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The speed of human social interaction perception 
Leyla Isik, Anna Mynick, Dimitrios Pantazis, and Nancy Kanwisher 

 

The ability to detect and understand other people’s social interactions is a fundamental part of 

the human visual experience that develops early in infancy and is shared with other primates. 

However, the neural computations underlying this ability remain largely unknown. Is the 

detection of social interactions a rapid perceptual process, or a slower post-perceptual 

inference? Here we used magnetoencephalography (MEG) decoding and computational 

modeling to ask whether social interactions can be detected via fast, feedforward processing. 

Subjects in the MEG viewed snapshots of visually matched real-world scenes containing a pair of 

people who were either engaged in a social interaction or acting independently. The presence 

versus absence of a social interaction could be read out from subjects’ MEG data spontaneously, 

even while subjects performed an orthogonal task. This readout generalized across different 

scenes, revealing abstract representations of social interactions in the human brain. These 

representations, however, did not come online until quite late, at 300 ms after image onset, well 

after the time period of feedforward visual processes. In a second experiment, we found that 

social interaction readout occurred at this same latency even when subjects performed an 

explicit task detecting social interactions. Consistent with these latency results, a standard 

feedforward deep neural network did not contain an abstract representation of social 

interactions at any model layer. We further showed that MEG responses distinguished between 

different types of social interactions (mutual gaze vs joint attention) even later, around 500 ms 

after image onset. Taken together, these results suggest that the human brain spontaneously 

extracts the presence and type of others’ social interactions, but does so slowly, likely relying on 

iterative top-down computations. 
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Introduction 

As fundamentally social primates, humans need to know who is doing what to whom, and why. 

Indeed, the ability to perceive and interpret social interactions between other agents develops 

early in infancy (Hamlin et al., 2007), is shared with other primates (Sliwa and Freiwald, 2017), 

and is apparently computed in a specialized region of the posterior superior temporal sulcus (Isik 

et al., 2017; Walbrin et al., 2017). These findings underscore the importance of social interaction 

perception, but leave unanswered the question of how this information is extracted from visual 

input. In particular, is social interaction recognition a rapid feedforward process, akin to object 

recognition, or a slower post-perceptual inference? 

Considerable evidence suggests that much of visual perception in primates, including 

face, scene, and “core” object recognition, is computed by rapid and largely feedforward pattern 

classification processes. First, these tasks in primates are well approximated by purely 

feedforward neural network models, not only in terms of accuracy but also in terms of the 

representations extracted (Khaligh-Razavi and Kriegeskorte, 2014; Radoslaw Martin Cichy, 2016; 

Yamins et al., 2014). Second, visual recognition in primates is fast, occurring within 200ms of 

image onset, as expected of a largely feedforward process. These fast latencies have been 

demonstrated for face (Bentin et al., 1996; Dobs et al., 2018), scene (Cichy et al., 2016a; Greene 

and Hansen, 2018), and object (Carlson et al., 2013a; Isik et al., 2014; Yamins et al., 2014) 

recognition. In contrast, some visual information cannot be computed from bottom-up visual 

information alone. Object recognition under complex viewing conditions, such as occlusion takes 

longer (~300 ms), and cannot be performed with purely feedforward models (Rajaei et al., 2018; 

Tang et al., 2018, 2014). Generative models offer an attractive solution to these challenging vision 

problems (Wu et al., 2016; Yuille and Kersten, 2006). Rather than relying solely on bottom-up 

cues, these systems build models of objects and the world around them, and use these generated 

models as hypotheses to interpret incoming visual information. 

Behavioral studies have suggested that the perception of social interactions shares some 

of the hallmarks of a classic visual pattern recognition problem, face recognition. First, people 

are better able to perceive social interactions when stimuli are presented upright rather than 

inverted, but the same is not true for perception of independent actions (Papeo et al., 2017). 

Second, social interactions receive preferential access to visual awareness (Su et al., 2016) and 

facilitate visual processing of groups of individuals (Vestner et al., 2019). Others have tried to 

address this question with computational modeling. One study showed that different types of 

social interactions can be distinguished based on bottom-up visual cues (Blythe et al., 1999), but 

more recent work has suggested that top down or generative models are required to solve this 

problem (Ben-Yosef et al., 2017; Ullman et al., 2009). Importantly, all these modeling efforts 

focused on categorizing different types of social interactions, and it remains an open question 

whether feedforward computations are sufficient to detect social interactions.  

Here we used MEG decoding and computational modeling to ask whether social 

interactions can be detected, in either humans or machines, via fast, feedforward processing. 

Using decoding methods, we ask whether the detection of a social interaction in a visual stimulus 

occurs on the rapid time scale of invariant object recognition (about 150 ms), as predicted from 

a feedforward pattern classification model, or more slowly, as expected if it requires a top-down 

inference. Here we find both the presence and type of social interaction could be decoded from 

subjects’ MEG data, but this readout occurred quite late, at 300 ms and 500 ms for detection and 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/579375doi: bioRxiv preprint 

https://doi.org/10.1101/579375
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

categorization, respectively. In a second experiment, we showed that this readout did not occur 

earlier even when subjects performed an explicit social interaction detection task. Finally, using 

deep convolutional neural networks we tested whether a standard feedforward computational 

model could distinguish between scenes with vs. without a social interaction. Consistent with our 

neural timing data, we found that a purely feedforward model could not distinguish between 

scenes with vs. without a social interaction.  

  

Results 
The below analyses were pre-registered on the Open Science Framework platform: 

https://osf.io/3vnem/registrations. Any deviations from our pre-registration are noted as 

exploratory analyses. 

