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Abstract

To provide a comprehensive mechanistic interpretation of how known
trait-associated SNPs affect complex traits, we propose a method – Primo – for
integrative analysis of GWAS summary statistics with multiple sets of omics QTL
summary statistics from different cellular conditions or studies. Primo examines
SNPs’ association patterns to complex and omics traits. In gene regions
harboring known susceptibility loci, Primo performs conditional association
analysis to account for linkage disequilibrium. Primo allows for unknown study
heterogeneity and sample correlations. We show two applications using Primo to
examine the molecular mechanisms of known susceptibility loci and to detect and
interpret pleiotropic effects.

Keywords: integrative genomics; multi-omics; GWAS; omics QTL; molecular
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Background
In the post-genomic era, genome-wide association studies (GWAS) have identified

tens of thousands of unique associations between single nucleotide polymorphisms

(SNPs) and human complex traits [1, 2]. Most of the trait-associated SNPs have

small effect sizes and many reside in non-coding regions [3, 4], obscuring their func-

tional connections to complex traits. It is known that trait-associated SNPs are more

likely to also be expression quantitative trait loci (eQTLs) [5], thus many of these

SNPs likely affect complex traits through their effects on expression levels and/or

other “omics” traits. Extensive evaluations of genetic effects on omics traits such as

gene expression [6], protein abundance [7], DNA methylation [8], histone modifica-

tion [9, 10], and RNA splicing [11] have revealed an abundance of quantitative trait

loci (QTLs) for omics traits (omics QTLs) throughout the genome. These findings

suggest that integrating data from omics and multi-omics QTL studies with GWAS

would help to elucidate functional mechanisms that underlie trait/disease processes.

Moreover, the integrative analysis of omics and multi-omics traits would also en-

hance confidence in detecting true omics-associations while reducing false positive

findings by observing co-occurrence of associations in multiple different data types

and borrowing information across multi-omics data sources. The increasing avail-

ability of summary statistics for complex traits and omics QTL studies in many
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conditions and cellular contexts [6, 12, 13, 14] provides a valuable resource to con-

duct integrative analyses in a variety of settings and presents an unprecedented

opportunity to gain a system-level perspective of the regulatory cascade, which

may highlight targets for disease prevention and/or treatment strategies.

To integrate GWAS and omics QTL summary statistics, several methods have

been proposed to identify trait-associated loci that share a common causal variant

with 1-2 sets of omics QTLs (often referred to as “colocalization”) [15, 16, 17, 18].

There are also methods that have been proposed to directly test the molecular

mechanisms through which genetic variation affects traits by integrating GWAS

and eQTL summary statistics [19, 20]. These methods have identified known and

novel candidate genes underlying psychiatric disorders [16], diabetes traits [18],

obesity-related traits [15, 17, 19], and others. By applying the integrative methods

to multi-omics data, some QTL pairs such as eQTL and methylation (me)QTL

pairs have also been identified with evidence of a shared causal mechanism [16, 21].

Integrating studies of multiple complex and omics traits could produce a more

comprehensive picture of how cellular processes contribute to variation in complex

traits.

Compared to integrating GWAS with single omics QTL statistics, studying multi-

omics QTLs increases the chances of detecting the regulatory mechanisms underly-

ing trait/disease-associated SNPs. The effect of any particular SNP may be strong

for some omics traits and weak or absent for others. For example, protein (p)QTLs

exist for genes lacking an apparent eQTL [22], suggesting post-transcription reg-

ulation [23]. And there could be multiple different omics QTLs in a gene region

with different functions. As another example, SNPs affecting RNA splicing (splic-

ing QTLs) may not be eQTLs in a gene region [11]. Moreover, QTL effects may

vary across molecular phenotypes [24], tissue types [6], cell types [25, 26], or other

contexts [27, 28]. For example, lead SNPs for eQTLs (eSNPs) often vary by tissue

type [6]. Jointly analyzing the omics QTL association summary statistics to more

than one type of omics trait from different conditions/studies could yield a more

complete portrait of the regulatory landscape. Given the increasing availability of

summary statistics for omics QTLs from different studies/conditions/cell-contexts,

novel methods and tools are needed to integrate GWAS with many relevant sets of

omics QTL summary statistics for an improved understanding of the mechanisms

of trait-associated SNPs.

Jointly analyzing more than three complex and omics traits can also be viewed as

an approach for identifying shared mechanisms that underlie multiple complex traits

– pleiotropic effects. Pleiotropy is ubiquitous in the genome [29, 30]. Since pleiotropic

effects often occur among related diseases and traits [31, 32, 33], shared mechanisms

are likely to exist. By integrating omics QTL summary statistics from multiple trait-

relevant tissue types with GWAS statistics, one can also boost power in detecting

pleiotropic effects while simultaneously providing mechanistic interpretations.

It is desirable to develop new methods that can integrate multiple (i.e. more

than three) sets of GWAS statistics and omics QTL statistics from different

conditions/studies while accounting for study heterogeneity, potential sample

correlations and linkage disequilibrium (LD). Additionally, as the number of

traits/studies/conditions being considered grows, it will be more likely to detect
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joint associations by chance, necessitating proper multiple testing adjustment. To

address those challenges, in this work we develop a method to integrate summary

statistics from different studies to examine the genetic effects on multiple complex

and omics traits, and implement the method in an R package – Primo (Package in R

for Integrative Multi-Omics association analysis). Figure 1A provides an overview

of the algorithm. Different than the traditional meta-analysis approaches that also

take summary statistics as input, Primo is flexible in many aspects: it allows un-

known and arbitrary study heterogeneity and can detect coordinated effects from

multiple studies while not requiring the effect sizes to be the same; it allows the

summary statistics to be calculated from studies with independent or overlapping

samples with unknown sample correlations; and it is not an omnibus test for associ-

ation, but rather can be used to calculate the probability of each SNP belonging to

each type (or groups) of interpretable association patterns (e.g. the probability of a

trait-associated SNP also being associated with at least one/two cis omics-traits).

For gene regions harboring known susceptibility loci, the conditional association

analysis of Primo examines the conditional associations of a known trait-associated

SNP with other complex and omics traits adjusting for other lead SNPs in a gene

region. It moves beyond joint association towards causation and colocalization, and

provides a thorough inspection of the effects of multiple SNPs within a region to

reduce spurious associations due to LD (Figure 1B). We conduct extensive simu-

lations to evaluate the performance of Primo under various scenarios in analyzing

multiple sets of summary statistics from studies with correlated samples. We apply

Primo to examine the omics trait association patterns for known SNPs associated

with breast cancer risk by integrating multi-omics QTL summary statistics from

the Genotype-Tissue Expression (GTEx) project [6] and The Cancer Genome Atlas

(TCGA) [34] with GWAS statistics from The Breast Cancer Association Consor-

tium (BCAC) [35]. We also apply Primo to detect SNPs with pleiotropic effects

to two complex traits in gene regions harboring susceptibility loci for at least one

trait, while also providing mechanistic interpretations by integrating publicly avail-

able GWAS summary statistics [36, 37, 38, 39] with multi-tissue eQTL summary

statistics from GTEx.

