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Abstract  

A growing body of evidence indicates that miRNAs may either drive or suppress oncogenesis. 

However, little is known about somatic mutations in miRNA genes. To determine the 

frequency and potential consequences of miRNA gene mutations, we analyzed whole exome 

sequencing datasets of ~500 lung adenocarcinoma (LUAD) and ~500 lung squamous cell 

carcinoma (LUSC) samples generated in the TCGA. Altogether, we identified >1000 mutations 

affecting ~500 different miRNA genes and showed that half of all cancers had at least one such 

mutation. Mutations occurred in most crucial parts of miRNA precursors, including mature 

miRNA and seed sequences. We showed that seed mutations strongly affected miRNA:target 

interactions, drastically changing the pool of predicted targets. Mutations may also affect 

miRNA biogenesis by changing the structure of miRNA precursors, DROSHA and DICER 

cleavage sites, and regulatory sequence/structure motifs. We identified 10 significantly 

overmutated hotspot miRNA genes, including the miR-379 gene in LUAD enriched in 

mutations in the mature miRNA and regulatory sequences. The occurrence of mutations in 

the hotspot miRNA genes was also shown experimentally. We present a comprehensive 

analysis of somatic mutations in miRNA genes and show that some of these genes are 

mutational hotspots, suggesting their potential role in cancer. 
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INTRODUCTION 

Lung cancer is the most common cause of cancer-related morbidity and mortality worldwide 

(1) and is defined as a group of distinct diseases with high genetic and cellular heterogeneity 

(2). Non-small cell lung carcinoma (NSCLC) is the most common lung cancer subtype and can 

be further divided into lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), 

and large cell carcinoma (LCC). Genetic profiles of these cancers have been revealed by several 

whole genome and whole exome next-generation sequencing (NGS) projects that led to the 

identification of thousands of somatic mutations within individual cancer genomes (3-6). 

Analysis of these mutations allowed the elucidation of several important protein-coding driver 

genes, including KRAS, EGFR, BRAF, MET, RIT1, ALK, and NF1 in LUAD and PIK3CA, FGFR1, and 

PTEN in LUSC (7-9). Therapeutic strategies specifically targeting some of these drivers have 

been developed and successfully trialed, and they are now the most prominent examples of 

successful personalized/targeted therapies (10). However, key drivers are not yet recognized 

for substantial fractions of LUAD and LUSC cases (7-11). 

Other functional genetic elements coded by non-protein-coding sections of the 

genome include short non-coding single-stranded RNA particles called microRNAs (miRNAs). 

It is estimated that miRNAs regulate the expression of most protein-coding genes (12,13). At 

present, nearly 2000 human miRNAs have been described, but the biological functions of most 

miRNAs remain unknown (14). miRNA-coding sequences are not randomly distributed over 

the genome and are overrepresented in certain positions associated with fragile sites involved 

in cancer (15). miRNAs may be encoded in independent transcriptional units or protein-coding 

genes in either the sense or antisense orientation and are mostly expressed as long 5’-capped 

and 3’-polyadenylated primary transcripts (pri-miRNAs). Mature miRNAs are generated in cells 

in a multistage process of miRNA biogenesis (16-18). In the nucleus, pri-miRNAs are processed 

by the RNase DROSHA and DGCR8 within the Microprocessor complex to release hairpin 

miRNA precursors (~80 nt, pre-miRNAs). After pre-miRNA export to the cytoplasm, the RNase 

DICER removes the apical loop to release a 19-25-bp miRNA duplex containing 2-nt 3’ 

overhangs on both ends. The miRNA duplex is then incorporated into the miRNA-induced 

silencing complex (RISC), where it is unwound; one strand (passenger strand) is released, and 

the other strand (guide strand or mature miRNA) is selected to target complementary 

transcripts. Generally, miRNAs function as cytoplasmic regulators via base-pairing with 

complementary (or nearly complementary) sequences within mRNA (mostly in the 3’UTR). 
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This posttranscriptional silencing of gene expression occurs through transcript deadenylation 

and/or degradation or translation inhibition. Canonical miRNA:target interactions occur via 

complementarity of the 7-nt seed region defined by nucleotides 2-8 of mature miRNA. 

Additional mechanisms that regulate the level and fidelity of miRNA maturation and function 

exist at each step of miRNA biogenesis (16,19). For example, specific structural features and 

primary sequence motifs (basal UG, CNNC, and loop UGUG motifs) present in miRNA 

precursors were shown to facilitate miRNA processing (20,21). 

The important role of miRNA in the regulation of physiological processes such as 

growth, development, differentiation, proliferation, and apoptosis (22,23) prompted 

extensive studies in cancer. For example, dozens of miRNA expression profiling studies in lung 

cancer have been performed, and many consistently overexpressed (e.g., miR-21, miR-210, 

miR-182, miR-31, miR-200b, and miR-205) and underexpressed miRNAs (e.g., miR-126, miR-

30a, miR-30d, miR-486, miR-451a, and miR-143) have been identified (for summary, see 

previous meta-analyses (24,25)). It has been determined that the upregulation or 

downregulation of certain miRNAs may contribute to carcinogenesis, and therefore, such 

miRNAs may be classified as either oncogenes (oncomiRs) or tumor suppressors 

(suppressormiRs) (26,27). Among the most intensively studied oncomiRs in lung cancer and 

other types of cancer are miR-21, miR-155, the miR-17-92 cluster and miR-205. Similarly, a 

group of suppressormiRs, such as those in the let-7 and miR-200 families and miR-143, has 

been identified. miRNAs have been shown to play an important role in many oncogenic 

processes, including proliferation, epithelial-mesenchymal transformation (EMT), migration, 

angiogenesis, inflammation, apoptosis, and response to cancer treatment. Thus, miRNAs have 

been implicated as diagnostic and prognostic biomarkers and cancer therapeutic targets 

(reviewed in (28-31)). Additionally, miRNA genes are often either amplified or deleted in 

cancer in a similar fashion as protein coding oncogenes and tumor suppressor genes, and 

somatic copy number variation may be an important mechanism underlying aberrant miRNA 

expression in cancer (15,32,33) 

In contrast to the excitement about the role of miRNA in cancer, very little is known 

about somatic mutations in miRNA genes (defined here as sequences encoding pre-miRNAs 

and their directly adjacent flanks; note that actual miRNA genes are much larger, encoding 

entire transcription units) in cancer. Important exceptions are (i) a recently published study 

reporting a tool (ADmiRE) for the annotation and prioritization of different genetic variants, 
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including somatic mutations in miRNAs (34), (ii) a database of somatic mutations affecting the 

interactions of miRNAs with competing endogenous RNAs (SomamiR), including somatic 

mutations in miRNAs (35), and (iii) recent reports of somatic mutations in pre-miR-142 (the 

only example of recurrently mutated miRNA gene in cancer), shown to contribute to the 

development of diffuse large B-cell lymphoma, follicular lymphoma and acute myeloid 

leukemia (36-38). 