 
Experiment 1  
Late, spontaneous readout of social interactions 
To identify MEG signals that contain information about the presence of social interactions, 

sixteen naïve subjects viewed visually matched images of different actor pairs in one of five 

different social or non-social conditions shot in one of 12 different scenes (60 total images, Figure 
1A-C). The five conditions were: 1) joint attention (two actors looking at the same object, a classic 

form of social interaction), 2) mutual gaze (two actors looking at each other, a different form of 

social interaction), 3) independent action 1 (two actors engaged in separate independent actions, 

i.e., no social interaction), 4) independent action 2 (a different instance of the two engaged in 

separate independent actions, no social interaction), 5) watch (one actor watching the other who 

is looking away, a one-way interaction or “perceptual access”). We defined social interactions 

broadly to include either joint attention or mutual gaze. In a post-MEG behavioral experiment, 

subjects rated the joint attention and mutual gaze images as significantly more social than the 

independent action images (Figure 1D, p =1.9x10-16, two-sided t-test) and also slightly more 

interesting (Figure 1E, p = 0.003). Mutual gaze images were rated as slightly more social than 

joint attention images (p = 0.017), but there was no difference in their interest rating (p = 0.41). 

During MEG recording, each subject viewed each of the 60 images 30 times, randomized 

within block, while performing an orthogonal task. In particular, subjects were asked if the two 

actors were of the same or different gender. This task was balanced across actor pairs and scenes 

and the presence versus absence of social interactions. First, to replicate prior visual decoding 

studies and to ensure data quality, we asked whether we could decode the 60 individual images 

based on subjects’ MEG signals. These images included different scenes and actors, and hence 

differ in many visual properties. We trained a linear classifier on the MEG response at each 10 

ms time bin on 80% of the trials, and tested it on the remaining 20%. We found that we could 

significantly decode which image subjects viewed beginning at 60 ms after image onset (Figure 
2A). This time course of image decoding replicates several prior MEG decoding studies (Carlson 

et al., 2013b; Cichy et al., 2014; Isik et al., 2014), and presumably reflects primarily early visual 

processing. We next trained and tested a classifier at each training timepoint and each testing 

timepoint to generate a matrix of decoding accuracies across all train and test time points (King 

and Dehaene, 2014; Figure S2A). Decoding accuracy was highest on the diagonal, when the 

classifier was trained and tested at the same time point, and was only significant during a narrow 

time window around the diagonal. This finding suggests that the neural signals are highly 
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dynamic, in line with previously reported results of visual decoding (Cichy et al., 2014; Isik et al., 

2014; Zhang et al., 2011).  

  

We next asked the central question of this experiment: when do MEG signals encode 

information about whether a scene contains a social interaction (joint attention and mutual gaze 

conditions vs. independent action conditions)? To obtain abstract representations of social 

interactions, invariant to visual scene and actor information, we trained our classifier on data 

from subjects viewing 10 of the 12 scenarios and tested on the two held-out scenarios. This is a 

strong test of generalization, as the images within each scenario are much more visually similar 

Figure 1: Stimulus set and behavioral responses. Subjects in the MEG viewed images depicting 

two actors engaged in (A) a social interaction, (B) independent actions, or (C) one actor watching 

the second. (Note faces have been obscured in figure to comply with biorxiv policy.) The social 

interaction images consisted of either a joint attention event (A, left column) or a mutual gaze 

event (A, right column). After the experiment, subjects rated (D) the extent to which each image 

depicted a social interaction (from 1 = “definitely not” to 5 = “definitely”), and (E) the visual 

interest of each image (from 1 = “very un-interesting” to 5 = “very interesting”). Error bars show 

standard deviation across subjects. 
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to each other than they are to the other 

images in the dataset. We found that we 

could indeed read out the presence versus 

absence of a social interaction invariant to 

scene (Figure 2B). This readout occurred 

relatively late however, beginning at 310 

ms after stimulus onset. Applying the 
same temporal generalization approach 
as before, we found again a primarily 
diagonal decoding pattern, indicating 
transient social interaction 
representations (Figure S2B). These 

results suggest that humans 

spontaneously form abstract 

representations of social interactions, but 

this occurs later than the time scale of 

primarily feedforward processes as in the 

case of invariant object recognition.  

 
Social interaction decoding cannot be 
explained by visual interest or eye 
movements 
We next asked if other experimental 

factors could account for this social 

interaction decoding. First, subjects rated 

the social interaction images as slightly 

more visually interesting than the non-

interacting images, but this was not 

uniformly true across image pairs. In an 

exploratory analysis (not included in our 

pre-registration), we took the half of the 

image pairs with the smallest difference in 

interest ratings between the social and 

non-social images. We found that although 

there was no longer a significant 

difference in subjects behavioral interest 

ratings (mean rating 2.9±0.44 and 

2.8±0.35, p = 0.29), we could still decode 

scenes with vs. without a social interaction 

(Figure S3). Overall the timecourse of 

decoding looked very similar to that for all 

images (though the onset of significant decoding did not occur until 400 ms, likely due to lower 

power). Thus, differences in generic attention or interest are unlikely to account for our ability to 

decode the presence of social interactions. 
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Figure 2: Image identity and social interaction 
decoding from MEG signals in Experiment 1. (A) 

time series of 60-way image identity decoding, 

with significant onset at 60 ms. (B) time series of 

social interaction vs. independent images 

decoding, with significant onset at 320 ms. (n = 16 

subjects; error bars indicate SEM; vertical line 

indicates stimulus onset; black lines below time 

series indicate significant time points; two-sided 

permutation test; p < 0.05 cluster defining 

threshold; p < 0.05 cluster threshold). 
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We next asked if subjects’ eye movements varied systematically across interacting and 

non-interacting images. To do this, we followed the same decoding procedure as with the MEG 

data, but instead used subjects x,y eye-position as input to our classifier. We found that we could 

indeed decode the presence of social interactions based on subjects’ eye position (Figure S4A). 