Results
Primo as a general framework for assessing joint associations across data types

Here we first introduce the general Primo association framework (Figure 1A) and

then discuss the tailored development in using Primo to provide mechanistic inter-

pretations of known trait-associated SNPs (Figure 1B), moving from association to

colocalization. As a general integrative association method, Primo takes as input

multiple sets of association summary statistics from different studies of different

data types. The multiple sets of summary statistics could be one set of GWAS

statistics and multiple sets of omics/multi-omics QTL statistics, or two or more

sets of GWAS statistics of related traits and multiple sets of omics/multi-omics

QTL statistics from trait-relevant tissue types, or could even be from studies be-

yond the complex and omics trait-associations of germline variation.

Consider an m× J matrix of association statistics, T, consisting of the summary

statistics for the associations of m SNPs with J types of traits from J studies with
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independent or correlated samples. Note that here a “study” refers to a study of

SNPs’ associations to a particular trait in a particular condition/cell-type/tissue-

type. For each SNP (here a row in the matrix T), the underlying association status

to the j-th (j = 1, . . . , J) trait is binary. Considering all SNPs in the genome, there

are a total of K = 2J possible association patterns to J traits. We use a K×J binary

matrix, Q, to denote all of the possible association patterns. And qkj = 1 implies

the presence of association with the j-th trait in the k-th association pattern, and

qkj = 0 implies no association.

For each SNP i, there must be one and only one true underlying association

pattern. Primo calculates the probability of a given SNP being in each of the K

mutually exclusive association patterns by borrowing information across SNPs in

the genome and across J traits. More specifically, let ai denote the true association

pattern for SNP i. Then the probability that SNP i belongs to association pattern

k is given by:

P (ai = k|Ti, πk) =
πkDk(Ti)∑K
b=1 πbDb(Ti)

, (1)

where Ti is a vector of J association statistics and is also the i-th row in the T

matrix, πk represents the overall proportion of SNPs in the genome belonging to

the k-th association pattern (k = 1, . . . ,K), and Dk(·) is the multivariate density

function of J sets of statistics, conditioning on the k-th association pattern. Here

πk captures the biological co-occurrence frequency of the k-th association pattern

in the genome, with
∑
k πk = 1. For example, in Figure 1C, π16 is the proportion of

SNPs in the genome that are associated with all of the three omics traits and the

complex trait.

In estimating a mixture distribution of K components, the performance of esti-

mation and subsequent inference depend on how well different mixing components

separate from each other. When K is moderate to large, it is challenging to simul-

taneously estimate the distributions of mixing components (Dk’s) and the mixing

proportions (πk’s). Different from previous work [40], Primo first estimates the

pattern-specific multivariate density function Dk for each of the association pattern

by borrowing information across SNPs and traits. See Methods section for detailed

estimation procedures when J sets of association statistics were calculated from

independent or correlated samples. Then Primo estimates πk’s via the Expectation-

Maximization algorithm [41]. When Dk’s are reasonably-estimated, the one-step

estimates of πk’s can well capture the overall proportions of different association

patterns and there is no need to re-iterate and re-estimate Dk’s and πk’s. Based

on (1), we can obtain the posterior probabilities of SNP i being in each of the K

possible association patterns.

Mechanistic interpretations of trait-associated SNPs via Primo conditional association

analysis in gene regions harboring susceptibility loci

In order to elucidate the molecular mechanisms of known trait-associated SNPs,

one may examine the omics trait associations of those SNPs by integrating GWAS

and omics QTL summary statistics. However, a major challenge in such analyses is

the complex LD structure among SNPs in the same gene region.
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To assess whether a GWAS SNP is associated with omics traits not due to it being

in LD with other lead omics SNPs, we propose to conduct conditional association

analysis within gene regions harboring susceptibility loci, with summary statistics

of the GWAS SNP and other lead omics SNPs as input. Here we consider a GWAS

SNP i of interest and a set of lead omics SNPs I ′ in the gene region, where I ′

is a set of indices. We can model the joint association statistics for SNPs i and

I ′ in study j using a multivariate normal distribution, and further calculate the

conditional density functions of SNP i adjusting for other lead omics SNPs given

their most plausible association patterns. See Methods for details. Then with the

estimated πk’s , we can assess the probabilities of associations for SNP i in (1).

Figure 2 shows a conceptual illustration of the conditional association analysis. If

the GWAS SNP is an independent meQTL and pQTL, it remains associated with

methylation and protein after adjusting for other lead SNPs in the region; and if

the GWAS SNP is associated with cis-expression levels because it is in LD with

the lead eSNP, it will be no longer significantly associated with expression after

adjusting for the lead eSNP. With conditional association analysis, we can reduce

spurious associations due to LD.

An advantage of Primo is that one may collapse many association patterns based

on biological interpretations and obtain the posterior probabilities of groups of

patterns of interest by summing over the probabilities of those mutually exclusive

patterns. As illustrated in Figure 1C, when J = 4, there are 16 possible association

patterns. We may collapse the association patterns into interpretable groups. For

example, here we are interested in the trait-associated SNPs that are also associated

with at least 1 omics trait. And we can obtain the probability estimate by summing

over the posterior probabilities of patterns 10-16. For a (collapsed) pattern of inter-

est, we can also calculate the estimated false discovery rate (FDR) [42] for multiple

testing adjustment:

estFDR(λ) =

∑
i(1− P̂i)1(P̂i ≥ λ)

#{P̂i ≥ λ}
, (2)

where λ is the probability threshold and P̂i is the estimated probability of SNP i

being in the (collapsed) pattern of interest.

As a summary, to elucidate the molecular mechanisms of trait-associated SNPs, we

first obtain the estimates of key parameters (πk’s, Dk’s) by borrowing information

across SNPs and across traits/studies. Then in each gene region harboring known

trait-associated SNPs, we conduct a SNP-level association analysis to all traits for

all SNPs in the gene region, followed by a conditional association analysis for each

GWAS SNP accounting for LD with other lead omics SNPs. If a GWAS SNP is no

longer associated with a particular omics trait after conditioning on the lead omics

SNPs, we will not consider it as a causal SNP for that omics trait. Estimated FDR

can be calculated as described.

