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Gene co-expression analysis is a widespread method to identify the potential biological            
function of uncharacterised genes. Recent evidence suggests that proteome profiling          
may provide more accurate results than transcriptome profiling. However, it is unclear            
which statistical measure is best suited to detect proteins that are co-regulated. We have              
previously shown that expression similarities calculated using treeClust, an         
unsupervised machine-learning algorithm, outperformed correlation-based analysis of a        
large proteomics dataset. The reason for this improvement is unknown. Here we            
systematically explore the characteristics of treeClust similarities. Leveraging synthetic         
data, we find that tree-based similarities are exceptionally robust against outliers and            
detect only close-fitting, linear protein - protein associations. We then use proteomics            
data to demonstrate that both of these features contribute to the improved performance             
of treeClust relative to Pearson, Spearman and robust correlation. Our results suggest            
that, for large proteomics datasets, unsupervised machine-learning algorithms such as          
treeClust may significantly improve the detection of biologically relevant protein - protein            
associations relative to correlation metrics. 
 
INTRODUCTION 
Genes with related biological functions tend to be active in the same biological conditions. This               
is the basis of gene coexpression analysis, a method that predicts the function of unknown               
genes by comparing their expression profiles to those of well-studied genes (1–5). A typical              
coexpression study detects gene activity by measuring mRNA abundances of many genes in a              
range of biological samples or conditions. In a second step, the similarity of expression profiles,               
i.e. the extent of coexpression between any two genes, is determined by correlation analysis.              
Finally, pairwise coexpression coefficients are aggregated into a gene coexpression network,           
through which any uncharacterised genes in the dataset may become associated with clusters             
of genes of well-defined biological functions. 

Many variations of this basic approach have been developed over the past two decades              
(6). For example, several coexpression measures have been explored as alternatives to            
Pearson’s correlation, including Spearman’s correlation, Biweight midcorrelation, Mutual        
Information and simple regression models (7, 8). No single measure appears to be superior for               
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every dataset, as the optimal choice of measure depends on various characteristics of a given               
dataset, such as the frequency of outliers and missing values. 

A recent, fundamental change to the expression profiling setup was made possible by             
improvements in the field of quantitative proteomics: the use of protein abundances rather than              
mRNAs as readout for gene activity. This increases the accuracy of gene function prediction,              
because protein abundances are better indicators of gene function than mRNA levels, at least in               
human (9–11) and mouse (12). We have recently reported ProteomeHD, a dataset that             
quantifies the response of 10,323 human proteins to 294 biological perturbations using            
isotope-labelling mass spectrometry (Kustatscher et al, in revision). ProteomeHD is a           
heterogeneous dataset, incorporating a wide range of perturbation experiments from different           
laboratories, such as inhibitor treatments, differentiation time courses and cancer cell line            
comparisons. We compared different coexpression measures for their ability to detect proteins            
that are co-regulated in response to these perturbations. Surprisingly, we found that the             
unsupervised machine-learning algorithm treeClust (13, 14) provided a striking improvement          
over established correlation-based metrics. However, the reason for this improvement remained           
unclear, because treeClust is a novel algorithm that works in a fundamentally different way to               
previously used coexpression metrics. 

The treeClust algorithm uses recursive partitioning (15–17) to create decision trees.           
Such trees are normally used for supervised classification or regression tasks. In contrast,             
treeClust uses decision trees to calculate a dissimilarity measure in an unsupervised manner.             
To do so, treeClust first creates a number of decision trees aimed to dissect the dataset by                 
growing one decision tree for each variable in turn, using it as response variable and all                
remaining variables as predictors. This part of the algorithm is reminiscent of an established              
approach to impute missing data which uses Random Forests (18). However, in a second step,               
treeClust calculates dissimilarities between any two observations based on the proportion of            
trees in which they land in different leaves, using Gower’s distance (19). While treeClust              
dissimilarities appear to perform well in practical applications (20, 21), some of their basic              
properties remain unclear, especially in the context of gene expression analysis. For example,             
do treeClust dissimilarities capture linear or non-linear associations? How is treeClust           
performance affected by missing data, outlier data and noise? Here, we set out to systematically               
address these questions and benchmark treeClust performance on both synthetic and real            
proteomics data. 