To address this alternative account of our findings, in a second experiment (see below) we 

presented the images at a smaller visual angle and for a shorter duration. While we were still 

able to decode scenes with vs. without a social interaction based on subjects’ MEG data, we could 

no longer do so based on eye position (Figure S4B). 

 
Feedforward computational model cannot recognize social interactions across scenes 
To more explicitly test whether feedforward computations can distinguish between scenes with 

vs. without a social interaction, we asked if a purely feedforward deep convolutional neural 

network model (VGG-16, trained on Imagenet (Simonyan and Zisserman, 2014)) could distinguish 

between these two conditions. While this model was trained on an object recognition task, it has 

seen a wide range of natural images, and similar networks have been shown to generalize across 

Figure 3: Social interaction decoding from different layers of a convolutional neural network 
model. Bar plot shows the classification accuracy of each layer for the output of each layer  in a 

social interaction detection task. Blue bars indicate decoding without generalization, and red 

bars decoding with generalization across different scene images. Error bars indicate SD across 

multiple resample runs. Asterisks indicates p<0.05 significant decoding based on permutation 

test. 
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different visual pattern recognition tasks 

(Blauch et al., 2017; Zhou et al., 2014). 

We used the response of each unit in  

each layer of the CNN as features to our 

linear classifier. Just as with the MEG 

data, we trained our classifier on 10 of 

the 12 social and non-social scenes, and 

tested on the two held out scenes. We 

could not detect the presence vs. 

absence of a social interaction, in a 

manner that generalized across scenes, 

with the output of any layer of the CNN 

(Figure 3, red bars). In the final pooling 

layer of the model, we could detect 

social interactions in a manner that did 

not generalize across scenes (Figure 3, 

blue bars). This was analogous to our 

MEG data where we detected the 

presence of a social interaction earlier, 

within 200 ms, in random 80-20 splits of 

our data (requiring no generalization 

across scenes, Figure S1). Taken 

together, these results suggest that 

standard feedforward computations are 

not sufficient to detect abstract social 

interactions in natural scenes.  

 
Distinct representation of two-way 
social interactions 
We next asked what information is 

driving our ability to decode social 

interactions. Is it sufficient for one agent 

to be aware of the other (“perceptual 

access”), or is an actual two-way social 

interaction necessary? To answer this 

question we asked if we could decode 

one-way “watch” images (in which one 

agent sees the other but not vice versa) 

from two-way “mutual gaze” images. 

We found that we could decode watch 

versus mutual gaze at similar latency to 

social interaction read out (Figure 4a, 

onset 330 ms). Note that this decoding is 

based on half as much data as the social 

Figure 4: Decoding different types of social 
interactions from MEG signals in Experiment 1: 
Time series of (A) watch vs. social intearction 

(onset=330 ms), (B) watch vs. independent actions 

(not signifcant), (C) mutual gaze vs. joint attention 

(onset= 600 ms). Error bars and statistical tests are 

the same as in Figure 2. 
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interaction detection analysis above, so 

the read out is necessarily noisier. 

Interestingly, we could not decode watch 

images from independent action images 

(Figure 4b). These findings  suggest that 

it is the presence versus absence of a 

two-way social interaction that is a 

distinct and spontaneously represented 

property of the image, not the mere 

presence of one-way perceptual access 

from one agent to the other.  

 
Late readout of Type of Third Party 
Social Interaction 
Finally, beyond simply detecting the 

presence of a social interaction, we asked 

whether the MEG signal contained 

information about the different type of 

social interactions in our dataset: Joint 

attention vs. Mutual Gaze. Mutual gaze is 

perhaps the most perceptually obvious 

form of social interaction between two 

agents. But joint attention is also a 

fundamental form of social interaction 

that arises early in infancy (Scaife and 

Bruner, 1975) and may be critical in 

language learning (Tomasello and Farrar, 

1986). Do perceivers spontaneously 

distinguish between these two forms of 

social interaction, and if so, when? We 

found that we could distinguish joint 

attention vs. mutual gaze in a manner 

that generalized across scenes, but only 

quite late, at 600 ms after image onset 

(Figure 4c). This analysis makes use of 

only half the data as the analysis of social 

interaction detection and thus could fail 

to detect earlier discriminative 

information (but see Experiment 

2/Figure 6 for a replication of these 

results). 

 

In sum, the results of Experiment 1 

suggest that both the presence and type 

Figure 5: Image identity and social interaction 
decoding from MEG signals in Experiment 2: 
Time series of (A) 48-way image identity 

(onset = 70 ms), (B) social interaction vs. 

independent images generalizaing across 

scenes (onset = 300 ms), (C)  combined Exp 1 

and 2 (onset = 290 ms).  Error bars and 

statistical tests are the same as in Figure 2. 
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of social interactions are spontaneously represented in the brain, but this information comes 

online very late, well beyond the timescale of primarily feedforward processes. 

  
Experiment 2  
Social interaction perception is slow even during 
an explicit task 
In a second experiment we asked if there were 

any conditions under which social interaction 

information could be extracted more quickly. In 

particular, can these neural computations occur 

faster if the subject is explicitly asked to 

behaviorally extract that information? This would 

be consistent with prior studies showing  rapid 

visual readout that also used an explicit task 

(Thorpe et al., 1996). To test this hypothesis, we 

ran a second experiment with 16 additional naïve 

subjects who saw identical images in the MEG, 

but now instead of performing the same versus 

different gender task they performed an explicit 

social interaction task (i.e., does this image 

contain a social interaction?). The button order 

was flipped halfway through the study so that 

explicit motor responses could not account for 

our decoding results (see Methods). In this 

experiment, we removed the “Watch” stimuli to 

for this experiment because they are ambiguous 

in terms of whether they should or should not 

count as a social interaction, and they are not 

directly relevant to our central question. 