In the Methods section, we also discuss extensions of Primo, with P -values as

input or when the number of traits being considered is large (> 15). We implemented

Primo in Rcpp. It is computationally efficient and can analyze the associations of

30 million SNPs to five sets of complex and omics traits within 20 minutes on a

single machine with 32 GB of memory and a 3 GHz processor.
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Simulation studies to evaluate the performance of Primo

We evaluated the performance of Primo in a variety of simulated scenarios. In each

scenario, we simulated the test statistics for associations of SNPs with J traits.

Test statistics under the null hypothesis of no association were simulated from a

standard normal distribution; test statistics under the alternative were simulated

from a normal distribution with mean 0 and standard deviation of 10 (allowing effect

sizes to be positive or negative). The simulated data structure and test statistic

distributions mimic what we have observed in the eQTL data from GTEx. For each

simulated dataset, we ran two versions of the Primo algorithm using t-statistics and

P -values as input, denoted as Primo (t) and Primo (P ), respectively. We repeated

each simulation 100 times and compared the performance of the two versions of

Primo versus competing methods (if applicable).

Accurate estimation of proportions (π) even for very sparse joint associations

It is known to be challenging to estimate πk’s when associations are sparse, i.e.,

πk’s being very close to zero for patterns with associations. In Scenarios 1a and 1b,

we showed that in analyzing independent and correlated sets of summary statistics,

respectively, Primo can well estimate the πk’s despite very sparse associations. In

each scenario, we simulated test statistics for J = 3 traits for 10 million SNPs, first

under independence and then with pairwise (Pearson) correlation of 0.3 between

each set of statistics. In Scenario 1a, we simulated true πk = (7 × 10−4, 2 × 10−4,

1×10−4) for SNPs being associated with only one, exactly two, and all three traits,

respectively. Scenario 1b simulated even sparser associations for the third trait,

with πk = (7 × 10−6, 2 × 10−6, 1 × 10−6) for SNPs being associated with only

the third, the third and first or second, and all three traits, respectively. Table 1

shows true πk’s, and the average estimates for πk’s by Primo based on t-statistics or

P -values. In Supplemental Materials, we also show the performance of estimation

of πk’s when the marginal alternative proportions θ1j ’s are mis-specified. As shown,

Primo estimates the πk’s with reasonable accuracy even when the associations are

very sparse and when the marginal alternative proportions θ1j ’s are under-specified.

Comparison with existing methods for jointly analyzing associations to three traits

In Scenario 2, we simulated correlated test statistics with pairwise correlations of

0.3 among J = 3 traits for 1 million SNPs. πk = 1 × 10−3, 5 × 10−4, 5 × 10−4

for the patterns where SNPs are associated with only one, exactly two, and all of

the three traits, respectively. Here we compared the true and estimated FDRs and

power to detect associations to all three traits and to at least one trait, based on

Primo versus two competing methods, “moloc” [16] and Fisher’s method [43]. The

results with correctly specified, under-specified and over-specified marginal non-null

proportions (θ1j ’s) are shown in Table 2. When θ1j ’s are well-specified (Scenario 2a

in Table 2), Primo nicely controlled the FDR even in the presence of unknown

study/sample correlations – highlighting one advantage of Primo in integrating

potentially correlated multi-omics data. Note that moloc and Primo are not directly

comparable as moloc aims to detect the true causal variant in a gene region while

Primo first identifies SNPs’ joint associations to multiple traits and then reduces

spurious associations due to LD. Nevertheless, we grouped sets of 100 SNPs together
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to form “regions” to allow for some comparisons between Primo and moloc. For

half of the gene regions, there are two independent multi-omics QTLs; and for the

other half, there is only one multi-omics QTL in a region. Since moloc does not

output the posterior probabilities for all SNPs in every association pattern, we

are only able to compare the power and FDR of Primo versus moloc in detecting

associations to all three traits. We observed that Primo generally enjoys substantial

power improvement, which is not surprising because the goal of moloc is more

restrictive. As shown in Table 2, the estimated FDR (estFDR) is very close to the

true FDR for Primo. Fisher’s method, as a combination method for testing omnibus

hypotheses, can only be used to detect SNPs with associations to at least one trait,

and is not applicable to detect associations to all traits. The true FDR [42, 44] for

Fisher’s method calculated from the nominal P -values are not well controlled due

to correlations among test statistics, as expected. At similar power levels, the true

FDRs of Fisher’s method are also much higher than those of Primo.

In this simulation, the true θ1j ’s are 2.5×10−3. In Scenario 2b, we under-specified

θ1j to be 2.5 × 10−4. As shown in Table 2(A), although power might decrease to

some extent, the FDRs are reasonably controlled. In Scenario 2c, when θ1j ’s are over-

specified as 2.5× 10−2, we observed slightly inflated FDRs. As such, we suggest to

obtain reasonable estimates for θ1j ’s based on the current data and the literature,

or under-specify θ1j ’s to be more conservative.

The performance of Primo in jointly analyzing more than three traits

In Scenario 3, we simulated correlated test statistics for associations to five traits

for 1 million SNPs with pairwise study-study correlations of 0.3. πk = 5 × 10−4,

2 × 10−4, 1 × 10−4 for the patterns where SNPs are associated with one to two,

three to four, and all of the five traits, respectively. Results are presented in Table

2(B). Overall, Primo yields good control of FDRs and high power in detecting

various patterns of joint associations, even for a moderately large number of sets of

summary statistics and in the presence of study correlations.

Evaluation of the performance of Primo conditional association analysis

accounting for LD and sample correlations

In this section, we simulated association statistics for correlated SNPs in moderate

to high LD and evaluated the performance of the proposed conditional association

approach in the presence of both LD and sample correlations. We simulated the

matrix of association statistics T for 1 million SNPs with J = 4 traits as the

sum of two statistics matrices, T(1) and T(2), where T(1) was simulated to impose

LD structures and T(2) was simulated to impose sample correlations. To simulate

T(1), we created 105 LD blocks with 10 SNPs in each. The statistics for SNPs

from different LD blocks are independent, whereas statistics for SNP i and SNP

j from the same block have a correlation 0.95|i−j| in the same study. Among 5%

of the LD blocks, the true underlying association patterns are (1, 0, 1, 0), (1, 1, 0, 0)

and (0, 1, 1, 1) for SNPs 4, 5, and 6, respectively; and (0, 0, 0, 0) for the rest. In

those blocks, the marginal null distribution is standard normal and the marginal

alternative distribution is N(3.5, 1). Those LD blocks represent gene regions with

no SNP truly associated with all traits but with multiple SNPs in LD with different
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association patterns. We further simulated another 5% of the LD blocks, where

the true underlying association patterns are (0, 0, 0, 1), (0, 1, 0, 0) and (1, 1, 1, 1)

for SNPs 4, 5, and 6, respectively; and (0, 0, 0, 0) for the rest. In those blocks, the

marginal alternative distributions for SNPs 4 and 5 are N(2, 1), and are N(3.5, 1) for

SNP 6. Those LD blocks represent gene regions with one true causal SNP associated

with all traits as well as two confounding SNPs in high LD with it. For the remaining

90% of the LD blocks, all the statistics are generated under the null. In T(2),

correlated statistics were generated with all pairwise correlations of 0.6 among traits

and were all simulated under the null with standard deviations being 0.2. The

resulting matrix T = T(1) + T(2) has both correlated rows and correlated columns.