 
 
EXPERIMENTAL PROCEDURES 
 
General data analysis and availability 
All data processing and analysis has been performed using R version 3.5.1 (22). All data and R                 
scripts required to reproduce the results of this manuscript are available in the following GitHub               
repository: https://github.com/Rappsilber-Laboratory/treeClust-benchmarking . 
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The R package data.table (23) was used for fast data processing. Figures were prepared              
using ggplot2 (24), gridExtra (25), cowplot (26) and viridis (27). 

 
Generation of synthetic datasets 
Synthetic datasets were generated using a custom function in R. The function populates a table               
with values that are randomly sampled from a normal distribution, but includes a user-specified              
number of observations that have a defined linear relationship with each other. The following              
properties of the thus created datasets can be manipulated: number of variables (i.e. samples or               
experiments), number of observations (i.e. proteins), percentage of protein pairs that should            
have a linear relationship, percentage of outlier data, percentage of missing values and the              
extent of scatter around the regression line (i.e. biological or measurement noise). Outlier data              
points are created by random sampling from a broader normal distribution than the rest of the                
data. 

In addition to positive linear relationships (y ~ x), we tested relationships that were              
exponential (y ~ e x), logistic (y ~ 4 / (1 + e -5x)) and quadratic (y ~ x2), as well as linearly                     
anti-correlated (y ~ -x). 

 
Real biological datasets 
ProteomeHD has been documented in detail elsewhere (Kustatscher et al, in revision). In short,              
it is a data matrix consisting of 10,323 proteins whose abundance changes in response to 294                
biological perturbations have been determined by quantitative mass spectrometry, using stable           
isotope labelling by amino acids in cell culture (28). To distinguish between genuine, biologically              
relevant protein - protein associations (true positives) and likely false positive interactions we             
used a gold standard based on the Reactome database (29), which was also described              
previously (Kustatscher et al, in revision). 
 
Comparison of coexpression measures 
Pearson’s correlation coefficients and Spearman’s rank correlation coefficients were calculated          
using R base functions (22). Biweight Midcorrelation (bicor) was calculated with default settings             
using the R package WGCNA (30, 31). TreeClust dissimilarities were calculated using the R              
package treeClust (13, 14), with the d.num parameter set to 2. When applying treeClust to               
ProteomeHD rather than synthetic data, we set the rpart complexity parameter to 0.105 and the               
treeClust serule parameter to 1.8. These settings had been optimised previously for            
ProteomeHD (Kustatscher et al, in revision), providing approximately a 10% performance           
improvement over default values when assessed against the Reactome gold standard. 

Performance of coexpression measures was compared by precision - recall (PR)           
analysis using the R package PRROC (32). True positive (linear or nonlinear) and false positive               
(random) associations for the PR analyses were known a priori for synthetic data and annotated               
using the Reactome gold standard for ProteomeHD. To test the impact of various data              
characteristics, synthetic dataset were generated in triplicate and the result is shown as the              
average area under the PR curves, with error bars indicating the standard error of the mean. No                 

3 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/578971doi: bioRxiv preprint 

https://paperpile.com/c/PcvocM/hsRP
https://paperpile.com/c/PcvocM/sUxk
https://paperpile.com/c/PcvocM/m612
https://paperpile.com/c/PcvocM/ANpK
https://paperpile.com/c/PcvocM/w0gz
https://paperpile.com/c/PcvocM/f7g2
https://paperpile.com/c/PcvocM/NHMG
https://paperpile.com/c/PcvocM/iz9s
https://paperpile.com/c/PcvocM/Qv3P+ykqd
https://paperpile.com/c/PcvocM/IYyL+tyYG
https://paperpile.com/c/PcvocM/Ajs9
https://doi.org/10.1101/578971
http://creativecommons.org/licenses/by-nd/4.0/


 

replicates were used for the combinatorial testing of two dataset characteristics (Fig. 2C, G and               
H).  
 
Model fitting in real proteomics data 
Base R functions were used to fit and analyse linear models for pairs of proteins in                
ProteomeHD. Fold-changes of each protein pair were rescaled to fall between 0 and 1 before               
fitting the model. Outliers were defined as data points with absolute studentized residuals or a               
Mahalanobis distance larger than 2. Non-linear models were fit using nonlinear least squares.             
Exponential models (y ~ a + exp(b)x) and logistic models (y ~ a / (1 + e -b(x-c))) were said to                    
outperform the corresponding linear model (y ~ a + bx) if their residual sum of squares (RSS)                 
was at least 10% smaller. 
 