Subjects’ mean reaction time on the social 

interaction task was 1.0±0.25 s (mean±SD across 

subjects). As expected, we found no difference in 

the onset latency of image identity decoding 

(Figure 5A). 

Importantly, we found that even when 

subjects performed an explicit social interaction 

detection task, information about the presence 

vs. absence of a social interaction could again 

only be discriminated in MEG response at relatively late latencies after stimulus onset (290 ms, 

Figure 5B). Could earlier social interaction signals exist that we did not have sufficient power to 

see in either experiment? To answer this question, in an exploratory analysis, we combined the 

data from Experiments 1 and 2 and re-ran our social interaction decoding analysis. Even with 32 

subjects, the onset latency of social interaction detection did not change (Figure 5C).  

A)

B)

-200 0 200 400 600 800 1000

Time from stimulus onset (ms) 

0.4

0.45

0.5

0.55

0.6

0.65

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

Joint attention vs. mutual gaze

-200 0 200 400 600 800 1000

Time from stimulus onset (ms) 

0.4

0.45

0.5

0.55

0.6

0.65
C

la
ss

ifi
ca

tio
n

 A
cc

u
ra

cy
Joint attention vs. Mutual gaze - Exp 1 & 2

Figure 6: Decoding different types of social 
interactions from MEG data in Experiment 
2. Time series of mutual gaze vs. joint 

attention for (A) Experiment 2 (onset 530 

ms), and (B) combined Exp 1 and 2 (onset 

490 ms).  Error bars and statistical tests are 

the same as in Figure 2. 
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Next, we again asked if and when we could decode the type of social interaction (mutual 

gaze vs. joint attention) in Experiment 2, as we could in Experiment 1. While the latency moved 

slightly earlier, it was still quite late, with an onset of 530 ms after stimulus onset (Figure 6A). In 

another exploratory analysis, we combined data across Experiments 1 and 2 and found that in all 

32 subjects onset latency was 490 ms (Figure 6B).The results of Experiment 2 serve as an internal 

replication, and confirm that even in the presence of task demands, social interaction perception 

is computed well beyond the timescale of visual pattern recognition.  

 
MEG-Behavioral correlation 
As with all decoding studies, it is important 

to investigate whether the neural 

information we extract is associated with 

perceptual judgements, or whether it is 

merely epiphenomenal (Grootswagers et 

al., 2018; Williams et al., 2007). One way to 

address this concern is to test whether 

readout performance is tied to subjects 

behavioral judgments and reaction times. 

Because we had these measures in our 

second experiment, we correlated each 

subjects MEG and behavioral data using 

representational similarity analysis (RSA). 

Specifically, we computed the time-

resolved dissimilarity matrix for our MEG 

data (48x48 pairwise image decoding 

accuracy) and a behavioral dissimilarity 

matrix (48x48 behavioral dissimilarity 

matrix), and correlated these measures 

within subject. We found that there was 

indeed a significant correlation between 

subjects’ behavioral accuracy and MEG data beginning 340 ms after stimulus onset (Figure 7). 

These results suggest that the MEG signals we detected are behaviorally relevant to social 

interaction perception. 

 

Discussion  
In this work, we identified neural signals that contain information about the presence and type 

of third-party social interactions in a visual scene. These neural representations generalized 

across low-level visual features, and arose spontaneously, even when participants performed an 

orthogonal task. Crucially though, they arose relatively late compared to previously reported 

latencies for other types of visual pattern classification: 300 ms after stimulus onset for detection 

and 600 ms for categorization. These late latencies were found even when subjects performed 

an explicit social interaction detection task. Importantly, this neural readout was correlated with 

behavior. In line with this late onset time, we found that a standard feedforward neural network 

could not distinguish between scenes with versus without a social interaction. Taken together, 

Figure 7: Social interaction information 
encoded in MEG signals was correlated with 
behavior. Time series shows the correlation 

between the MEG dissimilarity matrix at each 

time point and reaction time dissimilarity 

matrix. Error bars and statistical tests are the 

same as if Figure 2. 
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these results suggest that social interaction perception is not based on purely feed-forward 

processing,  but instead relies on slower, presumably recurrent computations. 

The latencies of social interaction detection and categorization (300 and 600 ms, 

respectively) are substantially later than those previously reported for different types of pattern 

recognition problems, such as invariant object recognition (Carlson et al., 2013a; Isik et al., 2014; 

Yamins et al., 2014). Prior work with ERPs (Thorpe et al., 1996) and physiology (Yamins et al., 

2014) indicates that object recognition is quite fast, occurring between 100-200 ms after stimulus 

onset, even when the objects appear in complex backgrounds, like the natural images used in 

our study. Natural scene information has been shown to arise on a similarly fast time scale to 

object recognition (Cichy et al., 2016a; Greene and Hansen, 2018). 

In contrast to object and scene perception, there has been relatively little M/EEG 

decoding work on aspects of social perception. The N170 response (Bentin et al., 1996) is a 

strongly face-selective univariate response arising around 170 ms after image onset. However, 

recent decoding studies have shown that many aspects of face information are represented 

earlier than 170 ms. For example, age, gender and identity are all decodable around 100 ms (Dobs 

et al., 2018). Even emotion properties like expression (100 ms (Dima et al., 2018)) and valence 

and arousal (150 ms (Grootswagers et al., 2017)) have been shown to come online quickly. 