We applied Primo with T as input to identify SNPs associated with all traits.

For each SNP detected as significant at the probability cutoffs of 0.8 and 0.9, we

further conducted conditional association analysis. In each LD block, SNPs 4, 5 and

6 served as the lead/confounding SNPs for each other. For instance, in testing the

associations for SNP 4, we consider SNPs 5 and 6 as the lead SNPs in the region

and adjusted them. For the rest of the SNPs in the block, SNPs 5 and 6 were used

as the lead SNPs and were adjusted in the conditional analysis. The SNPs that no

longer have the highest probabilities in the pattern of (1, 1, 1, 1) after conditional as-

sociation analysis were not considered to be positive findings. In the calculations of

the FDR’s, we use the same denominators before and after conditional association

analysis for fair comparison. That is, the denominators are the number of identified

SNPs with associations to all traits at a given cutoff before the conditional associat-

ing analysis. After conditional analysis, the numerator (i.e. # false positive) of the

true FDR is the number of SNPs that are not truly associated to all traits, yet con-

tinue to show the highest probability in the pattern of (1, 1, 1, 1) after conditional

association analysis. In the calculation of the numerator of the estimated FDR, for

each SNP i that is no longer significant after conditional analysis, its contribution

to the numerator (1− P̂i)1(P̂i ≥ λ) in the formula (2) is corrected to be 1 since we

considered it as an estimated false discovery.

As shown in Table 3, when SNPs are in LD, we observed some slightly inflated

FDRs without conditional association analysis even when θ1j ’s are correctly specified

(Scenario 4a). In contrast, after accounting for LD, true FDRs are reduced and are

well controlled by the estimated FDRs. In Scenario 4b and 4c, we under-specified

and over-specified θ1j ’s. Overall, Primo after conditional association analysis could

yield nice control of FDR and maintain good power in all scenarios.

Application I: Understanding the mechanisms of breast cancer susceptibility loci

With over 100,000 breast cancer cases and a similar number of controls from a total

of 78 breast cancer studies, BCAC [35] has recently reported 174 common genetic

variants associated with breast cancer risk. In order to understand the underlying

mechanisms of those susceptibility risk loci and their potential cis target genes, a

recent study [45] conducted cis-eQTL analysis using both normal and tumor breast

transcriptome data and identified multiple genes likely to play important roles in

breast tumorgenesis.

In addition to transcription, SNPs may affect cis- epigenetic features, protein

abundances, and other omics traits. Functional relationships may exist among those
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omics traits. Therefore, we propose to jointly examine the susceptibility risk loci

and their effects on multiple omics traits in tumor and normal tissues in order

to better understand the mechanisms through which risk-associated SNPs acts in

different conditions. Moreover, this analysis will enhance our understanding of the

regulatory cascade and their roles in breast tumorigenesis. The regulatory SNPs

with “cascading effects” [22, 46] on gene regulation and downstream gene products

are of particular interest.

In this work, we applied Primo to integrate GWAS summary statistics from BCAC

for all SNPs in the genome with the eQTL, meQTL, and pQTL association sum-

mary statistics obtained from 1012, 702, and 74 breast tumor samples, respectively,

from TCGA [34, 47] (see Supplemental Materials) and eQTL summary statistics

obtained from 397 normal breast mammary samples from GTEx [6]. A total of 161

of the GWAS SNPs reported by Michailidou, et al. (2017) reached genome-wide

significance (P < 5× 10−8) in the meta-analysis. And there are 157 of these SNPs

with MAF > 1% in TCGA data. Note that one SNP could be mapped to multiple

genes and multiple CpG sites. We assessed the probabilities of 32 (25, for GWAS

and 4 omics QTLs) association patterns for each SNP-gene-CpG-protein quartet.

In the conditional association analysis of gene regions harboring at least one GWAS

SNP, we selected the lead SNP for each omics trait in the region and adjusted for

any lead SNP outside a 5kb distance of and with LD R2 < 0.9 with the GWAS-

reported SNP (those with R2 > 0.9 or within 5kb were considered likely to share a

causal variant or too close to assess individual associations, respectively).

At the 80% probability cutoff and after conditional association analysis (estimated

FDR of 3.8, 6.2, 12.2, and 8.5%), there were 49, 18, 7 and 1 susceptibility loci

associated with at least 1, 2, 3 or 4 omics traits, respectively. The three GWAS SNPs

(rs11552449, rs3747479, and rs73134739) in the three genes (DCLRE1B, MRPS30,

and ATG10, respectively) reported in Guo, et al. (2018) [45] had high probabilities

of being an eQTL in both tumor and normal tissues (with probabilities of 59.7,

>99.9, and >99.9%, respectively). In the KLHDC7A gene region, the GWAS SNP

rs2992756 (indicated by red dot in Figure 3) is associated with the expression,

methylation and global protein abundance levels of the cis-gene KLHDC7A. Figure

3 shows the plot of − log10 P -values of associations to breast cancer risk and the

three omics traits (with expression traits in both tumor and normal tissue types)

of KLHDC7A for the SNPs in the gene region. Note that the GWAS SNP is only

moderately associated with the gene expression levels in the normal GTEx breast

tissue with a P -value of 0.0034, highlighting the need to study omics QTLs under

different conditions.

Due to limited sample sizes (74) in the pQTL analysis, only 1 out of the 157 ex-

amined breast cancer susceptibility loci was associated with cis-protein abundance

levels with high confidence, although the cis-gene expression levels and cis-protein

abundances for those loci were often highly correlated with an averaged (Pearson)

correlation coefficient of r=0.398 and a median of r=0.414. There were 21 out of

157 susceptibility loci uniquely associated with cis-methylation levels but not ex-

pression levels in either tumor or normal tissue, echoing a recent work showing

both unique and shared causal mechanisms of epigenome variations and transcrip-

tion [21]. This also shows that the integration of GWAS and multi-omics traits can

provide additional insights in understanding the complex and dynamic mechanisms.
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Application II: Detecting SNPs with pleiotropic effects and elucidating their

mechanisms

Many genetic variants are associated with more than one complex trait [48, 29,

30]. Identifying such pleiotropic variants and elucidating the molecular mechanisms

which underlie these multi-trait associations may enhance our understanding of the

etiology of complex traits and provide additional insights into clinical treatment

development [48]. In this section, we applied Primo to detect SNPs with pleiotropic

effects to two complex traits in gene regions harboring susceptibility loci for at least

one trait, and provide mechanistic interpretations by integrating pairs of publicly

available complex-trait GWAS summary statistics with eQTL association summary

statistics obtained from trait-relevant tissue types in the GTEx project.