 
RESULTS AND DISCUSSION 
 
A coexpression take on Anscombe’s quartet 
In the protein co-regulation analysis of ProteomeHD treeClust outperformed common          
coexpression measures: Pearson’s correlation coefficient (PCC), Spearman’s rank correlation         
(rho) and Biweight midcorrelation (bicor). To explore possible reasons for this we used             
Anscombe’s quartet (33) as a starting point. These four 11-point datasets illustrate several key              
issues that can negatively affect the performance of Pearson’s correlation (Fig. 1A). For             
example, PCC can falsely identify a linear correlation when there is a non-linear relationship              
between two variables. In addition, outlier data located far off the regression line can lead to an                 
underestimation of the correlation. Similarly, outliers can cause a high PCC when in fact no               
correlation between two variables exists at all. Spearman’s rho and bicor are also affected by               
these issues, albeit to a much lesser extent than PCC (Fig. 1A). 

We then asked how treeClust deals with Anscombe’s quartet. However, it is not possible              
to simply calculate treeClust dissimilarities for Anscombe’s four variable pairs. This is because,             
being a machine-learning algorithm, treeClust requires an input dataset with many variables in             
order to build informative decision trees. Therefore, we created a series of synthetic datasets              
that allow us to systematically assess the properties of treeClust dissimilarities and compare             
them to the properties of common coexpression measures. For example, we created a synthetic              
dataset consisting of 100 variables (experiments, samples or biological conditions) and 200            
observations (proteins). The dataset is built in such a way that 99.5% of the resulting pairwise                
“protein - protein” associations are random, i.e. values for both proteins are random samples of               
a normal distribution (Fig. 1B). The remaining 0.5% pairs are designed to have a clearly defined,                
linear relationship across the 100 “experiments”. These pairs have a PCC close to 1, which               
clearly sets them apart from the distribution of the random pairs (Fig. 1B). On such a synthetic                 
dataset, treeClust generates 100 decision trees that assign very different dissimilarities to            
random and linear associations (Fig. 1B). Indeed, in this simple best-case scenario, all of the               
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four tested coexpression measures separate random and defined pairs perfectly, resulting in            
precision - recall curves with an area of 1 (Fig. 1C). 

Note that in this manuscript we show treeClust similarities rather than dissimilarities            
(similarity = 1 - dissimilarity), in order to make the comparison with correlation metrics more               
intuitive (Fig. 1B). 

 
Linear vs non-linear relationships 
We then proceeded to modify various properties of the synthetic datasets and assessed how              
they affect treeClust. First, we asked which types of associations are detected by treeClust. For               
example, we replaced the 0.5% linearly correlated pairs with exponential relationships (Fig. 1D).             
This does not affect Pearson, Spearman or robust correlation, which still yield an area under the                
precision - recall curve (AUPRC) of 1. Although exponentially related pairs receive lower             
correlation coefficients than linear ones, their coefficients are still much higher than those of              
random pairs. Surprisingly and in stark contrast to the correlation measures, treeClust does not              
detect exponential relationships at all, yielding an AUPRC of 0 (Fig. 1D). We obtained the same                
result for logistic relationships (Fig. 1D). None of the coexpression measures detects quadratic             
relationships. Finally, we tested if treeClust detects negative linear associations, i.e.           
anti-correlation. We find that treeClust only partially separates anti-correlated from random           
associations, suggesting that low treeClust similarities indicate a lack of correlation rather than             
anti-correlation (Fig. 1E). 

We conclude that, in the conditions tested here, treeClust specifically captures positive            
linear “protein - protein” associations. This property could be explained by the fact that treeClust               
dissimilarities reflect how often two observations land in the same decision tree leaf. A split in a                 
decision tree is less likely to separate two linearly associated proteins than exponentially related              
or anti-correlated proteins. For example, if protein X1 is upregulated 1.5-fold in a given              
experiment, a linearly related protein X2 may be upregulated 1.6-fold. These proteins would             
only land in different leaves if a split occurred between 1.5 and 1.6. However, if protein X2 was                  
exponentially related to X1 it may be upregulated by 4.6-fold, increasing the margin within which               
a split could occur such that the two proteins land in different leaves. Similarly, if two proteins                 
are anticorrelated they rarely end up in the same leaf and thus cannot be flagged up by                 
treeClust as being linked.  