Beyond face properties, the emotional valence and self-relevance of communicative gestures can 

be decoded within 100 ms (Redcay and Carlson, 2015), and individual agents’ actions as early as 

200 ms (Isik et al., 2018). Interestingly, like object and scene perception, these social dimensions 

all fall within the rough timescale of feedforward pattern recognition. The present study suggests 

that the detection of third-party social interactions occurs substantially later, and thus may be 

based on fundamentally different computations from these other visual and social recognition 

processes. A critical difference may be that, unlike face, emotion, action, and gesture recognition 

of individuals, social interaction recognition involves taking into account relational information 

between multiple agents. 

In general, feedforward models perform poorly on tasks that involve incorporating 

relational information (Yuille and Kersten, 2006). It is important to note, however, that while we 

showed that a generic deep neural network trained on object classification could not detect 

scenes with vs. without social interactions, we do not know how a similar neural network trained 

on a social interaction task would perform. Unfortunately, this question is difficult to answer due 

to the lack of large-scale labelled image datasets in this domain. However, similar feedforward 

networks have been shown to generalize across different types of pattern recognition problems. 

For example, networks trained on either scene or object recognition perform well above chance 

on the opposite problem (Zhou et al., 2014). Similarly, a network trained on face recognition has 

been shown to generalize somewhat to both object and scene recognition problems (Blauch et 

al., 2017). In contrast this network, trained on an object recognition task, did not perform above 

chance in our social interaction task (Figure 3). While it is difficult to rule out earlier feedforward 

signals or computations that we could not detect with MEG or an appropriately trained model, 

convergent evidence from these two methods suggests that social interaction detection cannot 

be solved with fast, feedforward computations alone. It remains an interesting open question 

whether a model with recurrence, which largely has same structure as the deep neural network 

tested here, would perform well on the task, or if a fundamentally different class of generative 

models is required to solve this problem. 
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This study takes just a first step toward understanding the time course and computations 

underlying multi-agent social interaction perception, but many questions remain. Beyond 

detecting simple, dyadic social interactions and distinguishing between different gaze events, 

what other social interaction information is spontaneously extracted by the brain? How do our 

brains code complex real-world complex social events such as a party or sporting event? And how 

fine-grained are the automatically-extracted representations of social interactions (positive vs. 

negative, different action categories, etc.)? And perhaps most obviously, where in the brain do 

these social interaction representations originate? Our prior fMRI results indicate that a region 

in the right posterior superior temporal sulcus is selectively engaged in the perception of social 

interactions (Isik et al., 2017). If this region does indeed underlie the decoding information we 

report here with MEG, does it receive input from purely from visual regions, or from higher level 

regions that code for information about individual social agents (Grossman et al., 2000; Puce et 

al., 1998; Saxe and Kanwisher, 2003) or the physical world around them (Fischer et al., 2016)? 

While future work combining fMRI and MEG will be needed to answer these questions, this work 

provides important initial constraints on the neural computations underlying multi-agent social 

interactions. 

 
Methods 
Social interaction dataset 
We created an image dataset depicting pairs of people interacting with each other or 

independently in different ways. There were five different conditions, shot across 12 scenes with 

12 different actor pairs (60 images total, see Figure 1A for example images). The five conditions 

differed in the way each pair of people were or were not interacting with each other. The 

different conditions include: 

i. Mutual gaze – pair of actors is looking at each other. Social interaction. 

ii. Joint attention – pair of actors looking at the same object. Social interaction. 

iii. Independent actions 1 – two actors are engaged in separate independent actions. No 

social interaction. 

iv. Independent actions 2 – two actors are engaged in separate independent actions 

(different actions from above). No social interaction. 

v. Watch – one actor watches the other actor who is looking away. One-way interaction.   

 
Subjects 
32 naïve subjects (16 for Experiment 1, and 16 different subjects for Experiment 2) between 18-

45 years old with normal or corrected to normal vision participated in these experiments. Our 

experimental protocol was approved by the MIT Committee for the Use of Humans as 

Experimental Subjects. Three additional subjects were excluded from Experiment 1 based on a 

pre-defined behavioral exclusion criteria (<80% accuracy on behavioral task).  

 

Experimental procedure 
Experiment 1 
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Subjects viewed the 60 images presented 30 times each in the MEG. The order of the 60 images 

was randomized within each block. Subjects were instructed to fixate centrally and judge if the 

two people in each image were the same or different genders. The images were presented at 9x5 

degrees of visual angle for 500 ms each with a central fixation cross. Each image was immediately 

followed by task instructions, and subjects responded yes or no. After each question a 200ms 

fixation cross would appear before the next image. Task responses were self-paced, and the 

button order flipped halfway through the experiment to avoid motor confounds. 

 

Experiment 2 
In Experiment 2 the procedure was exactly the same  as Experiment 1 except 1) subjects viewed 

only 48 of the 60 images (excluding “watch” condition), 2) to mitigate the effect of eye 

movements images were presented smaller (5 x 2.8 degrees of visual angle) and for a shorter 

duration of 200ms, and 3) subjects performed an explicit social interaction task (“Are these two 

people engaged in a social interaction?”). 

 

Eye tracking 
We tracked the subjects’ left and right eye positions using an Eyelink 1000 eye tracker with a 9-

point calibration. We were not able to achieve an accurate calibration for 4 subjects in 

Experiment 1 and 3 subjects in Experiment 2, so these subjects’ eye position data were excluded 

from the eye tracking analysis. To test whether there is stimulus-selective information was 

present in our eye tracking data, we performed the below decoding procedures using the X,Y 

output of each eye as classifier features (see Decoding Methods for more details). 