The importance of miRNA gene sequences is reflected by their high conservation and 

low genetic variability (39-41). Previous studies by our group and others have shown that the 

density of single nucleotide polymorphisms (SNPs) is significantly lower in miRNA genes than 

in their flanking sequences or in the whole genome (42-45). We have also shown that miRNA 

genes less frequently overlap with common copy number variations (CNVs) (43). On the other 

hand, SNPs located in miRNA genes may affect miRNA biogenesis and the specificity of miRNA 

target recognition. For example, the G>C substitution (SNP rs138166791) in the penultimate 

position of pre-miR-890, significantly lowers the cleavage efficiency by DROSHA and, 

consequently, decreases the levels of mature miR-890-5p and miR-890-3p (46). There is also 

evidence that some SNPs within miRNA genes may correlate with different diseases, including 

cancer (47-53). Finally, there are a few examples of Mendelian diseases caused by germline 

mutations in miRNA genes (54-57). 

To determine the frequency and potential consequences of mutations in miRNA genes, 

as well as to identify potential overmutated hotspot miRNA genes, we searched for somatic 

mutations in >1600 miRNA genes using whole exome sequencing (WES) datasets of >1000 

samples of the two most common types of lung cancer, i.e., LUAD and LUSC. As a result, we 

identified over 1000 mutations in more than 500 different miRNA genes and showed that a 

substantial fraction of the mutated miRNA genes overlap in the two types of lung cancer. We 

characterized all the mutations in terms of localization (in subregions of miRNA precursors), 

type, and potential functional consequences. Among the identified mutations were mutations 

in well-known oncomiRs and suppressormiRs, including let-7, miR-21, and miR-205. A 

substantial fraction of the mutations were localized in sequences of mature miRNAs, including 

in seed sequences and DROSHA and DICER cleavage sites. We performed an analysis with a 

set of computational tools and showed that somatic mutations in miRNA genes may affect (i) 

target recognition, (ii) the structure of miRNA precursors, and (iii) structural/sequence motifs 

that play a role in RNA:protein interactions important for miRNA biogenesis. Finally, we 
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identified and characterized several significantly overmutated hotspot miRNA genes that may 

be potential driver oncomiRs or suppressormiRs. 

 

RESULTS 

General characteristics of the identified somatic mutations 

To identify somatic mutations in miRNA genes, we took advantage of WES datasets of 569 

LUAD and 479 LUSC samples generated within The Cancer Genome Atlas (TCGA) project. We 

focused our analysis on miRNA genes encoding the most crucial and well-defined sequences 

of primary miRNA precursors, i.e., pre-miRNA-coding sequences and flanking sequences 

extending 25 nt upstream and downstream. The sequencing datasets covered 80% of known 

human miRNA genes (1642 of nearly 2000) (Supplementary Table S1). 

In the set of selected miRNA genes, we identified 545 and 546 somatic mutations in 

350 and 353 miRNA genes in LUAD and LUSC, respectively (Figure 1A and Supplementary Table 

S2). More than half of the mutated miRNA genes are annotated as high confidence in miRBase. 

As shown in Figure 1B, the sets of mutated miRNA genes strongly overlapped between the 

two types of cancer, and the number of miRNA genes mutated in these two cancers 

significantly exceeded the number expected by chance (hypergeometric probability with 

normal approximation test: fold enrichment=2.3; p<1 × 10-45 ). The distribution of mutation 

types was similar between the two cancers, with substitutions, indels, and complex mutations 

accounting for ~91%, 4%, and 5%, respectively. At least one mutation was found in ~50% and 

~60% of LUAD and LUSC samples, respectively (Supplementary Figure S1). Over 75% of the 

mutated samples had either one (~49%) or two (28%) mutations, and less than 3% had more 

than 5 mutations. To verify the reliability of our data processing method (passing variant 

thresholds), in the similar way, we performed a mutation analysis in the well-known LUAD 

protein-coding cancer drivers. The mutation frequencies in the particular drivers were 

consistent with that determined before (r2=0.92; p=0.0002) (9). 

As shown in Figure 1C, the distribution of mutations across chromosomes only roughly 

correlated with the number of miRNA genes located on a particular chromosome (LUAD: 

r2=0.465, p=0.0003; LUSC: r2=0.443, p=0.0005). Exceptions were overmutation of 

chromosomes 19 (in both cancer types) and 14 (in LUSC) and undermutation of chromosomes 

1 and 2 (in LUSC and LUAD, respectively). Overall, the most abundantly mutated chromosomes 
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were 14, 19, and X, encompassing 20% of the analyzed miRNA genes, but cumulatively 

accounting for 40% of the mutations (Figure 1D). 

Somatic mutations are not equally distributed along miRNA precursors 

To look closer at the localization of mutations in subregions of miRNA precursors, we 

superimposed the identified mutations (substitutions only) on the consensus miRNA 

precursor structure (Figure 2A) and categorized them according to localization in the miRNA 

gene subregions (Table 1, Supplementary Table S2). As shown in Figure 2 in both LUAD and 

LUSC samples, mutations were more or less evenly distributed along the miRNA precursor 

sequence, with slight enrichment in miRNA duplex vs. non-miRNA duplex sequences (5.9 vs. 

4.5 mutations/Mbp [mut/Mbp], p=0.0012, and 6.9 vs. 5.5 mut/Mbp, p=0.0078, in LUAD and 

LUSC, respectively (binomial distribution)). A similar mutation distribution was observed when 

precursors of predominantly 5’- and 3’-miRNAs were analyzed separately (Figure 2B and C, 

lower panels) and when the analysis was narrowed to the precursors of high-confidence 

miRNAs defined by either miRBase or MiRGeneDB (14,58) (Supplementary Fig. S2). Therefore, 

the division of the mutations into the functional subregions of miRNA gene revealed the 

further differences in mutation distribution, with the highest mutation density in the mature 

miRNA sequence (including seed) and the lowest mutation density in the 5’flanking sequence, 

consistently in LUAD and LUSC (Table 1).  

Mutations in miRNA seed regions alter mRNA target recognition 

It may be expected that the effect of an miRNA gene mutation will strongly depend on its 

localization. The most unequivocal effect is caused by mutations in the miRNA seed region 

responsible for miRNA:target interactions. Any change in this region may significantly alter the 

spectrum of regulated transcripts. To obtain deeper insight into the scale of changes in target 

recognition caused by seed mutations, we employed TargetScan to identify potential targets 

of corresponding wild-type and mutated miRNAs (Figure 3 and Supplementary Figure S3). The 

analysis was performed for 48 and 56 seed mutations in LUAD and LUSC, respectively. As 

expected, the target overlap between wild-type and mutated miRNAs was generally low and 

usually did not exceed a few percents. The highest overlap of targets was observed for 

mutations in the last (7th) position of the seed sequence. Additionally, mutations may cause 

either a decrease or an increase in a number of predicted targets. As shown for miR-518d-3p, 

two mutations located in adjacent positions of the seed sequence have completely different 
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effects on the number of predicted targets (Figure 3). The extreme examples are the 

mutations at the 2nd position of the miR-1306-3p seed (167x increase in the number of 

predicted targets, 5 vs. 836) and at the 2nd position of the miR-922-3p seed (48x decrease, 387 

vs. 8) (Figure 3 and Supplementary Figure S3). 

