

CV 2
int +

External disturbance︷ ︸︸ ︷
γy

(γy + γx)
CV 2

X , CV 2
int =

〈By〉+ 〈B2
y〉

2〈By〉〈y〉
, (17)

that can be decomposed into two components. The first component CV 2
int is the noise contribution from stochastic

bursts computed earlier in (9), and has been referred to in literature as the intrinsic noise in Y [78]–[82]. The
second component is the noise contribution of the external disturbance, and has been referred to as the extrinsic
noise in Y . Note that the ratio γy/(γy + γx) quantifies the time-averaging of upstream fluctuation in X by Y . For
example, fast fluctuations in X are efficiently averaged out by Y , and this ratio approaches zero for γx→ ∞. In
contrast, slow fluctuations in X lead to inefficient time-averaging that increases Y noise levels to

CV 2
Y = CV 2

int +CV 2
X , γx� γy. (18)

Next, we investigate how negative feedback regulation suppresses different noise components in (17) to minimize
fluctuations in Y copy numbers around it mean 〈y〉.
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Fig. 2. Implementation and noise decomposition for a proportional feedback controller. (a) Schematic of a proportional controller
where the protein Y is sensed by a noisy sensor Z that inhibits the synthesis of Y . (b) Different components in the noise levels of protein
Y from (28) plotted as a function of the feedback gain fp. While feedback selectively attenuates noise due to external disturbance and
stochastic expression of Y , it amplifies the sensor noise, leading to a non-monotonic profile for the total noise. The noise contribution from
the external disturbance decreases rapidly as a function of fp and approaches zero for fp→ ∞. In contrast, the intrinsic noise decreases
slowly and asymptotically approaches a non-zero limit. In this plot, noise levels are normalized to the open-loop noise ( fp = 0), with
other parameters chosen as CV 2

Z = 0.4, CV 2
int =CV 2

ext = 0.2. γz = 5γy = 15γx. (c) The normalized total noise in Y from (28) with respect to
the feedback gain fp for different levels of sensor noise. The total noise CV 2

Y is minimized at an optimal feedback gain, which critically
depends on the extent of sensor noise CV 2

Z .

III. NOISE SUPPRESSION USING PROPORTIONAL CONTROLLER

To implement a negative feedback loop we first introduce a new protein species Z that functions as a noisy
sensor of Y . Protein Z is also assumed to be synthesized in bursts of size Bz, and senses Y via its burst frequency
kzy(t) that responds linearly to any changes in Y levels. This leads to the following bursty birth-death process
for z(t)

P(z(t +dt) = z(t)+ j|y(t),z(t)) = kzyP(Bz = j)dt, (19a)

P(z(t +dt) = z(t)−1|y(t),z(t)) = γzzdt, (19b)

where γz is the decay rate of protein Z. Recall from Section II-B that the frequency of bursts in the Y protein
was kyx(t)/〈x〉 in the open-loop system. To close the feedback loop, we now modify this burst frequency to
kyg(z)x(t)/〈x〉, where g(z) is a positively-valued monotonically decreasing function of z(t). Typically, g takes the
form of a Hill function that mechanistically arises from the fast binding-unbinding of the protein to the gene’s
promoter region to regulate transcriptional activity [83]. Within this feedback there are three noise mechanisms
at play: external disturbance X impacting synthesis of Y , expression of Y in stochastic bursts, and a noisy sensor
Z that measures Y and inhibits it (Fig. 2). The overall stochastic system is given by (11), (19) and

P(y(t +dt) = y(t)+ j|y(t),x(t),z(t)) =
kyg(z)x

〈x〉
P(By = j)dt (20a)

P(y(t +dt) = y(t)−1|y(t),x(t),z(t)) = γyydt. (20b)

A. Analysis of Mean levels

At equilibrium, the mean levels of the random processes x(t), y(t) and z(t) satisfy

〈x〉= kx〈Bx〉
γx

, 〈z〉= kz〈Bz〉〈y〉
γz

,
ky〈g(z)x〉〈By〉

〈x〉
= γy〈y〉. (21)

Assuming copy-number fluctuations are tightly regulated by the feedback system, and that they are small,