 
MEG acquisition and pre-processing  
The MEG data were collected using an Elekta Neuromag Triux scanner with 306 sensors, 102 

magnetometers and 204 planar gradiometers, with an online bandpass filter between 0.01 and 

330 Hz. Subjects head position was continuously monitored throughout the experiment using 

five head position index (HPI) coils. First the signals were filtered using temporal Signal Space 

Separation and motion corrected (based on the position of the HPI coils) with Elekta Neuromag 

software. Next, Signal Space Projection (Tesche et al., 1995) was applied to correct for movement 

and sensor contamination. The MEG data were divided into epochs from −200 to 1000 ms, 

relative to video onset, with the mean baseline activity removed from each epoch. The signals 

were band-pass filtered from 0.1 to 100 Hz to remove external and irrelevant biological noise 

(Acunzo et al., 2012; Rousselet, 2012). The above preprocessing steps were all implemented 

using the Brainstorm software (Tadel et al., 2011). 

 
MEG decoding 
We analyzed the MEG data using the neural decoding toolbox for Matlab (Meyers, 2013). We 

averaged the data in each sensor into 10ms non-overlapping bins, and trained and tested a new 

linear correlation coefficient classifier at each time point. We used 5-fold cross validation (CV) 

splits (training on 80% of the data and testing on the held out 20%). We performed feature 
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selection using an ANOVA on only the training data (to avoid double dipping/circularity) and 

selected the 25 sensors whose activity most significantly co-varied with the training labels. These 

selected sensors were fixed for testing. We repeated the entire decoding procedure at each time 

point 20 times and report the mean accuracy for each condition. See (Isik et al., 2018, 2014) for 

a more detailed description of the decoding methods. 

 

The variables we decoded decode were: 

1. 60-way image identity. Each image was repeated 30 times, and we divide the data 

into five cross validation splits with 6 trials per CV split. To increase signal to noise, we 

averaged the data from all 6 trials together. 

2. Social interaction (mutual gaze and joint attention) vs. independent action images (2 

non-interacting conditions per scenario). 

3. Joint attention vs. mutual gaze. 

4. Social interaction (mutual gaze) vs. watch. 

5. Non-interacting images vs. watch. 

 

For tests 2-5, we ran the decoding in a manner that generalized across scenario. In particular, we 

trained our classifier on 10 scenarios and tested on the remaining two, held-out scenarios. For 

the generalization decoding, we averaged 30 trials together (note that in our pre-registration we 

stated we would average 24 trials together. This was an error as 24 is not divisible by the number 

of trials included in conditions 3-5 so would require us to exclude data from the decoding).  

 
Statistical inference 
We assessed decoding significance using non-parametric statistical tests that do not make 

assumptions about the underlying distribution of the data (Pantazis et al., 2005). Specifically, we 

performed a sign permutation test that centers each subjects’ MEG data around chance and 

randomly multiplies it by +1 or -1. We repeated this procedure 1000 times to generate a null 

distribution. To correct for multiple comparisons, we used cluster correction in time with a cluster 

defining threshold of p<0.05 and a corrected significance level of p<0.05 (Cichy et al., 2016b; 

Mohsenzadeh et al., 2018). 

 
CNN model 
To further test if social interaction detection can be performed using feedforward computations, 

we ran our stimuli through a pre-trained feedforward deep neural network: VGG-16 trained on 

Imagenet (Simonyan and Zisserman, 2014). We asked if the output of each of the models’ five 

pooling layers could distinguish between images with vs. without a social interaction. First, to 

reduce the dimensionality of each layers’ output we performed PCA and selected the top 50 

components from each layer (note our pilot data showed very similar results with 40-59 

components). Within each layer, we then took the response to each image and, as with our MEG 
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data, trained a linear classifier to distinguish between scenes with vs. without a social interaction 

on data from 10 of 12 scenes. We tested the linear classifier on data from the two held-out 

scenes. We repeated this procedure 20 times, holding out two random scenes each time. 

 

Representational similarity analysis 

We compared our MEG data to our behavioral data in Experiment 2 using representational 

similarity analysis (RSA; Kriegeskorte et al., 2008). To produce the MEG dissimilarity matrix, we 

followed a similar procedure to (Cichy et al., 2014). We first performed PCA on the MEG 

responses to the 60 images in our data to reduce the dimensionality of the data the number of 

components that explains 99.99% of original variance in data. We next calculated the dissimilarity 

between each pair of images based on their pairwise classification accuracy computed over those 

PCs. We repeated this at each time point to get a new dissimilarity matrix. 

To produce the behavioral dissimilarity matrix we used a behavioral metric that took into account 

the subjects’ reaction time scaled by their response. In particular, we calculated the metric as: 

Response*(1-RT/max(RT)), where RT is reaction time, and the response is +1 for social 

interactions and -1 for non-social interactions. These values ranged from +1 for the fastest social 

interaction responses to-1 for the fastest non-social interaction responses. For each subject, we 

calculated the average pairwise difference between each image pair to construct our behavioral 

dissimilarity matrix. 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/579375doi: bioRxiv preprint 

https://doi.org/10.1101/579375
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

References 
Acunzo DJ, Mackenzie G, van Rossum MCW. 2012. Systematic biases in early ERP and ERF 

components as a result of high-pass filtering. J Neurosci Methods 209:212–8. 

doi:10.1016/j.jneumeth.2012.06.011 

Ben-Yosef G, Yachin A, Ullman S. 2017. A model for interpreting social interactions in local 

image regions. 

Bentin S, Allison T, Puce A, Perez E, McCarthy G. 1996. Electrophysiological Studies of Face 

Perception in Humans. J Cogn Neurosci 8:551–565. 

Blauch N, Aminoff E, Tarr MJ. 2017. Functionally localized representations contain distributed 

information: insight from simulations of deep convolutional neural networks. 

Blythe PW, Todd PM, Miller GF. 1999. How motion reveals intention: Categorizing social 

interactions 257–285. 