Somatic mutations may alter interactions of miRNA precursors with regulatory proteins 

An increasing number of proteins regulating miRNA biogenesis have been recently recognized 

(19). Disruption of structural or sequence motifs recognized by these proteins may affect the 

interaction of miRNA precursors with proteins and, consequently, miRNA biogenesis. 

Therefore, we employed recently developed by one of us (M.O.U.T) miRNAmotif software (59) 

to investigate whether the identified mutations disrupt or create known sequence motifs 

recognized by the following regulatory proteins: hnRNPA1, HuR, KSRP, Lin28, MBNL1, MCPIP1, 

DGCR8, MATR3, ZC3H7, YBX1, TRIM71, PTBP1/3, DDX17, RBFOX, SMAD, CELF1/2, and ZC3H10. 

The analysis led to the identification of 84 mutations disrupting 55 motifs and creating 54 

motifs (some mutations affected more than one motif) (Table 2 and Supplementary Table S3). 

In our study, the most frequently affected sequence motifs were UGU and VCAUCH recognized 

by the DGCR8 and DDX17 regulatory proteins, respectively. 

Identification of hotspot miRNA genes 

Analysis of the mutation distribution over the analyzed regions showed that 8 (miR-890, miR-

664b, miR-1297, miR-379, miR-1324, miR-892a, miR-887, and miR-509-3) and 2 (miR-527 and 

miR-592) hotspot miRNA genes were significantly overmutated in LUAD and LUSC, 

respectively (Table 3). To further evaluate the reliability of the identified hotspot miRNA 

genes, we re-calculated mutation enrichment significance, weighting the mutation 

occurrences by the following factors: 2x, mutations in seeds; 1.5x, mutations in miRNAs 

(guide-strand only); 1.5x, mutations affecting the functional motifs or DROSHA/DICER 

cleavage sites; 1x, other mutations. As shown in Table 3 the p-value calculated based on the 

weighted-mutation values further decreased for 8 hotspot-miRNA-genes, including the miR-

509-3, miR-1324 and miR-379 genes with an excess of mutations affecting the mature miRNA 

and functional motif sequences. Eight of the 10 hotspot miRNA genes were defined as high 

confidence in either miRBase or miRGeneDB. As shown in Figure 4, there were no specific 

hotspot mutations but rather randomly distributed mutations over the sequences of hotspot 

miRNA genes. An exception may be the miR-890 and miR-887 gene, in which most mutations 
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clustered within the DROSHA cleavage site and basal stem junction in the 5’ flanking region, 

respectively. Analysis of the expression of particular miRNAs showed that miR-887 levels in all 

mutated samples were below the median of this miRNA in LUAD (Supplementary Figure S4). 

A similar observation was made for mutations in the miR-664b gene, whereas mutations in 

other hotspot miRNA genes showed a more or less random distribution over the range of 

miRNA expression levels. 

The co-mutation plot shown in Figure 5A presents the basic clinical and 

epidemiological characteristics of cancers with mutations in miRNA genes (emphasizing 

mutations in hotspot miRNA genes). The formal analysis (Supplementary Table S4), although 

of low statistical power, showed an association of miR-890 gene mutations with earlier tumor 

stage (LUAD: stage I-II vs. III-IV, p=0.019), more frequent mutations in the miR-887 gene in 

males (p=0.045), and a borderline significant correlation of miR-664b gene mutations with 

lower cigarette-per-day-smoking in LUAD. However, due to the low number of mutations in 

particular hotspot miRNA genes, the abovementioned associations must be interpreted 

cautiously and cannot be generalized without further validation. 

As shown in Figure 5B, although mutations in hotspot miRNA genes and known driver 

genes are not mutually exclusive, a substantial fraction of mutations in hotspot miRNA genes 

occurred in samples with no driver gene mutations. 

Somatic mutations may affect miRNA precursor structure 

Another consequence of mutations in miRNA genes are structural changes that can be caused 

by mutations in any subregion of the miRNA precursor. Using mutations in the hotspot miRNA 

genes as examples, we compared the secondary and spatial structures of wild-type and 

mutant miRNA precursors. The structure prediction was performed with the use of the mfold 

(60) and RNAComposer (61) software. This analysis showed that most mutations 

(substitutions) induced subtle, local changes, but some caused more severe deformations of 

the structure (Figure 6). An example of a mutation that induced serious structural aberrations 

in the hairpin structure of miRNA precursor is n.57C>A in the 3’ arm of pre-miR-664b (Figure 

6A). Such mutations very likely affect miRNA biogenesis (processing by cellular RNases). 

Mutations that introduced enlarged internal loops, e.g., n.20G>T and n.58T>A in the miR-664b 

precursor and n.66G>T and n.21G>A in the miR-890 precursor although do not affect 

substantially the secondary structure of the precursors, may increase the flexibility of the helix 

axis, manifested by changes in the geometry of 3D structure. Changes in the predicted 
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secondary structure, which affect pre-miRNA stability, are not always manifested in spatial 

geometry, as shown for the n.60T>C mutation in the miR-890 precursor, which caused the loss 

of two nucleotide internal loops and increased the rigidity of the precursor stem but did not 

affect the 3D structure of the precursor.  

Experimental identification of mutations in hotspot miRNA genes 

In the next step, we used Sanger sequencing to screen a small group of ~60 NSCLC samples 

for mutations in three of the identified hotspot miRNA genes, i.e., the most frequently 

mutated miR-890, and the most frequently annotated with cancer related functions miR-379 

and miR-1297 genes (Table 3). In total, we detected 5 sequence variants (Supplementary 

Figure S5 and Supplementary Table S5). Among the identified sequence variants was n.66G>C 

in the miR-890 gene, identified in the hemizygous state in 3 independent cancer samples 

(Supplementary Figure S5A). The mutation is located in the 3’ arm of the precursor, next to 

the predicted DROSHA cleavage site, at the same position as a mutation identified in the TCGA 

cohort (n.66G>T). Additionally, mutations (n.1-18A>G) in the 5’ flanking region of the miR-890 

gene were detected in two other samples. Besides that a single mutation (n.77+26C>T) in 3’ 

flanking region, 36 nucleotides upstream of the predicted pre-miRNA sequence was detected. 

Mutations were also found in the miR-379 gene, one (n.13C>A) in the seed region 

(Supplementary Figure S3A and Supplementary Figure S5B) and the other (n.1-37C>T) in the 

5’ flanking region, 42 nucleotides upstream of the predicted pre-miRNA sequence. As we do 

not have access to corresponding normal DNA samples, we cannot unambiguously confirm 

the somatic status of the identified changes. 