 
Size and structure of the dataset 
We next investigated how basic data characteristics such as the number of variables and              
observations affect treeClust. In principle, treeClust performance is expected to improve with the             
amount of data it is presented with, because more data may allow treeClust to build more                
informative decision trees and thus learn better to distinguish between random and genuine             
linear associations. To test this, we constructed a series of synthetic datasets with increasing              
dimensions. 
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First, we increase the number of variables, i.e. samples (Fig. 2A). Under our test              
conditions treeClust requires around 40 samples to reach optimal performance, i.e. an AUPRC             
of 1. In contrast, the three correlation metrics only need ~15 samples to reliably identify all                
genuinely correlated proteins (Fig. 2A). A likely explanation for this difference is that treeClust              
builds one decision tree per sample, so increasing the number of variables also increases the               
number of decision trees and thus the reliability of the resulting dissimilarities. 

Next, we modify the percentage of linear associations (i.e. coexpressed proteins) in the             
dataset (Fig. 2B). This has no impact on the correlation measures but affects treeClust              
performance, suggesting that the more genuine associations are present in the data the easier it               
is for treeClust to learn to identify them. Notably, these two data size characteristics are               
interdependent: increasing the number of samples compensates for a smaller percentage of            
defined associations and vice versa (Fig. 2C). 

Third, we test the impact of having more observations (proteins) in a dataset. We find               
that increasing the number of proteins to > 1,000 is sufficient for optimal treeClust performance               
even if only 20 samples are available (Fig. 2D). Larger and more complex input data generally                
improve the performance of machine-learning algorithms. While increasing observations will not           
affect the number of decision trees, the increased complexity of the input data allows treeClust               
to create more informative trees. 

In summary, these results show that optimal treeClust performance requires a dataset of             
a certain size and structure, for example ≥ 50 variables, ≥ 1000 proteins and ≥ 0.4% linear                 
associations. For smaller datasets, for example in the range of 20 variables and 500              
observations, traditional correlation-based measures may be better suited for coexpression          
analysis. 

 
Missing values 
Proteomics data often contain a large number of missing values. In this case, correlation metrics               
simply focus on those variables that have been measured for both proteins. The decision trees               
used by treeClust handle missing values through surrogate splits (13, 16), an approach that is               
generally considered to be sensible only if missing values are sparse. To evaluate the impact of                
missing values on treeClust performance we randomly introduce missing values in synthetic            
data. In a dataset with 50 variables and 500 observations, introducing 10% - 15% of missing                
values has no ill-effect on treeClust performance (Fig. 2E). Beyond that, missing values quickly              
become detrimental for treeClust. In contrast, they do not pose a problem for correlation metrics               
as long as a sufficient number of common pairwise measurements remain available (Fig. 2E).              
However, we find that the impact of missing values depends on the overall dimensions of the                
input data. For example, with a dataset of 100 samples and 1000 proteins treeClust can already                
tolerate 20% missing values (Fig. 2F). Consequently, we systematically explore the impact of             
missing values depending on the number of samples or proteins. We observe that for large               
datasets treeClust performance does not decrease even if 40% of all values are missing (Fig.               
2G, H). 
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Goodness-of-fit 
We then asked how “tight” coexpression of two hypothetical proteins needs to be for treeClust to                
detect it. To this end, we increased the dispersion / scatter of values around the linear                
associations (Fig. 2I). Within the range of parameters tested, increasing dispersion had no             
appreciable effect on the performance of the three correlation metrics (Fig. 2J). In contrast,              
treeClust detects only very close, well-fitting linear associations. As for non-linear relationships,            
the explanation for this behaviour may lie in the likelihood of decision tree splits occurring               
between two observations. A larger scatter around the regression lines signifies a larger             
difference between two proteins and therefore an increased probability for them to land in              
different leaves. 
 
Outlier data points 
Finally, we assessed the impact of outlier data on treeClust dissimilarities. Introducing outlier             
data points in a synthetic dataset confirms the well known error-proneness of Pearson’s             
correlation in the presence of outliers (Fig. 2K, L). As expected from Anscombe’s examples, the               
AUPRC for Pearson’s correlation is halved if around 25% of the measurements are outliers.              
Spearman and Biweight midcorrelation, which are less susceptible to outliers, handle this level             
of outliers in our test set without performance decrease (Fig. 2K, L). However, treeClust is               
exceptionally robust against outlier measurements, even in comparison to Spearman’s rho and            
bicor. In the synthetic dataset, treeClust performance is completely unaffected by up to 75%              
outliers. Therefore, treeClust can detect an association between two synthetic proteins if only             
25% of the actual measurements show a strong linear relationship. 
 