Carlson T, Tovar DA, Alink A, Kriegeskorte N. 2013a. Representational dynamics of object vision: 

The first 1000 ms. J Vis 13:1-. doi:10.1167/13.10.1 

Carlson T, Tovar DA, Alink A, Kriegeskorte N. 2013b. Representational dynamics of object vision: 

the first 1000 ms. J Vis 13:1-. doi:10.1167/13.10.1 

Cichy RM, Khosla A, Pantazis D, Oliva A. 2016a. Dynamics of scene representations in the 

human brain revealed by magnetoencephalography and deep neural networks. 

Neuroimage. doi:10.1016/j.neuroimage.2016.03.063 

Cichy RM, Pantazis D, Oliva A. 2016b. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-

Temporal Dynamics in Human Cortex During Visual Object Recognition. Cereb Cortex 

bhw135. doi:10.1093/cercor/bhw135 

Cichy RM, Pantazis D, Oliva A. 2014. Resolving human object recognition in space and time. Nat 
Neurosci 17:455–62. doi:10.1038/nn.3635 

Dima DC, Perry G, Messaritaki E, Zhang J, Singh KD. 2018. Spatiotemporal dynamics in human 

visual cortex rapidly encode the emotional content of faces. Hum Brain Mapp 39:3993–

4006. doi:10.1002/HBM.24226 

Dobs K, Isik L, Pantazis D, Kanwisher N. 2018. How face perception unfolds over time. bioRxiv 

442194. doi:10.1101/442194 

Fischer J, Mikhael JG, Tenenbaum JB, Kanwisher N. 2016. Functional neuroanatomy of intuitive 

physical inference. Proc Natl Acad Sci U S A 113:E5072-81. doi:10.1073/pnas.1610344113 

Greene MR, Hansen BC. 2018. Shared spatiotemporal category representations in biological and 

artificial deep neural networks. PLOS Comput Biol 14:e1006327. 

doi:10.1371/journal.pcbi.1006327 

Grootswagers T, Cichy RM, Carlson TA. 2018. Finding decodable information that can be read 

out in behaviour. Neuroimage 179:252–262. doi:10.1016/J.NEUROIMAGE.2018.06.022 

Grootswagers T, Kennedy BL, Most SB, Carlson TA. 2017. Neural signatures of dynamic emotion 

constructs in the human brain. Neuropsychologia. 

doi:10.1016/j.neuropsychologia.2017.10.016 

Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R. 2000. Brain Areas 

Involved in Perception of Biological Motion. J Cogn Neurosci 12:711–720. 

doi:10.1162/089892900562417 

Hamlin JK, Wynn K, Bloom P. 2007. Social evaluation by preverbal infants. Nature 450:557–9. 

doi:10.1038/nature06288 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/579375doi: bioRxiv preprint 

https://doi.org/10.1101/579375
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

Isik L, Koldewyn K, Beeler D, Kanwisher N. 2017. Perceiving social interactions in the posterior 

superior temporal sulcus. Proc Natl Acad Sci U S A 114:E9145–E9152. 

doi:10.1073/pnas.1714471114 

Isik L, Meyers EM, Leibo JZ, Poggio T. 2014. The dynamics of invariant object recognition in the 

human visual system. J Neurophysiol 111. doi:10.1152/jn.00394.2013 

Isik L, Tacchetti A, Poggio T. 2018. A fast, invariant representation for human action in the visual 

system. J Neurophysiol 119. doi:10.1152/jn.00642.2017 

Khaligh-Razavi S-M, Kriegeskorte N. 2014. Deep Supervised, but Not Unsupervised, Models May 

Explain IT Cortical Representation. PLoS Comput Biol 10:e1003915. 

doi:10.1371/journal.pcbi.1003915 

King J-R, Dehaene S. 2014. Characterizing the dynamics of mental representations: the 

temporal generalization method. Trends Cogn Sci 18:203–210. 

doi:10.1016/j.tics.2014.01.002 

Kriegeskorte N, Mur M, Bandettini P. 2008. Representational similarity analysis - connecting the 

branches of systems neuroscience. Front Syst Neurosci 2:4. 

doi:10.3389/neuro.06.004.2008 

Meyers EM. 2013. The neural decoding toolbox. Front Neuroinform 7. 

doi:10.3389/fninf.2013.00008 

Mohsenzadeh Y, Qin S, Cichy R, Pantazis D. 2018. Ultra-Rapid Serial Visual Presentation Reveals 

Dynamics of Feedforward and Feedback Processes in the Ventral Visual Pathway. bioRxiv 

350421. doi:10.1101/350421 

Pantazis D, Nichols TE, Baillet S, Leahy RM. 2005. A comparison of random field theory and 

permutation methods for the statistical analysis of MEG data. Neuroimage 25:383–394. 

doi:10.1016/J.NEUROIMAGE.2004.09.040 

Papeo L, Stein T, Soto-Faraco S. 2017. The Two-Body Inversion Effect. Psychol Sci 28:369–379. 

doi:10.1177/0956797616685769 

Puce A, Allison T, Bentin S, Gore JC, McCarthy G. 1998. Temporal Cortex Activation in Humans 

Viewing Eye and Mouth Movements. J Neurosci 18. 

Radoslaw Martin Cichy AKDPATAO. 2016. Comparison of deep neural networks to spatio-

temporal cortical dynamics of human visual object recognition reveals hierarchical 

correspondence. Sci Rep 6. 