 

DISCUSSION 

Cancer development is associated with the accumulation of numerous genetic aberrations, 

including point mutations, CNVs, and copy number-neutral genomic rearrangements. Most of 

these alterations are neutral (passenger) changes occurring randomly throughout the 

genome, but others may be cancer-driving mutations. The accumulation of such mutations in 

a particular gene or the recurrent occurrence of a particular mutation may indicate its 

importance in cancer development. To date, many driver genes/mutations have been 

identified, some of which are utilized as biomarkers in personalized cancer therapy (62). 

Prominent examples include EGFR mutations in lung cancer and JAK2 mutations in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/579011doi: bioRxiv preprint 

https://doi.org/10.1101/579011
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

myeloproliferative disorders (63,64). So far, most of the attention has been on the analysis of 

protein-coding genes; therefore, the majority of experimental approaches and bioinformatics 

algorithms used for somatic mutation detection and identification of potential driver signals 

are not well suited for non-protein-coding parts of the genome. The limitations of tools 

dedicated to the analysis of genetic variation in non-coding sections of the genome (~99%) 

and thus the limited number of studies focusing on these regions were recently described and 

discussed (34,65). It should also be noted that a recent increase in interest in non-coding 

genomic variation, most likely inspired by the identification of highly recurrent mutations in 

the promoter of the TERT gene in melanoma and other cancers (66), is focused mostly on 

regions playing a role in DNA:protein interactions (e.g., promoters and enhancers) (65). 

Considering the role of miRNAs in regulating gene expression, it can be presumed that 

somatic mutations may affect numerous cellular processes through changes in miRNA 

functionality. Somatic mutations in miRNA genes may manifest as aberrations in miRNA:target 

interactions induced predominantly by mutations in the miRNA guide strand sequence, 

especially but not exclusively in the seed region (67), or as aberrations in miRNA biogenesis 

caused either by mutations in essential regulatory motifs or mutations affecting miRNA 

precursor structure. Somatic mutations in miRNA genes may, therefore, cripple or enhance 

their silencing properties or create new miRNAs, i.e., miRNAs recognizing new targets. Thus, 

the accumulation of somatically acquired gain- or loss-of-function mutations in a specific 

miRNA gene may benefit cancer development and progression. 

In this study, we detected 1091 mutations in 521 miRNA genes (Figure 1A) and showed 

that approximately 50% of the analyzed cancers had at least one mutation in at least one 

miRNA gene. Our results show that such mutations are generally spread throughout the 

genome, even though some chromosomes were overmutated (Chr14 and Chr19) or 

undermutated (Chr1 and Chr2). To better understand the potential function of the identified 

mutations, we characterized them with respect to localization in different subregions of 

miRNA precursors, influence on miRNA precursor secondary and tertiary structures, impact 

on sequence motifs bound by different proteins that participate in miRNA maturation and 

changes in mature miRNA:target interactions. 

Our analysis identified well-recognized suppressormiRs or oncomiRs among the miRNA 

genes with somatic mutations. Examples of the mutated suppressormiR genes may be the Let-

7a-2, let-7c, and let-7e genes belonging to the let-7 family, known to have tumor suppressor 
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function by repressing cell proliferation and regulating the cell cycle (68) and the miR-205 

gene, which inhibits cancer progression by suppressing EMT and accelerates cancer 

development by facilitating tumor initiation and proliferation (69,70). The same n.35C>T 

mutation in the miR-205 seed sequence was observed in two samples in our studies (Figure 3 

and Supplementary Figure S3B). Mutations were also found in genes encoding known 

oncomiRs, such as the miR-21, miR-155 genes and in the genes (miR-17, miR-18a, miR-20a, 

R19b-1, and miR-92a-1) belonging to the miR-17-92 cluster, also known as OncomiR-1 (71) 

(Supplementary Table S2). Finally, mutations were also detected in the miR-143 gene, which 

encodes the most abundantly expressed miRNA (accounting for ~30% of all expressed 

miRNAs) and, next to miR-21, contribute to the greatest changes (decreases) in miRNA levels 

in most cancer types (72). 

Among the mutated miRNA genes, we identified a group of ten hotspot miRNA genes 

that were significantly overmutated in either LUAD or LUSC samples. The fact that 80% of 

hotspot miRNA genes (64% of all mutated miRNA genes) but only 45% of all analyzed miRNA 

genes were assigned as high confidence according to miRBase and/or miRGeneDB supports 

the reliability of our findings. The dispersed distribution of mutations over the hotspot miRNA 

genes (without specific hotspot mutations) is consistent with the pattern of loss-of-function 

mutations typically observed in suppressor genes (73). This finding coincides with previous 

results (summarized in Table 3) suggesting that most hotspot miRNAs act as suppressormiRs. 

An example is miR-379, which downregulates MDM2, thus preventing the ubiquitination and 

degradation of p53 (74); PDK1, which is the convergence point of cancer signaling pathways 

such as the PI3K/Akt, Ras/MAPK and Myc pathways (75); and COX-2, which inhibits the 

transition from acute to chronic inflammation and thereby prevents cancer initiation and 

progression (76). An exceptional mutation distribution pattern was the accumulation of 

mutations in a basal region of the miR-887 gene and the introduction of a basal UG motif, 

which may be associated with the oncogene-like pattern of mutations resulting in accelerated 

pre-miRNA processing and thus an elevated level of this miRNA in cells. Increased levels of 

miR-887 were previously reported in endometrial and rectal cancer (77,78). In contrast, other 

authors have demonstrated that miR-887 may act as a tumor suppressor in prostate cancer, 

breast cancer and small cell lung cancer (SCLC) (79-81). We have shown that mutations in 

miRNA genes and known cancer driver genes are not mutually exclusive, but a substantial 

number of miRNA gene mutations were identified in samples without mutations in known 
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protein-coding drivers. We also showed that mutations in some hotspot miRNA genes 

correlated with different epidemiological and clinical characteristics of cancer and that miR-

887 and miR-664b gene mutations were associated with lower expression of these specific 

miRNAs. Nevertheless, the statistical power of these analyses was low (low number of 

mutations in a particular gene), and therefore, the determination of whether the identified 

hotspot miRNA genes have cancer-driver potential requires further statistical and 

experimental validation. On the other hand, even if the detected mutations are not primary 

drivers, they may still play a role in cancer. It was recently shown that passenger mutations 

may both prevent further cancer progression (82) and cooperate in driving cancer 

development and drug resistance (83,84). 

Somatic mutations in the miRNA duplex lead to altered miRNA:target interactions 

(Figure 3 and Supplementary Figure S6) and also may affect miRNA maturation by changing 

the precursor structure (Figure 6). For example, the n.66G>T mutation in the 3’ arm of the 

miR-890 precursor destabilizes the duplex structure and enlarges the internal loop at the 

predicted DROSHA cleavage site. This mutation may affect DROSHA cleavage or change its 

specificity. It was shown before that the G>C substitution (SNP rs138166791) located at the 

same position significantly decreases the effectiveness of pre-miRNA processing and the level 

of mature miRNA (46). Additionally, as we have previously shown, such nucleotide 

substitutions may alter DROSHA cleavage specificity and may change the pool of generated 

isomiRs (85-87). Interestingly, although the minor allele of this SNP is very rare (<1% in the 

GnomAD, TOPMED, ExAC, and 1000G databases), we detected this allele as a hemizygous 

variant in 3 of ~60 lung cancer samples in our experimental analysis. 