We applied Primo to height [37] and body mass index (BMI) [38] GWAS summary

statistics from the GIANT consortium (sample size > 250, 000) with eQTL sum-

mary statistics in subcutaneous adipose (n = 581) and skeletal muscle (n = 706)

tissues from GTEx for all SNPs in the genome. There are 697 height-associated

SNPs reported by Wood, et al. [37], and 623 of them have reached genome-wide

significance threshold (5× 10−8) while the others are significant in the conditional

analysis. There are 97 BMI-associated SNPs reported by Locke, et al. (2015) [38],

77 of which reached the genome-wide threshold in the sex-combined analysis. Out

of the 700 genome-wide significant SNPs for either trait, 683 were present in both

sets of GWAS summary statistics and could be mapped to GTEx SNPs in cis with

at least one gene measured in both tissue types. At the 80% probability cutoff and

after conditional association analysis accounting for LD, 32 SNPs were associated

with both complex traits (estimated FDR of 12.4%). Of these, 18 were associated

with expression of at least one gene in at least 1 tissue (estimated FDR of 13.6%)

and 12 were associated with expression of at least one gene in both tissues (es-

timated FDR of 12.5%). Furthermore, 13 of the SNPs were associated with the

expression of multiple genes, highlighting the possibility that pleiotropic SNPs may

affect multiple complex traits through their co-regulation of multiple genes.

To validate the 32 pleiotropic SNPs being associated with both height and BMI,

we used GWAS summary statistics from the UK Biobank [39] (> 336k samples have

both height and BMI measured) as a replicate study. At P < 0.0008 (the Bonferroni

threshold is calculated as 0.05/(32×2), since there are two traits), 27 out of the 32

SNPs were associated with both traits in the UK Biobank, including 17 of the 18

SNPs that were also associated with gene expression. Plots of −log10(P )-values for

associations with height, BMI and expression in each tissue are presented in the

Supplemental Figure 2 for the genomic regions containing the 27 replicated SNPs.

In Supplemental Materials, we also presented another set of analysis integrating

GWAS summary statistics of Crohn’s disease and ulcerative colitis [36] with eQTL

summary statistics from sigmoid colon (n = 318) and transverse colon (n = 368)

tissues from GTEx. Both analyses showed that Primo can be used to detect SNPs

with pleiotropic effects on (potentially more than two) complex traits while simulta-

neously providing mechanistic interpretations by examining their effects on cis-gene

expression levels in trait-relevant tissue types. A majority of our detected and repli-

cated pleiotropic SNPs do not have associations reaching genome-wide thresholds

for both traits. Our analyses and results underscored the value of integrating GWAS

summary statistics of multiple traits with eQTLs in relevant tissue types.
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Discussion
We proposed a general integrative genomics association approach – Primo – for

assessing the joint associations across studies and data types, allowing for unknown

study heterogeneity and sample correlation and taking only summary statistics as

input. In elucidating the molecular mechanisms of trait-associated SNPs, we made

a tailored development to conduct conditional association analysis in gene regions

harboring known trait-associated SNPs and account for LD.

With the rapidly increasing availability of GWAS and omics QTL association

summary statistics from different studies, populations, and cellular contexts, it is

commonly observed that there could be multiple causal SNPs for different com-

plex and omics traits in the same gene regions. Conducting integrative analysis of

GWAS summary statistics and 1-2 sets of omics QTL statistics may provide only a

partial view of the genomic activities in a region; meanwhile, if multiple omics QTL

statistics are jointly analyzed, one also needs to consider the associations identi-

fied by chance and perform multiple testing adjustment. The advantage of Primo

is that it can integrate a moderate to large number of sets of summary statistics

from different data sources as input to provide a more comprehensive evaluation

while also considering multiple testing adjustment. Additionally, Primo enjoys other

unique advantages and shows great flexibility in integrative analysis. It allows the

input summary statistics to be from independent, or partially overlapped studies

with unknown study correlations. It detects SNPs with coordinated effects allow-

ing different effect sizes (and different directions of effect sizes) on different types

of traits. It can also integrate one-sided P -values if the same direction of effect

sizes is expected and desired. Primo can identify SNPs in different combinations

of association patterns to molecular omics and complex traits. Moreover, with the

conditional association analysis of Primo, we can move one step beyond association

towards causation by assessing whether a GWAS SNP is also an omics QTL while

adjusting for the effects of multiple lead SNPs in a gene region. The conditional

association analysis can reduce spurious omics-trait associations of GWAS SNPs

due to LD with the lead omics SNPs.

We implemented two versions of Primo taking either t-statistics (or effect sizes

and standard error estimates) or P -values as input. Primo is computationally very

efficient and can analyze the joint associations of 30 million SNPs to five traits in

dozens of minutes. We applied Primo to examine and interpret the associations to

omics traits in tumor/normal tissues for known breast cancer susceptibility loci.

We also applied Primo to integrate pairs of GWAS summary statistics of complex

traits with eQTL summary statistics from trait-relevant tissue types from GTEx to

detect pleiotropic effects and examine their mechanisms.

There are some caveats of the current work. First, our simulation results showed

that when marginal study-specific sparsity parameters (θ’s) are over-specified,

Primo may suffer from slightly inflated true FDR; whereas when those parameters

are under-specified to an extent, there might not be much power loss. Therefore,

we recommend a stringent specification of the marginal sparsity parameters, espe-

cially when there is limited a priori knowledge guiding the parameter specification.

Second, there are many existing functional annotations for SNPs that are not in-

corporated in the current version of Primo but have also proved to be useful. We
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will explore this direction in future work. Last but not least, when jointly analyzing

more than 15 sets of summary statistics, the computation time of Primo to assess all

possible association patterns can increase substantially. The current work proposed

a quick extension by applying Primo to groups of sets of summary statistics, while

in a work-in-progress we will develop an integrative analysis method for jointly

analyzing dozens of sets of summary statistics.

Primo is motivated by the analysis of trait-associated SNPs for their molecular

trait-associations. It should be noted that Primo can also be broadly applied to

many other settings when data integration is needed. Primo can be used to detect

associations repeatedly observed in multiple correlated or independent conditions,

and those repeatedly observed associations may enhance the confidence for new

discoveries, or at least provide a more comprehensive examination of how those

associations may occur in different conditions.