Rajaei K, Mohsenzadeh Y, Ebrahimpour R, Khaligh-Razavi S-M. 2018. Beyond Core Object 

Recognition: Recurrent processes account for object recognition under occlusion. bioRxiv 

302034. doi:10.1101/302034 

Redcay E, Carlson TA. 2015. Rapid neural discrimination of communicative gestures. Soc Cogn 
Affect Neurosci 10:545–551. doi:10.1093/scan/nsu089 

Rousselet GA. 2012. Does Filtering Preclude Us from Studying ERP Time-Courses? Front Psychol 
3:131. doi:10.3389/fpsyg.2012.00131 

Saxe R, Kanwisher N. 2003. People thinking about thinking peopleThe role of the temporo-

parietal junction in “theory of mind.” Neuroimage 19:1835–1842. doi:10.1016/S1053-

8119(03)00230-1 

Scaife M, Bruner JS. 1975. The capacity for joint visual attention in the infant. Nature 253:265–

266. doi:10.1038/253265a0 

Simonyan K, Zisserman A. 2014. Very Deep Convolutional Networks for Large-Scale Image 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/579375doi: bioRxiv preprint 

https://doi.org/10.1101/579375
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Recognition. 

Sliwa J, Freiwald WA. 2017. A dedicated network for social interaction processing in the primate 

brain. Science 356:745–749. doi:10.1126/science.aam6383 

Su J, van Boxtel JJA, Lu H. 2016. Social Interactions Receive Priority to Conscious Perception. 

PLoS One 11:e0160468. doi:10.1371/journal.pone.0160468 

Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. 2011. Brainstorm: a user-friendly 

application for MEG/EEG analysis. Comput Intell Neurosci 2011:879716. 

doi:10.1155/2011/879716 

Tang H, Buia C, Madhavan R, Crone NE, Madsen JR, Anderson WS, Kreiman G. 2014. 

Spatiotemporal dynamics underlying object completion in human ventral visual cortex. 

Neuron 83:736–48. doi:10.1016/j.neuron.2014.06.017 

Tang H, Schrimpf M, Lotter W, Moerman C, Paredes A, Ortega Caro J, Hardesty W, Cox D, 

Kreiman G. 2018. Recurrent computations for visual pattern completion. Proc Natl Acad Sci 
U S A 115:8835–8840. doi:10.1073/pnas.1719397115 

Tesche CD, Uusitalo MA, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O. 1995. Signal-space 

projections of MEG data characterize both distributed and well-localized neuronal sources. 

Electroencephalogr Clin Neurophysiol 95:189–200. doi:10.1016/0013-4694(95)00064-6 

Thorpe S, Fize D, Marlot C. 1996. Speed of processing in the human visual system. Nature 

381:520–2. 

Tomasello M, Farrar MJ. 1986. Joint attention and early language. Child Dev 57:1454–63. 

Ullman T, Baker C, Macindoe O, Evans O. 2009. Help or hinder: Bayesian models of social goal 

inference. Adv neural. 
Vestner T, Tipper SP, Hartley T, Over H, Rueschemeyer S-A. 2019. Bound together: Social 

binding leads to faster processing, spatial distortion, and enhanced memory of interacting 

partners. J Exp Psychol Gen. doi:10.1037/xge0000545 

Walbrin J, Downing PE, Koldewyn K. 2017. The Visual Perception of Interactive Behaviour in the 

Posterior Superior Temporal Cortex. J Vis 17:990. 

Williams MA, Dang S, Kanwisher NG. 2007. Only some spatial patterns of fMRI response are 

read out in task performance. Nat Neurosci 10:685–686. doi:10.1038/nn1900 

Wu J, Zhang C, Xue T, Freeman B, Tenenbaum J. 2016. Learning a Probabilistic Latent Space of 

Object Shapes via 3D Generative-Adversarial Modeling. 

Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. 2014. Performance-

optimized hierarchical models predict neural responses in higher visual cortex. Proc Natl 
Acad Sci U S A 111:8619–24. doi:10.1073/pnas.1403112111 

Yuille A, Kersten D. 2006. Vision as Bayesian inference: analysis by synthesis? Trends Cogn Sci 
10:301–308. doi:10.1016/J.TICS.2006.05.002 

Zhang Y, Meyers EM, Bichot NP, Serre T, Poggio TA, Desimone R. 2011. Object decoding with 

attention in inferior temporal cortex. doi:10.1073/pnas.1100999108/-

/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1100999108 

Zhou B, Lapedriza A, Xiao J, Torralba A, Oliva A. 2014. Learning Deep Features for Scene 

Recognition using Places Database. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/579375doi: bioRxiv preprint 

https://doi.org/10.1101/579375
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figures  

 
 
Figure S1: Social interaction decoding without generalization. Decoding time series of scenes 
with vs. without a social interaction from random 80-20 splits across all trials (possibly including 
different trials of the same images or scenes across spilts) and thus not explicitly testing 
generalizing across scenes for (A) Experiment 1 and (B) Experiment 2. error bars indicate SEM; 
vertical line indicates stimulus onset; black lines below time series indicate significant time 
points; two-sided permutation test; p < 0.05 cluster defining threshold; p < 0.05 cluster 
threshold).  
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Exp 1: Social interaction (no generalization)
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Figure S2: Temporal generalization decoding. Classification accuracy for training and testing a 
classifier at all pairs of time points (diagonal corresponds to line plots shown in Figures 2 and 5) 
for (A) Experiment 1 image identity decoding, (B) Experiment 1 social interaction decoding, (C) 
Experiment 2 image identity decoding, and (D) Experiment 2 social interaction decoding. 
Significance testing is the same as in Figure S1. 
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Figure S3: Social interaction decoding for images matched on “interest” ratings in post-MEG 
experiment (see Figure 1F for ratings). Error bars and significance testing is the same as in Figure 
S1. 
 
 
 

  
 
Figure S4: Social interaction decoding from eye tracking signals. Time series of social interaction 
vs. independent images decoding in (A) Experiment 1, and (B) Experiment 2 . Error bars and 
significance testing are same as in Figure S1. 
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