〈g(z)x〉
〈x〉

≈ g(〈z〉)〈x〉
〈x〉

= g(〈z〉). (22)
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Given that g(z) is a positively-valued monotonically decreasing function, using (21) and (22), the steady-state
mean level of Y is the unique solution to the equation

kyg

(
kz〈Bz〉〈y〉

γz

)
〈By〉= γy〈y〉. (23)

Having solved for the means, the burst frequency of Y can now be approximated using Taylor series as

kyg(z)x/〈x〉 ≈ kyg(〈z〉)

(
x

〈x〉
− fp

z−〈z〉
〈z〉

)
(24)

where

fp :=− 〈z〉
g(〈z〉)

dg(z)
dz

∣∣∣∣
z=〈z〉

> 0 (25)

is the log sensitivity of the function g evaluated at steady state. Note that if the sensor dynamic is very fast
compared to the measurand Y (i.e., γz� γy), then z(t) ∝ y(t), and the burst frequency in (24) will be proportional
to the error y−〈y〉. Hence, this circuit architecture can be interpreted as an approximate proportional controller
with feedback gain fp. Finally, if we consider the parameter ky in Y ’s burst frequency as an environmental input,
then one can define a static sensitivity of 〈y〉 to ky

S〈y〉ky
:=

ky

〈y〉
d〈y〉
dky

(26)

which using (21) and (25) is given by

S〈y〉ky
=

1
1+ fp

(27)

and monotonically decreases with increasing gain. Note for the open-loop system fp = 0 and S〈y〉ky
= 1 as mean

〈y〉 is simply proportional to ky from (9).

B. Analysis of Noise levels
Next, we focus on computing the noise levels in Y for the overall feedback system. As before, we define a

vector µ that consists of all the first and second order moments of x(t), y(t) and z(t). The time evolution of µ

can be obtained by expanding (15) to the three-species system, where Y ’s nonlinear burst frequency is replaced
by its linear approximation (24). Having linear probabilistic rates for all birth-death events results in a linear
dynamical system (16) that can be solved analytically to obtain steady-state moments [72]. This analysis yields
the following noise level for protein Y

CV 2
Y =

Intrinsic noise︷ ︸︸ ︷
(γy + fpγy + γz)

( fp +1)(γy + γz)
CV 2

int

+

External disturbance︷ ︸︸ ︷
γy((γz + γy)(γx + γz)+ γxγy fp)

(1+ fp)(γy + γz)((γx + γy)(γx + γz)+ γyγz fp)
CV 2

X

+

Sensor noise︷ ︸︸ ︷
f 2
p γy

( fp +1)(γy + γz)
CV 2

Z . (28)

which can be decomposed into three components. The first component is the intrinsic noise in Y due to its bursty
expression, and it decreases with increasing feedback gain fp approaching a non-zero lower bound γyCV 2

int/(γy+γz)
as fp→ ∞. This lower bound represents a fundamental limit to which intrinsic noise can be decreased, and this
limit is determined by how fast the sensor dynamics is compared to Y ’s decay rate. The second component is
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Fig. 3. Implementation and noise decomposition for a derivative-based controller (a) Schematic of the derivative controller where
Y activates the sensor Z, Z activates the burst frequency of Y , while Y represses its own burst frequency (b) Different noise components
in (39) are plotted as a function of the derivative feedback gain fd . Noise levels are normalized by the open-loop noise (17) and other
parameters are chosen as CV 2

int = 0.25, CV 2
Z = 0.1, CV 2

X = 0.45, γx =
1
5 γy, γz = 3γy. While both the intrinsic noise, and the noise contribution

from the external disturbance decrease with increasing fd , the noise contribution from the sensor increases. In contrast to the proportional
feedback, the intrinsic noise decreases faster than the disturbance contribution. (c) The noise in Y as a function of the derivative feedback
gain fd emphasizes the nonmonotonic noise profile for different levels of sensor noise CV 2

Z .

the noise contribution from the external disturbance that monotonically decreases to zero as fp→ ∞. The third
component arises from the fact that the sensor Z is itself noisy, where

CV 2
Z =
〈Bz〉+ 〈B2

z 〉
2〈Bz〉〈z〉

(29)

is the noise in Z due to its own expression occurring in random bursts. This third component is amplified with
increasing feedback gain, and as a consequence, the total noise CV 2

Y is a non-monotonic function of fp with noise
being minimal at an optimal feedback strength (Fig. 2). When fp = 0, (28) reduces to the open-loop noise (17).