Applying the lessons from synthetic data to real proteomics experiments 
The synthetic datasets revealed several marked differences between treeClust and traditional           
correlation-based coexpression measures. One potential disadvantage of treeClust        
dissimilarities is that they can only be calculated accurately for datasets that fulfill certain              
requirements on size and structure, including the number of experiments, proteins, percentage            
of coexpressed protein pairs and missing values. 

A dataset like ProteomeHD is well within the margins of optimal treeClust performance             
identified by the synthetic data. We applied treeClust to 5,013 proteins in ProteomeHD that had               
been observed in at least a third of the 294 samples. This subset of ProteomeHD contains 35%                 
missing values and a sufficient percentage of genuine linear protein-protein associations. The            
latter is estimated based on the observation that 3% of all protein pairs in this dataset have                 
strong and significant Pearson’s correlations (PCC > 0.5, Bonferroni adjusted p-values < 1e-6).             
This is well in excess of the 0.5% margin determined on synthetic data, even after accounting                
for a reasonable fraction of potential false-positives. 

Using the synthetic data we identified two potential reasons for the improved            
co-regulation analysis of ProteomeHD. First, treeClust detects exclusively close, linear          
relationships, and this selectivity may make it better suited to detect genuine biologically             
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relevant associations. Second, treeClust is exceptionally robust towards outlier measurements.          
Next, we tested which of these may be relevant for ProteomeHD. 
 
Outliers in ProteomeHD 
We first evaluated the impact of outlier measurements in ProteomeHD. We used two different              
statistical methods to detect outliers, as they identify distinct types of outliers. Data points with               
large studentized residuals are regression outliers, meaning they are far from the regression line              
but not necessarily unusual with regards to the overall distribution of the ratios (Fig. 3A). This                
type of outlier may lead to an underestimation of the real correlation coefficient. In contrast,               
outliers with a large Mahalanobis distance are far from the bulk of the data but can be close to                   
the regression line (Fig. 3A). These outliers may lead to an overestimation of the real correlation                
coefficient. In principle, regression and Mahalanobis outliers could be seen as real-life examples             
of the outliers shown in Anscombe’s third and fourth dataset, respectively. 

We then tested if either of these outlier types explains why treeClust outperforms PCC              
for ProteomeHD data. For this we compared protein pairs that scored high (i.e. ranking in the                
top 0.1% pairs) with one method but were not detected (i.e. not ranked in top 0.5% pairs) by the                   
other. This resulted in the following two groups of protein pairs: (a) 8,786 protein pairs with high                 
treeClust similarities that were not detected as co-regulated by their PCCs; (b) 9,593 protein              
pairs with high PCCs that were not detected by treeClust. Functional annotation of these groups               
using a gold standard based on Reactome revealed that 60% of protein pairs found exclusively               
by treeClust are known true-positive associations, compared to only 13% of the PCC-specific             
pairs (Fig. 3B). Therefore, treeClust-specific co-regulation pairs are predominantly true          
interactions missed by PCC, whereas PCC-specific pairs are mostly unrelated proteins falsely            
identified as co-regulated by PCC. Similar distributions were observed when comparing           
treeClust to Spearman’s rho and bicor (Fig. 3B). 

Next, we asked if regression outliers in ProteomeHD may explain the difference between             
these groups. Surprisingly, we find that the number of regression outliers is very similar for               
treeClust-specific and PCC-specific protein pairs (5.8% vs 5.9% on average), as well as             
treeClust and rho-specific and bicor-specific pairs (Fig. 3C). However, the impact of outliers may              
not just stem from their number but also from their actual position and distribution compared to                
the rest of the data. We therefore removed outliers and measured the effect this had on the                 
correlation coefficients. Indeed, removing regression outliers has a strong impact on           
co-regulation pairs that had been detected by treeClust but not by PCC, increasing their              
average PCC by 0.15 (Fig. 3D). This suggests that treeClust-specific co-regulation pairs tend to              
be genuine, biologically relevant interactions that are missed by PCC due to regression outliers.              
However, removing regression outliers had no dramatic effect on pairs that had been missed by               
rho or bicor (Fig. 3D). 