We have also shown that somatic mutations in miRNA genes may affect (destroy or 

create) sequence motifs recognized by proteins playing a role in miRNA maturation. The most 

frequently gained sequence motifs were the VCAUCH and UGU motifs recognized by DDX17 

and DGCR8, respectively. Both motifs are important for proper pri-miRNA recognition and 

processing by DROSHA. Another frequently created motif was the UGC motif that is bound by 

MCPIP1, which antagonizes DICER and terminates miRNA biosynthesis via cleavage of the pre-

miRNA terminal loop and via further precursor degradation (88). The DGCR8-binding motif 

was also the most frequently lost due to somatic mutation, followed by the CAGAC motif, 

which is recognized by SMAD and enhances pri-miRNA processing by the microprocessor 

complex. Additionally, TGF-β-stimulated SMAD may enhance the transcription of miRNA-
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coding genes by binding to their promoters (89,90). As shown in Figure 4, mutations may also 

affect the SRSF3-binding CNNC motif involved in pri-miRNA processing (91). 

In contrast to the numerous approaches/algorithms for identifying driver 

genes/mutations in protein-coding genes (e.g., MutSig2CV, HotSpot 3D, CLUMPS, PARADIGM, 

HotNet2, e-Driver and 20/20+) (92,93)), which take advantage of predictable consequences of 

mutations in affected proteins, the identification of drivers in non-protein-coding regions is 

limited to the analysis of mutation frequency/distribution in a region of interest. The challenge 

in identifying driver mutations in non-coding regions stems mostly from the lack of a simple 

code (such as the protein code) that would allow one to predict the function of mutations and 

to distinguish deleterious from benign or neutral mutations. Approaches such as MutSigNC 

and LARVA, which utilize analysis of background mutation distribution, were recently modified 

for the identification of non-coding drivers, but they remain mostly limited to regions such as 

promoters, enhancers, and transcription factor binding sites (65). To the best of our 

knowledge, there is currently no tool dedicated to the automated and statistically supported 

identification of driver mutations in miRNA genes. Therefore, our results, as well as the 

recently published tool ADmiRE (34), may help to prioritize potentially functional mutations 

and to develop a better algorithm for the identification of driver mutations in regions coding 

for non-coding RNAs, particularly miRNAs. For example, an analysis of mutations in hotspot 

miRNA genes detected in this study showed that excess mutations in the miR-509-3 gene 

occur in the mature miRNA sequences and that those in the miR-887 gene affect regulatory 

sequence motifs. 

In summary, in this study involving WES data from human lung tumors, we revealed a 

plethora of somatic mutations within miRNA genes and addressed their potential functional 

consequences. Although our results must be further evaluated and experimentally validated, 

they provide a good starting point for discussion and further research on the development of 

miRNA gene-dedicated computational approaches, which may help elucidate the role of 

somatic miRNA gene mutations in cancer in the future. Our findings may be helpful in cracking 

the code of so-called non-coding DNA and may contribute to fully understanding the role of 

miRNAs in cancer development and to examining many yet unexplored parts of the genome. 
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METHODS 

Data resources 

We used molecular and clinical data (Level 2) for LUAD and LUSC generated and deposited in 

the TCGA repository (http://cancergenome.nih.gov). These data included results of somatic 

mutation calls in WES datasets of 569 LUAD and 479 LUSC (and matched normal) samples 

preprocessed through the standard TCGA pipeline. We analyzed annotated somatic mutations 

with corresponding clinical information and miRNA expression data. 

Data processing 

We analyzed somatic mutations in 1642 miRNA gene regions (Supplementary Table S1) 

including 1600 regions covered by the probes used for exome enrichment (SureSelect, Agilent, 

Santa Clara, CA, USA) and 42 regions co-captured during library enrichment but not directly 

covered by the SureSelect probes. The miRNA genes cover extended pre-miRNA-coding 

sequences, including 25 nucleotides upstream and downstream of the pre-miRNA-coding 

sequence. Pre-miRNA-coding sequences were reconstructed based on 5’ and 3’ mature 

miRNA coordinates annotated in miRBase v.21 (in cases when only one miRNA strand was 

indicated in miRBase, the other pre-miRNA end was predicted assuming the pre-miRNA 

hairpin structure with a 2-nt 3’ overhang). According to the number of reads generated from 

the particular pre-miRNA arm (miRBase), the analyzed precursors were classified into one of 

3 categories: (i) pre-miRNAs generating mature miRNA predominantly from the 5’ arm (≥90% 

of reads from the 5’ arm); (ii) pre-miRNAs generating mature miRNA predominantly from the 

3’ arm (≥90% of reads from the 3’ arm); and balanced pre-miRNAs (>10% of reads from each 

arm). To validate the accuracy of the identified miRNA gene mutations (assumed 

threshold/filters), we also analyzed the occurrence of somatic point mutations in selected 

hotspot exons of well-known NSCLC driver genes (9), i.e., KRAS, EGFR, BRAF, HRAS, NRAS, 

MAP2K1, MET, ERBB2, RIT1, and NF1 (Supplementary Table S1).  

Some analyses (indicated in the text) were performed on a narrowed list of high-

confidence miRNA genes defined either in miRBase v.22 (n=616) or MiRGeneDB (n=521). The 

precursors deposited in MiRGeneDB are defined based on criteria that include careful 

annotation of the mature versus passenger miRNA strands and evaluation of evolutionary 

hierarchy; therefore, they are much more conservative than those in miRBase (58). 
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From the WES data generated with the use of four different algorithms (MuSE, 

MuTect2, VarScan2, and SomaticSniper), we extracted somatic mutation calls with PASS 

annotation. The extraction was performed with a set of in-house Python scripts 

(https://github.com/martynaut/mirnaome_somatic_mutations). To avoid duplicating 

mutations detected in multiple datasets associated with the same patient, we combined files 

summing reads associated with particular mutations. The lists of mutations detected by 

different algorithms were merged such that mutations detected by more than one algorithm 

were not multiplicated. To further increase the reliability of the identified mutations (and 

avoid the identification of uncertain mutations), we removed mutations that did not fulfill the 

following criteria: (i) at least two mutation-supporting reads in a tumor sample (if no 

mutation-supporting read was detected in the corresponding normal sample); (ii) at least 5x 

higher frequency of mutation-supporting reads in the tumor sample than in the corresponding 

normal sample; (iii) somatic score parameter (SSC) > 30 (for VarScan2 and SomaticSniper); and 

(iv) base quality (BQ) parameter for mutation-supporting reads in the tumor sample > 20 (for 

MuSE and MuTect2). These additional criteria resulted in the exclusion of 193 mutations in 

miRNA genes and 93 mutations in cancer driver genes. Finally, the average sequencing depth 

of the identified mutations in miRNA genes was ~290 for LUAD and ~313 for LUSC. In 15 LUAD 

and 10 LUSC samples, two somatic mutations were detected within one miRNA gene. 