To further simplify the formula we assume that sensor dynamics is sufficiently fast (γz� γy), and the time-scale
of disturbance fluctuations are slow (γx� γy). In this case, the sensor noise contribution becomes minimal, and
(28) simplifies to

CV 2
Y =

Intrinsic noise︷ ︸︸ ︷
1

1+ fp
CV 2

int +

External disturbance︷ ︸︸ ︷
1

(1+ fp)2CV 2
X . (30)

Note that the contribution from external disturbance decreases as 1/ f 2
p compared to 1/ fp for the intrinsic noise.

Hence, proportional feedback is much more effective in buffering stochasticity from external inputs rather than
the intrinsic noise. This point relates to the static sensitivity S〈y〉ky

= 1/(1+ fp) defined in (26), where increasing
feedback gain suppresses noise, but it comes at the loss of adapting Y levels to changes in the environmental
input.

IV. NOISE SUPPRESSION USING DERIVATIVE CONTROLLER

Having completed the analysis for a proportional controller we next turn our attention to a derivative controller.

A. Derivative controller design

How can biochemical circuits be designed to approximately sense the derivative of y(t)? To see this, consider
the sensor dynamics in the deterministic limit

dz(t)
dt

= kz〈Bz〉y(t)− γzz(t) (31)
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which in the Laplace domain corresponds to

Z(s) =
kz〈Bz〉Y (s)

s+ γz
=
〈z〉
〈y〉

Y (s)
s
γz
+1

. (32)

Here Z(s) and Y (s) are the Laplace transforms of z(t) and y(t), respectively, and we have used the fact that at
equilibrium 〈z〉/〈y〉 = kz〈Bz〉/γz. Now consider the scenario where Z activates the burst frequency of Y , and Y
inhibits it own burst frequency (Fig. 3). This created an incoherent feedforward circuit that feedbacks into Y .
Let the burst frequency of Y be proportional to (z/y)h, which corresponds to both Y and Z regulating the burst
frequency with the same Hill coefficient h, and a strong binding affinity of the repressor Y [83], [84]. Then, in
the limit of small fluctuations in z(t), y(t) around 〈z〉, 〈y〉, respectively,(

z
y

)h

≈

(
〈z〉
〈y〉

)h(
1+h

(
z

〈z〉
− y

〈y〉

))
. (33)

Using (32) and assuming γz is large (i.e., fast sensor dynamics), the Laplace transform of the right-hand-side of
(24) is (

〈z〉
〈y〉

)h(
1+h

(
Z(s)

〈z〉
− Y (s)

〈y〉

))
(34a)

=

(
〈z〉
〈y〉

)h(
1− hsY (s)

〈y〉(s+ γz)

)
(34b)

≈

(
〈z〉
〈y〉

)h(
1− hsY (s)

〈y〉γz

)
. (34c)

Recall that sY (s) is the Laplace transform of the time derivate of y(t), and hence in the time-domain, the burst
frequency (24) corresponds to implementing a derivative controller. Going back to the original stochastic system,
let the frequency of bursts in the Y protein be given by kyx/〈x〉(z/y)h. Then, as the ratio 〈z〉/〈y〉 = kz〈Bz〉/γz
becomes a constant at steady-state, the mean protein level for Y

〈y〉=
ky〈By〉

γy

(
z
y

)h

≈
ky〈By〉

γy

(
〈z〉
〈y〉

)h

=
ky〈By〉

γy

(
kz〈Bz〉

γz

)h

(35)

is proportional to ky and the sensitivity S〈y〉ky
= 1 as in the open-loop system.