Methods

Estimating empirical null and alternative marginal density functions for each of the J

studies using the limma method

For each of the J studies, we first adopt the limma method [49, 50] to calculate

a set of moderated t-statistics by replacing the sample variance estimates in the

classical t-statistic calculation with the posterior variances. Here we made a tailored

development in the genetic association context by calculating the sample variance

for each SNP based on the t-statistic and the minor allele frequency assuming that

covariates are independent from genotypes. Alternatively, one may directly obtain

the effect size estimate and its variance estimate as the summary statistics, if the

information is available. The new variance shrinks the observed sample variance

towards a prior that is estimated across all SNPs in the data, and stabilizes the

variance estimation across the genome. It also penalizes the SNPs with large t-

statistics but small variances.

Next, for each study j, we estimate the empirical null and alternative marginal

density functions, f̂0j (·) and f̂1j (·), respectively, based on all the moderated t-

statistics in the genome for the study. Here one needs to specify a key parameter

for each study, the proportion of study-specific non-null statistics (i.e. with asso-

ciations), θ1j . Note that we used θ1j = 10−3 and 10−5 for omics QTL studies and

GWAS, respectively, in the two applications. We then adopt the limma method to

estimate f̂0j (·) and f̂1j (·) (illustrated in Figure 1D). Under the null hypothesis, the

moderated t-statistic follows a t-distribution with a mean of zero and moderated

degrees of freedom dj in the j-th study, allowing for an empirical null distribution

slightly deviating from the parametric t-distribution. Under the alternative, the

moderated t-statistic follows a scaled t-distribution, still with degrees of freedom dj

and a mean of zero allowing for different directions of effects in different studies, and

a scaling factor vij (vij ≥ 1) estimated from the data. With the estimated marginal

null and alternative density functions from each study, the joint density functions

for all K association patterns can be calculated as described in the next subsection.
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Estimating pattern-specific multivariate density functions when input summary

statistics are calculated from independent or overlapping samples

With J independent studies, the pattern-specific multivariate density function Dk

for the k-th association pattern is given by

Dk(Ti) =
J∏
j=1

f0j (tij)
1−qkjf1j (tij)

qkj . (3)

where qkj is the association status of the k-th pattern in study j. For example, given

the association status being qk = (1, 1, 0, 0), the joint density Dk is modeled as the

product of the alternative marginal density functions from the first two studies and

the null marginal density functions from the other two studies, Dk = f11 ·f12 ·f03 ·f04 .

In estimating a pattern-specific multivariate density function Dk from J corre-

lated studies, we obtain the empirical null and alternative marginal distributions as

non-scaled and scaled t-distributions, respectively, in each of the J studies. Then we

further approximate them with normal distributions with zero means and variances

being σ2
ikj = v

2qkj

ij · dj
dj−2 , where vij is the scaling factor under the alternative. Since

J studies are correlated due to possible sample overlap with an unknown correlation

matrix of Γ, similar to Urbut et al. (2019) [51] we pool all the statistics likely to be

from the null pattern to estimate their correlation matrix as the estimate for Γ. Un-

der certain assumptions, the correlation matrix of test statistics approximates the

sample correlation matrix and the sample correlation under the null represents the

correlation due to sample overlapping. Here we estimate the J×J correlation matrix

using SNPs with absolute statistics less than 5 in all J studies. Then, we approx-

imate the pattern-specific multivariate density function Dk as N (0,Σ
1/2
k ΓΣ

1/2
k ),

where Σk is a diagonal matrix with diagonal elements of σ2
ikj ’s. Primo separates

sample correlations Γ from biological correlations/co-occurrences captured by πk’s

in the subsequent estimation and inference.

Conditional association analysis accounting for LD

To assess whether the trait-association of a SNP i reflects an independent causal

variant or is simply due to being in LD with a nearby lead SNP i′, conditional

association analysis is often conducted [52]. It tests the conditional association of

SNP i with the trait of interest adjusting for the genotype of the lead SNP i′ and

other covariates. If SNP i is no longer statistically significant after adjusting for the

lead SNP, it is unlikely that the trait-association of SNP i reflects an independent

causal effect.

Following this idea, to assess whether a GWAS SNP is associated with omics traits

due to it being in LD with lead omics QTLs, we propose to conduct conditional

association analysis with summary statistics of the GWAS SNP and lead omics

QTLs as input. Here we consider a GWAS SNP i of interest and a set of lead omics

SNPs I ′ in the gene region, where I ′ = {1′, ..., L′} is a set of indices. We can model

the joint association statistics for SNPs i and I ′ in study j, i.e., (tij , t1′j , ..., tL′j),

using a multivariate normal distribution, N (0,Λj), where Λj is the 1 + L′ by

1 + L′ variance-covariance matrix described as follows. The diagonal elements of

Λj correspond to the study-specific variances of statistics of the SNPs. Specifically,
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the (1, 1) entry of Λj is given by σ2
ij , which is the marginal variance of the statistic

tij for SNP i in study j with σ2
ij =

dj
dj−2 under the null and σ2

ij = v2ij ·
dj
dj−2 under the

alternative. For each lead SNP i′ ∈ I ′ with its most plausible association pattern

ki′ , the variance of the corresponding t-statistic ti′j is given by σ2
i′ki′ j

= v
2qk

i′ j

i′j ·
dj
dj−2 . The off-diagonal elements of Λj are calculated based on the study-specific

variances of the SNPs and the LD among the SNPs assuming additional covariates

are independent of the SNP genotypes [53]. For instance, the covariance between tij

and ti′j is σij ·σi′ki′ j ·ρii′ where ρ2ii′ is the LD coefficient of the SNPs i and i′(∈ I ′).

Partitioning the variance-covariance matrix Λj as follows, Λj =

(
Λj,11 Λj,12

Λj,21 Λj,22

)

with sizes

(
1× 1 1× L′

L′ × 1 L′ × L′

)
, we can obtain the conditional null and alternative

distributions for SNP i in study j as

tij |


t1′j

...

tL′j

 ∼ N(Λj,12Λ−1j,22


t1′j

...

tL′j

 , Λj,11 − Λj,12Λ−1j,22Λj,21)

where Λ−1j,22 denotes the inverse of the matrix Λj,22.

With the conditional null and alternative density functions for SNP i in study j

adjusting for other lead omics SNPs in the region, we can proceed to obtain the

pattern-specific J-variate density functions for all association patterns as outlined in

the previous subsection and re-assess the probabilities of each association pattern in

(1). We propose to conduct gene-level conditional association analysis accounting

for LD structures only in selected gene regions, after the SNP-level association

analysis.

Primo for integrating P -values from multiple studies

In addition to integrating t-statistics or effect sizes and variance estimates, Primo

can also jointly analyze J sets of P -values, chi-squared statistics, or other second-

order association statistics. We model the pattern-specific multivariate density func-

tions and still use equations (1) in obtaining the posterior probabilities for each SNP

being in each pattern.