Although we could not distinguish whether such mutations occurred on one or two different 

alleles, for simplicity, we treated each of these pairs of mutations as one complex mutation. 

All mutations were designated according to HGVS nomenclature in reference to coordinates 

of corresponding miRNA precursors specified in miRBase v.21. 

Statistics 

Unless stated otherwise, all statistical analyses were performed with statistical functions in 

the Python module scipy.stats. Particular statistical tests are indicated in the text, and p<0.05 

was considered significant. If necessary, p-values were corrected for multiple tests with the 

Benjamini-Hochberg procedure (http://biostathandbook.com/multiplecomparisons.html). 

Hotspot miRNA genes were identified based on the probability of occurrence of the observed 

number of mutations, which was calculated with the use of 2-tailed binomial distribution 

(VassarStats: web site for statistical computation http://vassarstats.net/), assuming a 

background random occurrence of identified mutations in all analyzed miRNA genes and 

considering the miRNA gene length. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/579011doi: bioRxiv preprint 

https://www.google.com/url?q=https://github.com/martynaut/mirnaome_somatic_mutations&sa=D&source=hangouts&ust=1552723434302000&usg=AFQjCNHaTfsIoPnZamvZSu42nVeLfsKrFw
http://biostathandbook.com/multiplecomparisons.html
http://vassarstats.net/
https://doi.org/10.1101/579011
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Target, structure, and miRNA motif predictions 

Target predictions were performed with the TargetScan Custom (release 5.2) on-line tool (94), 

and the results are presented as area-proportional Venn diagrams (95). 

The secondary structures of miRNA precursors were predicted using mfold software with 

default parameters. Three-dimensional structural predictions of pre-miRNA stem-loop 

structures were generated using RNAComposer software with default parameters (61) and 

visualized in PyMOL (Schrödinger, LLC). 

To identify mutations affecting sequence motifs recognized by pre-miRNA-interacting 

proteins, we modified miRNAmotif software (https://github.com/martynaut/mirnamotif, 

(59)), which is dedicated to the identification of sequence motifs in wild-type pre-miRNA 

sequences. As miRNAmotif utilizes coordinates of pre-miRNA sequences deposited in 

miRBase, we did not analyze the effect of mutations in sequence outside the coordinates, and 

we analyzed only substitutions. For proteins known to interact with loop structures of pre-

miRNAs, we performed a search in the loop sequence only (in miRNAmotif this sequence is 

referred to as the linking sequence). The motif search was performed in the 5’-3’ direction. 

Lung sample screening 

For the experimental identification of mutations in the miR-890, miR-379, and miR-1297 

genes, we analyzed DNA from 84 tumor samples (formalin-fixed paraffin-embedded) with 

histopathologically confirmed NSCLC diagnosed at the Franciszek Lukaszczyk Oncology Center 

in Bydgoszcz (central Poland). The study was approved by the Committee of Ethics of Scientific 

Research of Collegium Medicum of Nicolaus Copernicus University, Poland (KB 42/2018). The 

data were analyzed anonymously. The appropriate genomic fragments were amplified by PCR 

using the following primers: miR-890 gene: F-5’GAACAAGCTCGTTTTCTGTTCTT3’, R-

5’CAGTGGGCTGGAAATTCTCT3’ (444 bp product, annealing temperature 60°C); miR-379 gene 

F-5’CAAATCCAGCCTCAGAAAGC3’, R-5’TGGAGCAGTGCTGAAGCTAA3’ (246 bp, 60°C); and miR-

1297 gene F-5’TCAAGGGTGATAAGAAAGAGGA3’, R-5’GATTTTCATAGGACAACATCTTCA3’ (250 

bp, 58°C). PCR was performed according to the manufacturer’s recommendations (GoTaq DNA 

polymerase protocol, Promega, Madison, WI, USA). All PCR products were purified using the 

EPPIC Fast kit (A&A Biotechnology, Gdynia, Poland) and sequenced directly using the BigDye 

v3.1 kit (Applied Biosystems, Foster City, CA, USA) and an ABI PRISM 3130xl genetic analyzer 

(Applied Biosystems, Foster City, CA, USA). High-quality PCR products of the miR-890, miR-
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379, and miR-1297 genes were obtained and sequenced from 59, 51, and 75 samples, 

respectively. All detected mutations were confirmed by sequencing in two directions. 
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TABLES 

 

Table 1 Distribution of somatic mutations (substitutions) within miRNA precursors. 

 LUAD LUSC 

 N mutations mut/Mbp fold change p-value N mutations mut/Mbp fold change p-value 

total 509 4.90 1 - 516 5.90 1 - 

5'-flanking region 84 3.60 0.73 0.0010341 103 5.24 0.89 0.1845670 

3'-flanking region 104 4.45 0.91 0.2909070 114 5.80 0.98 0.8810662 

loop 88 5.23 1.07 0.5342181 70 4.94 0.84 0.1142622 

passanger strand 68 4.30 0.88 0.2699724 74 5.56 0.94 0.6339850 

guide strand 170 6.92 1.41 0.0000008 155 7.50 1.27 0.0010096 

seed region 47 5.89 1.20 0.2197888 53 7.90 1.34 0.0392875 
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Table 2 Effect of somatic mutations on protein binding motifs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Motifs localized only in the apical loop: hnRNPA1, HuR, KSRP, Lin28, 
MBNL1, MCPIP1, DGCR8, MATR3, ZC3H7, YBX1, TRIM71, and PTBP1/3 

 

binding 
protein 

sequence motif lost gained 

hnRNPA1 UAGGGAW 0 0 

HuR AUUUUUAUUUU 0 0 

KSRP GGGU 5 0 

Lin28 GGAG 1 3 

MBNL1 YGCY 4 5 

MCPIP1 UGC 5 8 

DGCR8 UGU 14 9 

MATR3 AUCUU 1 1 

ZC3H7 SMUANY 1 2 

YBX1 CAUC 3 5 

TRIM71 UAUAA 0 1 

PTBP1/3 UUUUUCCNUCUUU 0 0 

DDX17 VCAUCH 5 10 

RBFOX GCAUG 2 3 

SMAD CAGAC 8 3 

CELF1/2 UGUNNNNNNNUGU 5 3 

ZC3H10 GCAGCGC 1 1 

Total  55 54 
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Table 3 Hotspot miRNA genes in LUAD and LUSC. 