In contrast to regression outliers, Mahalanobis outliers are clearly enriched among pairs            
only detected by PCC (27% vs 22% on average), or only by rho or bicor (Fig. 3E). Removing                  
Mahalanobis outliers has a striking impact on PCC-specific pairs, reducing their average PCC             
by -0.29 (Fig. 3F). This indicates that co-regulated pairs detected by PCC - but not treeClust -                 
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are predominantly false-positive interactions whose high PCC is driven by Mahalanobis-type           
outliers. Associations detected only by rho or bicor, although enriched for Mahalanobis outliers,             
do not lose their high correlation coefficients by removing these outliers (Fig. 3F). 

In summary, these results suggest that outliers are a key factor explaining why treeClust              
outperforms PCC in the analysis of ProteomeHD data. However, its improvement over rho and              
bicor is unlikely to be due to better outlier handling. 

 
Goodness-of-fit of genuine associations in ProteomeHD 
Increasing the scatter of values around the regression line led to a dramatic reduction of               
treeClust similarity in synthetic data (Fig. 2J). To quantify the overall difference between two              
proteins in real biological data we use the mean absolute error (MAE). Two protein pairs with                
very similar correlation coefficients can have vastly different MAEs (Fig. 4A). As expected, of the               
example pairs shown in Fig. 4A, the pair with the small MAE reflects a genuine biological                
association and receives a high treeClust similarity. In contrast, the pair with the large MAE is                
composed of two unrelated proteins and is not detected as co-regulated by treeClust (Fig. 4A).               
This suggests that treeClust may distinguish better than correlation measures between close,            
real interactions and loose, biologically irrelevant trends. 

To assess this possibility in a systematic way we analysed the MAE distribution of all               
protein pairs that receive high correlation coefficients but low treeClust similarities, and vice             
versa. We find that protein pairs exclusively detected by rho or bicor tend to have much higher                 
MAEs than those exclusively detected by treeClust (Fig. 4B). Interestingly, the difference in             
MAE distribution is not as pronounced between treeClust and PCC. Taken together this             
suggests that treeClust outperforms PCC mainly due to its outlier handling, whereas its             
improvement over rho and bicor is predominantly due to treeClust taking into account the              
“goodness-of-fit” of an association. 

 
Lack of non-linear relationships in ProteomeHD 
The selectivity of treeClust for linear relationships implies that it may fail to detect non-linear               
relationships that may be biologically relevant. We therefore investigated whether any genuine            
non-linear protein - protein associations exist in ProteomeHD. For this we fitted linear,             
exponential and logistic models to the correlation- or treeClust-specific protein pairs. For each             
pair we then select the best-fitting model based on the residual sum of squares (RSS). We find                 
that exponential models rarely fit better than the linear regression models, but surprisingly,             
logistic models often do (Supplementary Fig. S1A). However, closer inspection of the data             
reveals that these cases are not genuine exponential or sigmoid relationships (Supplementary            
Fig. S1B). In contrast, the improved fit of the non-linear models is driven by Mahalanobis-type               
outliers. Removing these outliers also drastically decreases the number of instances in which             
non-linear models fit better than linear ones (Supplementary Fig. S1A). In summary, we have              
not been able to identify any clear non-linear relationships in ProteomeHD. 
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CONCLUSION 
Having found treeClust to be a powerful alternative to correlation metrics for the detection of               
protein - protein links in proteomics data recently (Kustatscher et al, in revision) we here               
demonstrated possible reasons for this observation. treeClust is exceptionally robust against           
outliers and only identifies close-fitting, positive linear associations. In real proteomics datasets,            
these type of associations appear to be the biologically most relevant ones. Obvious             
disadvantages of using unsupervised machine-learning for this task are the required size and             
composition of the input data. At the moment, few proteomics datasets exists that are large               
enough, i.e. covering hundreds of conditions for thousands of genes, while maintaining a             
sufficiently low percentage of missing values for treeClust to work effectively. This applies to              
ProteomeHD and is likely going to become more prevalent in the near future, also thanks to the                 
efforts of the ProteomeXchange consortium (34, 35). However, also smaller datasets can be             
analysed, by applying the algorithm many times to different subsets of the data and collecting               
the average similarities across these models (a bootstrapping approach) (Kustatscher et al, in             
revision). It will be interesting to see how treeClust fares with other omics data types and other                 
application areas where currently correlation approaches are in use. 
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