B. Analysis of noise levels

To perform a noise analysis of the derivative controller-based feedback system, we revert to the noisy sensor
Z described by the bursty birth-death process (19). The stochastic dynamics of protein Y is now described by

P(y(t +dt) = y(t)+ j|y(t),x(t),z(t))

= ky
x

〈x〉

(
z
y

)h

P(By = j)dt (36a)

P(y(t +dt) = y(t)−1|y(t),x(t),z(t)) = γyy. (36b)

As before, the external disturbance is described by (11). To write a closed systems of differential equations for
the time evolution of moments, we linearize protein Y ’s burst frequency assuming small copy-number fluctuations

ky
x

〈x〉

(
z
y

)h

≈ ky

(
〈z〉
〈y〉

)h(
x

〈x〉
− fdγz

γy

(
z

〈z〉
− y

〈y〉

))
(37)
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where

fd :=
hγy

γz
> 0. (38)

is the derivative feedback gain. A steady-state analysis of the resulting linear moment dynamics yields the
following noise in protein Y

CV 2
Y =

Intrinsic noise︷ ︸︸ ︷
(γy + γz)

γy + γz fd + γz
CV 2

int

+

External disturbance︷ ︸︸ ︷
γy(γy(γx + γz)+ γz(γx + γz + γz fd))

(γy + γz fd + γz)(γy(γx + γz)+ γx(γx + γz fd + γz))
CV 2

X

+

Sensor noise︷ ︸︸ ︷
f 2
d γ2

z

γy(γy + γz fd + γz)
CV 2

Z . (39)

Analysis of the resulting noise components reveals that both the intrinsic noise, and the noise contribution from
the external disturbance, decrease with increasing gain fd , with the former showing a much faster decay (Fig. 3).
The noise contribution from the sensor amplifies with increasing feedback gain resulting in the total noise CV 2

Y
being minimized at an intermediate gain (Fig. 3). In the limit of slow fluctuations in the external disturbance
γx� γy,γz, the above noise level simplifies to

CV 2
Y =

Intrinsic noise︷ ︸︸ ︷
(γy + γz)

γy + γz fd + γz
CV 2

int +

External disturbance︷︸︸︷
CV 2

X

+

Sensor noise︷ ︸︸ ︷
f 2
d γ2

z

γy(γy + γz fd + γz)
CV 2

Z (40)

showing the derivative controller’s inability to reject low-frequency external disturbances. Finally, assuming no
external disturbance (CV 2

X = 0), we verify the ability of a derivative controller to minimize intrinsic noise in Y by
performing exact Monte Carlo simulations based on the Stochastic Simulation Algorithm (SSA) [85]. Stochastic
simulation results of the overall nonlinear feedback system are shown in Fig. 4, and the noise levels show a good
match with the formula (39) confirming the noise suppression abilities of a derivative controller.

V. CONCLUSION

While PID controllers have become quite standard in industry, designing biochemical circuits that perform
analogous functions inside cells is a highly nontrivial problem. Here we present simple circuits that function as
approximate proportional and derivative controllers assuming fluctuations in molecular counts are small around
their respective means. Our analysis of biochemically-implemented proportional feedback reveals the following
properties:
• Proportional feedback is more efficient in suppressing stochasticity arising from noisy input signals, compared

to noise arising from protein expression occurring in random bursts (Fig. 2).
• Any form of measurement noise (for example, due to stochastic expression of the sensor protein), leads to

an optimal feedback gain for minimizing total protein noise, reminiscent of traditional feedback controllers.
• Noise suppression comes at the cost of reduced static input-output sensitivity, i.e., the protein levels are

precisely regulated for a given environment, but do not respond to new environments.
We further provide design of a biochemical circuit for derivate-based control. In essence, the derivative of a

signal is sensed by taking the difference of a delayed-signal (the sensor output) and the original signal. Intriguingly,
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Fig. 4. A derivative-based controller minimizes stochastic fluctuations in protein levels. Noise in the level of protein Y as obtained
by performing exact Monte Carlo simulations of the nonlinear feedback system (19) and (36) with h = 1 and no external disturbance
x = 〈x〉 with probability one. Other parameters are taken as By = 20 with probability one, ky = 2, γy = 0.2, Bz = 1 with probability one,
kz = γz. In this case, γz was varied to change the gain fd as per (38). The noise level obtained by running a large number of Monte Carlo
simulations match their analytical estimates in (39).

our analysis shows that this controller suppresses intrinsic noise in the protein while preserving the open-loop
static input-output sensitivity (Fig. 3). Intuitively, any rapid increase in protein levels due to a random burst is
compensated by lowering the frequency of subsequent bursts. We confirmed our small-noise analysis results with
exact Monte Carlo simulations of the nonlinear feedback system. As part of future work, we will investigate
biochemical networks for integral feedback control, and constructing biological PID controllers for a given static
input-output sensitivity, noise in the target protein, and transient response.
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