In estimating the marginal null and alternative density functions for each study

j, f0j and f1j (as illustrated in Figure 1D), we make the following modification. We

first take negative two times the log of P -values as our test statistics, T. Under the

null hypothesis, tij = −2 log(pij) follows a χ2
2 distribution. Under the alternative,

tij(i = 1, . . . ,m) follows a mixture of non-central chi-squared distributions, which

can be approximated by a scaled chi-squared distribution with certain degree of

freedom, Aχ2
d [54, 55]. To estimate a study-specific scaling factor Aj > 0 and degree

of freedom d′j that best approximate the tail of the alternative distribution in study

j, we use a numerical optimization algorithm to find values which minimize the

differences between the P -values of Tj under a mixture of Ajχ
2
d′j

and χ2
2 distributions

given the mixing proportion θ1j for the study, and their nominal P -values based on

their ranks.
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More specifically, let tij = −2 log(pij) for SNP i in study j. Then the cumulative

distribution function of tij is given by

F (tij ;Aj , d
′
j , θ) = (1− θ1j )G(tij ; 2) + θ1jG(

1

Aj
tij ; d

′
j)

where G(·; ν) is the cumulative distribution function of a χ2
ν variable. Let rij be the

rank of SNP i in study j when the tij are sorted in descending order. To estimate Aj

and d′j , we use the optimization algorithms implemented in the R nloptr package:

[56]

∑
i : rij≤max{20,m2 θ

1
j}

∣∣∣∣1− F (tij ;Aj , d
′
j , θ

1
j )−

rij − 0.5

m

∣∣∣∣.
Since associations can be sparse (i.e., θ1j being close to zero) in the genome, it is

more important to well approximate the tail of the alternative distribution than the

first two moments (mean and variance). As such, we sum over the most extreme

tail statistics or at least the 20 most extreme statistics. In Supplemental Materi-

als, we have assessed the performance of the approximation via simulation studies,

especially when associations are sparse. When the J studies are independent, the

multivariate density function is modeled as the product of the individual density

functions, as in Equation (3). When the J studies are correlated, we proceed in a

similar manner as when t-statistics are used as input, except that the multivariate

normal distribution is replaced by the multivariate gamma distribution.

Extensions of Primo when J is large

When jointly analyzing a large number of sets of association summary statistics,

the number of possible joint association patterns K = 2J increases exponentially

with the number of sets of statistics, J . When J = 15, there are 32,768 possible

association patterns and the calculation for all K patterns can be computationally

expensive. One may reduce the number of patterns under consideration to only

the major and interpretable patterns [51]. However, the selection of major and

interpretable patterns is still a challenge. Additional work is still needed in future

research. When analyzing a large number of sets of association statistics of similar

types (for example, integrating multiple sets of eQTLs from different GTEx tissue

types for cross-tissue eQTLs), one possible strategy is to group sets of statistics into

major and independent groups g = 1, . . . , G, each with Jg < 10 sets of statistics.

Then one can apply Primo to calculate the posterior probabilities within each group

and take the products of the probabilities between groups to obtain the overall

probabilities for all groups in the association patterns of interest. For example, the

posterior probability of a SNP being associated with at least 1 (omics) trait in G

groups of studies is given by

P = 1−
G∏
g=1

Pr(the SNP is not associated with any trait in group g),
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where the probability of the SNP being not associated with any trait in group g

can be calculated by separately applying Primo to the low-dimensional Jg set of

statistics within the g-th group.

When jointly analyzing unbalanced numbers of summary statistics of different

data types (e.g., 10 sets of eQTL and 1 set of pQTL statistics), caution should be

taken as the joint association results can be dominated by one data type (here,

eQTL), which is not ideal. One may first collapse those J sets of statistics by

data types, and apply Primo in a hierarchical fashion to the (converted) summary

statistics from multiple data types. This direction will be explored in future work.

The connection of Primo to “colocalization” and meta-analysis methods

The Primo method shares some similarities with colocalization methods, as well

as meta-analysis methods. Similar to colocalization methods [15, 16, 18, 17], Primo

aims to integrate omics QTL with GWAS statistics to provide molecular mechanistic

interpretations of known trait-associated SNPs. Additionally, the ‘coloc’[15] and

‘moloc’[16] methods assume that there is only up to one true causal variant in a

region. However, the lead SNPs associated with expression levels in a gene can be

different in different tissue types and cell types [6], and the SNPs for different omics

QTLs may or may not share a same causal variant [21]. Motivated by those facts,

Primo integrates GWAS statistics with omics and multi-omics QTL association

statistics, and conducts conditional association analysis in gene regions harboring

known trait-associated SNPs to assess their omics-trait associations accounting for

LD with other lead SNPs for omics traits in the same gene regions.

Additionally, Primo enjoys a few advantages that are not shared with existing

methods: Primo can integrate more than three sets of summary statistics; Primo re-

quires only a total of J pre-specified parameters, θ1j ’s (which often can be estimated

from the data or based on a priori knowledge), and the results are not sensitive to

under-specification of those parameters; Primo estimates the πk’s based on the data

and separates the biological correlations/co-occurrences from sample correlations,

i.e. allowing studies to be correlated. Additionally, Primo provides FDR estimates

to guide the data-dependent choices of posterior probability cutoffs.

In comparison with meta-analysis, as a general association method Primo is more

flexible in accounting for study heterogeneity, allowing different GWAS and omics

QTL studies to have different effect sizes even in different directions. Note that if

the same directions of effect sizes is expected for a biological reason, one can also

use the one-side P -values as input in Primo. Primo does not require the samples to

be independent among different studies, and can take summary statistics calculated

from studies with independent, correlated, and/or overlapping samples. More im-

portantly, in addition to the omibinus test in identifying associations in at least one

study, Primo can identify SNPs in different combinations of association patterns,

many of which may have biological interpretations.

Primo is a flexible integrative association method with only summary statistics as

input. It makes minimal assumptions about the data structure underlying different

sets of summary statistics, and assesses the joint associations across a moderate to

large number of traits/data-types/conditions/studies.
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Figures

Figure 1 An overview of Primo and an illustration of interpretations of results. (A) The main
steps of the Primo algorithm for assessing joint associations. (B) Steps of the Primo algorithm to
provide mechanistic interpretations of known complex trait-associated SNPs (C) An example – the
Q matrix and interpretations of association patterns for an analysis of a complex trait, eQTL,
meQTL and pQTL studies for j = 1, 2, 3 and 4, respectively. The red box shows how association
patterns can be collapsed into groups of interest (here, summing probabilities across the patterns
in the red box would yield the probability of association with the complex trait and at least one
omics trait). (D) An example of the estimated marginal null and alternative densities of a
moderated t-distribution (top) and χ2 or −2 log(P ) values (bottom) for a study j.