(*) Note that the p-value was calculated only based on mutations identified in a particular cancer, indicated in bold. (**) P-value corrected for multiple comparisons 
with the Benjamini-Hochberg procedure. BC, breast cancer; BLC, bladder cancer; CRC, colorectal cancer; ENC, endometrial cancer; GBM, glioblastoma multiforme; 
GC, gastric cancer; HCC, hepatocellular carcinoma; IR, ionizing radiation; KIRC, kidney clear cell renal carcinoma; OVC, ovarian cancer; PAC, pancreatic cancer; PRC, 
prostate cancer; TGF, transforming growth factor; TNBC, triple-negative breast cancer. 
 

 

 

 

 

 miRNA  cancer-related functions 

miRTarBase 
/literature 
validated 

targets 

miRBase/ 
MiRGeneDB 
confidence 

number of 
mutations 

LUAD/LUSC* 

p-value 
nominal (BH 
corrected**) 

weighted mut. 
score 

LUAD/LUSC* 

weighted 
p-value 
nominal 

(BH 
corrected**) 

LU
A

D
 

 

miR-890 
chrX (-) 

oncomiR; inhibits DNA repair and damage response genes; potent IR 
sensitizing agent due to targeting the MAD2L2, WEE1 and XPC genes, 
downregulated in PRC (96,97) 

MAD2L2, 
WEE1, XPC 

-/+ 7/4 
9.2 × 10-8 

(9.5 × 10-5) 
9/4.5 

1.3 × 10-9 
(1.5 × 10-6) 

miR-664b 
chrX (+) 

suppressormiR; inhibits proliferation, migration, and invasion and 
increases the chemosensitivity of BRCA1-mutated TNBC cells by 
targeting CCNE2 (98) 

CCNE2 +/- 7/0 
1.2 × 10-7 

(9.5 × 10-5) 
9.5/0 

1.8 × 10-9 
(1.5 × 10-6) 

miR-1297 
chr13 (-) 

oncomiR; promotes cell progression in BC and LUSC by targeting PTEN, 
resulting in activation of PTEN/PI3K/AKT signaling pathway (99,100);  
suppressormiR; suppresses cell proliferation by targeting TRIB2 and 
further increasing C/EBPα expression in LUAD (100-102); inhibits the 
growth and metastasis of CRC by suppressing CCND2 (103); suppresses 
PTEN expression and inhibits cell progression in LUSC (100); promotes 
apoptosis and inhibits the proliferation and invasion of HCC cells by 
targeting HMGA2 (104); inhibits the growth, migration and invasion of 
CRC cells by targeting Cox-2 (101); suppresses PAC cell proliferation and 
metastasis by targeting MTDH (105) 

TRIB2, 
MALAT1, 
HMGA1, 
HMGA2, 

PTEN, 
CCND2, 
 COX2, 
MTDH 

-/- 6/0 
1.8 × 10-6 

(7.0 × 10-4) 
8/0 

2.4 × 10-8 
(1.3 × 10-5) 

miR-379 
chr14 (+) 

suppressormiR; inhibits tumor invasion and metastasis by targeting FAK 
and suppressing FAK/AKT signaling in HCC and GC (106,107); inhibits cell 
proliferation and invasion in glioma by targeting MTDH and inhibiting 
the PTEN/AKT pathway (108); inhibits BLC growth and metastasis by 
targeting MDM2 (109); inhibits cell proliferation by suppressing CCND1; 
downregulated in BC (110); inhibits TGF-β-induced IL-11 production in 
bone metastatic BC cells (111); suppresses EIF4G2 and potentiates 
cisplatin chemosensitivity in NSCLC (112); suppresses osteosarcoma 
progression by targeting PDK1 (113); inhibits EMT and bone metastasis 
of PRC (114); suppresses BC progression by targeting COX2; potential 
therapeutic agent in BC treatment (115); miR-379/miR-656 cluster is 
downregulated in multiple human cancers, especially GBM, KIRC and BC  
(116); sponged by circHIPK3 (117) 

IL11, PTK2, 
CCND1, 
MTDH, 
EIF4G2, 
PDK1, 
COX2, 
MDM2 

+/+ 6/1 
2.4 × 10-6 

(7.3 × 10-4) 
8/1.5 

3.7 × 10-8 
(1.5 × 10-5) 

miR-1324 
chr3 (+) 

suppressormiR; targets FZD5 and downregulates the Wnt/β-catenin 
signaling pathway in HCC; inhibited by circ_0067934; the 
circ_0067934/miR-1324/FZD5/Wnt/β-catenin signaling pathway axis is 
involved in the regulation of HCC progression (118) 

FZD5 -/- 6/2 
6.1 × 10-6 

(1.4 × 10-3) 
8/2 

1.2 × 10-7 
(4.0 × 10-5) 

miR-892a 
chrX (-) 

oncomiR; upregulated in human CRC tissues and cell lines; promotes 
cell proliferation and colony formation by suppressing PPP2R2A 
expression (119); promotes HCC cell proliferation and invasion through 
targeting CD226 (120) 

PPP2R2A, 
CD226 

+/+ 6/1 
1.4 × 10-6 

(7.0 × 10-4) 
7.5/1 

3.7 × 10-7 
(9.8 × 10-5) 

miR-887 
chr5 (+) 

oncomiR; potential biomarker for ENC; serum miR-887-5p levels are 
increased in patients with ENC (78); increased levels in CRC (77); 
suppressormiR; downregulates MDM4 in PRC and SCLC by having a high 
affinity for the MDM4 rs4245739 SNP C-allele (80,81); inhibits the 
invasion of BC cells by targeting PLD2 (79) 

PLD2, 
MDM4 

+/+ 5/3 
4.6 × 10-5 

(8.0 × 10-3) 
5.5/3 

1.6 × 10-4 
(2.9 × 10-2) 

miR-509-3 
chrX (-) 

suppressormiR; decreases cell proliferation, migration and invasion of 
NSCLC cells by targeting FOXM1 (121); attenuates cellular migration and 
multicellular spheroid formation in OVC by targeting YAP1 (122); 
inhibits the migration and proliferation of GC cells by targeting XIAP and 
of KIRC by targeting MAP3K8 (123,124); represses PLK1, causing mitotic 
aberration and growth arrest of LUAD A549 cell line (125); inhibits the 
invasion and metastasis of GC by targeting PODXL (126) 

NTRK3, 
CFTR, XIAP, 
MAP3K8, 
FOXM1, 

YAP1, PLK1, 
PODXL 

+/+ 5/2 
4.0 × 10-5 

8.0 × 10-3) 
5.5/3 

5.8 × 10-7 
(1.3 × 10-4) 

LU
SC

 

 

miR-527 
chr19 (+) 

suppressormiR; reduces metastatic dissemination by repressing SMAD4 
in osteosarcoma (127) 

SMAD4 -/+ 1/6 
2.7 × 10-6 

(7.3 × 10-4) 
1.5/7.5 

8.0 × 10-7 
(1.6 × 10-4) 

miR-592 
chr7 (-) 

oncomiR; represses FOXO3 expression and promotes the proliferation 
of PRC cells (128,129); upregulation correlates with tumor progression 
and poor prognosis for patients with CRC (130) 
suppressormiR; targets the DEK oncogene and suppresses cell growth 
in the HCC cell line HepG2 (131); tumor suppressor in NSCLC by targeting 
SOX9 (132); inhibits cell proliferation, colony formation, migration and 
invasion in BC by targeting TGFβ-2 (133) 