Figure 2 A conceptual illustration of the conditional association analysis of Primo. Consider a
joint analysis of GWAS summary statistics and summary statistics of eQTL, meQTL and pQTL.
In a gene region harboring trait-associated SNPs, there is a GWAS SNP of interest (red/blue dot)
and two other confounding SNPs – the lead SNPs for eQTL and meQTL (green cross). Before
conditional association analysis, the GWAS SNP is estimated to be associated with cis expression,
methylation and protein levels. After adjusting for the two lead omics SNPs, the GWAS SNP is no
longer associated with cis expression levels (blue dot) but is still estimated to be a me- and pQTL.

Figure 3 An example of a known breast cancer susceptibility locus being associated with
multi-omics traits. Primo estimated a high probability (94.2%) of SNP rs2992756 being
associated with all four omics traits. Here shows the − log10(P )-values by position on
Chromosome 1 in the region of the gene KLHDC7A for all SNPs including the breast cancer
susceptibility locus (rs2992756, red dot) in GWAS (top panel) and eQTL, meQTL and pQTL
analyses in tumor tissue (the next three panels, respectively) and eQTL analysis in normal tissue
(bottom panel) for the gene and protein KLHDC7A and CpG site cg05040210.
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Tables

Table 1 Average estimates of π̂. Scenario 1a simulates sparse associations for J = 3 traits. Scenario
1b simulates even sparser associations for the third trait.

Scenario Method
πk(%)

qk=(0 0 0) (1 0 0) (0 1 0) (0 0 1) (1 1 0) (1 0 1) (0 1 1) (1 1 1)

1a

Independent
True 99.720 0.070 0.070 0.070 0.020 0.020 0.020 0.010

Primo (t) 99.714 0.075 0.075 0.075 0.017 0.017 0.017 0.009
Primo (P ) 99.742 0.069 0.069 0.069 0.015 0.015 0.015 0.007

Correlated
True 99.720 0.070 0.070 0.070 0.020 0.020 0.020 0.010

Primo (t) 99.718 0.073 0.073 0.073 0.018 0.018 0.018 0.009
Primo (P ) 99.746 0.067 0.067 0.067 0.016 0.016 0.016 0.007

1b

Independent
True 99.840 0.070 0.070 0.0007 0.020 0.0002 0.0002 0.0001

Primo (t) 99.830 0.073 0.073 0.0067 0.017 0.0003 0.0003 0.0001
Primo (P ) 99.850 0.066 0.066 0.0043 0.014 0.0002 0.0002 0.0001

Correlated
True 99.840 0.070 0.070 0.0007 0.020 0.0002 0.0002 0.0001

Primo (t) 99.834 0.072 0.072 0.0054 0.017 0.0003 0.0003 0.0001
Primo (P ) 99.853 0.064 0.064 0.0039 0.015 0.0003 0.0003 0.0001

Table 2 Simulation results evaluating the performance of Primo. PP := posterior probability; estFDR
:= estimated FDR.(A) When J = 3 with correlated samples, we compared Primo versus moloc and
Fisher’s method in detecting associations to at least 1 trait and associations to all traits and when
parameters are correctly, under- and over-specified. (B) When J = 5 with correlated samples, we
evaluated the performance of Primo.

(A)

Scenario Method

Association to at least one trait Association to all three traits
PP ≥ 0.90 PP ≥ 0.80 PP ≥ 0.90 PP ≥ 0.80

true estFDR Power true estFDR Power true estFDR Power true estFDR Power
FDR (%) (%) (%) FDR (%) (%) (%) FDR (%) (%) (%) FDR (%) (%) (%)

2a

Primo (t) 0.1 0.2 75.0 0.3 0.4 75.9 0.8 0.8 46.0 2.0 2.0 49.6
Primo (P ) 0.2 0.3 73.8 0.4 0.6 74.8 0.7 0.8 42.8 1.5 1.8 45.9

moloc - - - - - - 0.3 2.3 18.7 1.1 4.5 22.4
5% estFDR 10% estFDR

Fisher’s 23.5 - 77.0 36.0 - 78.4 - - - - - -

2b
Primo (t) 0.1 0.2 73.9 0.1 0.3 74.8 0.5 0.8 43.2 1.0 1.7 46.2
Primo (P ) 0.1 0.1 65.9 0.1 0.1 66.6 0.1 0.1 28.8 0.1 0.1 29.9

moloc - - - - - - 0.5 1.7 19.7 1.3 4.0 23.7

2c
Primo (t) 0.6 0.2 76.6 1.6 0.6 77.8 6.1 1.3 47.8 13.2 3.7 53.3
Primo (P ) 1.6 0.8 74.9 5.3 3.2 76.9 0.4 4.6 40.4 2.7 7.4 47.1

moloc - - - - - - 0.1 8.9 14.6 0.2 9.9 17.5

(B)

Scenario 3

Association to at least one trait Association to at least three traits Association to all five traits
PP ≥ 0.90 PP ≥ 0.80 PP ≥ 0.90 PP ≥ 0.80 PP ≥ 0.90 PP ≥ 0.80

true estFDR Power true estFDR Power true estFDR Power true estFDR Power true estFDR Power true estFDR Power
FDR (%) (%) (%) FDR (%) (%) (%) FDR (%) (%) (%) FDR (%) (%) (%) FDR (%) (%) (%) FDR (%) (%) (%)

Primo (t) 0.1 0.1 77.4 0.2 0.3 78.2 0.1 0.7 68.6 0.2 1.6 73.2 0.2 1.4 36.7 0.7 3.0 41.7
Primo (P ) 0.1 0.2 75.9 0.3 0.4 76.7 0.1 0.5 62.5 0.3 1.1 66.3 0.3 1.0 30.2 0.9 2.3 33.9

Table 3 Comparison of results before and after conditional association analysis. PP := posterior
probability

Scenario

PP ≥ 0.9 PP ≥ 0.8
Before accounting for LD After accounting for LD Before accounting for LD After accounting for LD
True estFDR Power True estFDR Power True estFDR Power True estFDR Power

FDR(%) (%) (%) FDR(%) (%) (%) FDR(%) (%) (%) FDR(%) (%) (%)
4a 3.9 2.6 68.7 3.3 6.2 66.4 9.2 4.9 80.0 7.3 9.5 77.3
4b 2.9 2.6 64.3 2.4 6.7 61.8 6.7 4.9 76.2 5.4 9.8 73.0
4c 6.2 2.6 76.0 5.2 5.5 74.4 16.4 5.3 87.0 13.1 10.0 85.0
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