FOXO3, 
DEK, SOX9 

-/+ 3/5 
5.0 × 10-5 

(8.0 × 10-3) 
4.5/5.5 

1.8 × 10-4 
(2.9 × 10-2) 
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 FIGURES LEGENDS 

 

Figure 1. General characteristics of somatic mutations in miRNA genes in LUAD and LUSC. A) 

Table summarizing the main statistics and type of somatic mutations in LUAD and LUSC. B) 

Venn diagram showing the overlap of miRNA genes mutated in LUAD and LUSC. C) Distribution 

of miRNA gene mutations over chromosomes. Gray bars show the number of miRNA genes 

analyzed in the study (background). Blue and pink bars show the number of mutated miRNA 

genes in LUAD and LUSC, respectively. Light blue and light pink bars show the number of 

mutations in miRNA genes in LUAD and LUSC, respectively. D) Correlation of the total number 

of miRNA genes (x-axis) and the number of mutated miRNA genes (y-axis) on a particular 

chromosome (dots). Blue and pink dots and regression lines indicate the results for LUAD and 

LUSC, respectively. Corresponding r2 and p-values are indicated on the graph. Dashed lines 

represent the confidence interval with 95% probability. 
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Figure 2. Distribution of somatic mutations within miRNA precursors. A) An overview of a 

primary miRNA transcript with indicated subregions considered in the study. The miRNA 

duplex is indicated in blue, and sequence consensus motifs recognized as enhancers of miRNA 

biogenesis are represented by green circles. B) and C) The distribution of substitutions in the 

subregions of miRNA precursors for LUAD and LUSC samples, respectively. miRNA duplex 

positions are indicated in blue, seed regions in navy blue, and flanking regions and terminal 

positions of the apical loop in gray. The numbers in the lower-right corner represent the 

number of plotted substitutions (upper) and the number of mutated miRNA genes (lower). 

Analyses were also performed in narrowed groups of miRNAs that preferentially release the 

guide miRNA strand from the 5’ or 3’ arm (below). If present, mutations localized beyond 

position 22 in miRNA are shown cumulatively at position 22. As the size and structure of loops 

differ substantially among miRNA precursors, the mutation density maps do not show 

mutations located inside the loops. 
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Figure 3. Consequences of selected seed mutations on a pool of predicted target genes. Venn 

diagrams showing the effect of representative seed mutations on target recognition. Gray and 

yellow circles indicate predicted targets of the wild-type and mutant seeds, respectively. If 

more than one mutation occurs in a particular seed, the effect of the second mutation is 

shown as a blue circle. The mutation position in the seed sequence and the nucleotide change 

are shown next to the corresponding circles. 
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Figure 4. Localization of mutations in hotspot miRNA genes. Schematic secondary structure 

representations (generated with mfold) of miRNA precursors are shown. Blue, pink, and 

orange arrowheads indicate mutations detected in the LUAD and LUSC datasets and in the 

panel of lung cancer samples analyzed experimentally in this study, respectively. Light green 

circles indicate nucleotide positions within sequence consensus motifs or motifs bound by 

regulatory proteins. Blue and navy blue fonts indicate mature miRNA and seed sequences, 

respectively. The first and last nucleotides of miRNA precursors annotated in miRBase are 

indicated in squares. 
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Figure 5. Characteristics of mutations in hotspot miRNA genes. A) Co-mutation plot showing 

the occurrence of mutations in particular hotspot miRNA genes, all 10 hotspot miRNA genes, 

and all miRNA genes in cancer samples sorted by cancer type and other cancer characteristics 

(years smoked, tumor stage, and gender). B) Co-occurrence of mutations in LUAD samples 

with mutations in known LUAD driver genes and mutations in LUAD hotspot miRNA genes (all 

8 hotspot miRNA genes). Note that only ~270 (of ~500) LUAD samples with mutations in either 

known cancer drivers and/or miRNA hotspot genes are shown. The frequency of mutations in 

particular genes is shown on the right. 
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Figure 6. Impact of miRNA gene mutations on the structure of miRNA precursors. A) and B) 

Representative examples of miR-664b and miR-890 gene mutations, respectively. The effect 

of each mutation is shown at the levels of secondary and 3D structures. The secondary 

structures encompass the pre-miRNA precursor sequence and the flanking 25-nt 5’ and 3’ 

sequences (blue and navy blue fonts indicate miRNA and seed sequences, respectively; pink 

circles indicate mutation positions). 3D structures encompass sequences indicated by 

horizontal lines over the corresponding secondary structures. 3D mutant structures (green) 

are aligned with the corresponding wild-type structures (black). Mutation positions are 

indicated in pink. 
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Suppl. Figure S1. Proportion of patients with mutated miRNA genes. Different colors 

represent the number of samples with the indicated number of mutations in LUAD and LUSC. 
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Suppl. Figure S2. Distribution of somatic mutations within precursors of high-confidence 

miRNAs. A) and B) High-confidence miRNAs defined in miRBase and MirGeneDB, respectively. 

Due to the lower number of high-confidence miRNA genes (lower total number of mutations 

assigned), the graphs are presented jointly for LUAD and LUSC. The scheme of the graph is 

shown in Figure 2.  
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Suppl. Figure S3. Consequences of the seed mutations detected in A) LUAD and B) LUSC on 

the pool of predicted target genes. In each panel, the graphs are grouped in columns according 

to mutation position in the seed. The ID of miR-379-5p highlighted in orange indicates a 

mutation detected in the panel of lung cancer samples tested experimentally in this study. The 

scheme of the Venn diagrams is shown in Figure 3. 
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Suppl. Figure S4. Expression level of mutated hotspot miRNA genes. Violin plots show the 

distribution of miRNA expression levels as reads per million (RPM) in LUAD (blue) and LUSC 

(pink) samples. Dashed and dotted lines represent the median and 25th and 75th percentiles 

of the expression values. Red dots represent samples with a mutation in the particular hotspot 

miRNA gene. miRNA genes with undetermined expression or low or undetectable expression 

in most samples are not shown. 
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Suppl. Figure S5. miRNA gene mutations detected experimentally in a set of lung cancer 

samples. 

A) and B) Sanger sequencing electropherograms showing sequence variants in the miR-890 

and miR-379 genes, respectively. The upper-most electropherograms represent reference 

samples with wild-type sequences. The bar above the electropherograms illustrates the 

positions of miRNA gene subregions. Mutations in particular samples are indicated by 

arrowheads colored corresponding to the color of the particular nucleotide on the 

electropherogram. Note that the miR-890 gene is coded by the minus strand, which results in 

the reverse order of the miRNA gene subregions. 
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Suppl. Table 2. List of somatic mutations detected in LUAD and LUSC 
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