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Abstract 19 

In oscillatory systems, neuronal activity phase is often independent of network 20 

frequency. Such phase maintenance requires adjustment of synaptic input with 21 

network frequency, a relationship that we explored using the crab, Cancer borealis, 22 

pyloric network. The burst phase of pyloric neurons is relatively constant despite a >2-23 

fold variation in network frequency. We used noise input to characterize how input 24 

shape influences burst delay of a pyloric neuron, and then used dynamic clamp to 25 

examine how burst phase depends on the period, amplitude, duration, and shape of 26 

rhythmic synaptic input. Phase constancy across a range of periods required a 27 

proportional increase of synaptic duration with period. However, phase maintenance 28 

was also promoted by an increase of amplitude and peak phase of synaptic input with 29 

period. Mathematical analysis shows how short-term synaptic plasticity can 30 

coordinately change amplitude and peak phase to maximize the range of periods over 31 

which phase constancy is achieved. 32 

150/150 33 

Introduction 34 

Oscillatory neural activity is often organized into different phases across groups 35 

of neurons, both in brain rhythms associated with cognitive tasks or behavioral states 36 

(Hasselmo et al., 2002; Buzsaki and Wang, 2012; Buzsaki and Tingley, 2018), and in 37 

central pattern generating (CPG) circuits that drive rhythmic motor behaviors (Marder 38 

and Bucher, 2001; Marder et al., 2005; Grillner, 2006; Bucher et al., 2015; Katz, 2016; 39 

Stein, 2018). The functional significance of different phases in the latter is readily 40 

apparent, as they for example provide alternating flexion and extension of limb joints, 41 

and coordination of movements between joints, limbs, and segments (Krantz and 42 

Parks, 2012; Grillner and El Manira, 2015; Kiehn, 2016; Le Gal et al., 2017; Bidaye et 43 

al., 2018). A hallmark of many such patterns is that the relative timing of firing between 44 

neurons is well maintained over a range of rhythm frequencies (Dicaprio et al., 1997; 45 

Hooper, 1997b, a; Wenning et al., 2004; Marder et al., 2005; Grillner, 2006; Mullins et 46 

al., 2011; Le Gal et al., 2017). If the latency of firing across different groups of neurons 47 

changes proportionally to the rhythm period, phase (latency over period) is invariant, in 48 

some cases providing optimal limb coordination at all speeds (Zhang et al., 2014). 49 
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The ability of the system to coordinate phases with changes in period arises 50 

from central coordinating mechanisms between circuit elements, as it is present in 51 

isolated nervous system preparations, but the underlying cellular and circuit 52 

mechanisms are not well understood. For instance, constant phase lags between 53 

neighboring segments in the control of swimming in lamprey fish and crayfish can be 54 

explained mathematically on the basis of asymmetrically weakly coupled oscillators, 55 

but the role of intrinsic and synaptic dynamics within each segment is unknown (Cohen 56 

et al., 1992; Skinner and Mulloney, 1998; Grillner, 2006; Mullins et al., 2011; Zhang et 57 

al., 2014; Le Gal et al., 2017). 58 

The pyloric circuit of the crustacean stomatogastric ganglion (STG) has inspired 59 

a series of experimental and theoretical studies of cellular and synaptic mechanisms 60 

underlying phase maintenance. The pyloric circuit generates a triphasic motor pattern 61 

with stable phase relationships over a wide range of periods (Eisen and Marder, 1984; 62 

Hooper, 1997b, a; Bucher et al., 2005; Goaillard et al., 2009; Tang et al., 2012; Soofi et 63 

al., 2014). Synapses in the pyloric circuit use graded as well as spike-mediated 64 

transmission (Graubard et al., 1980; Harris-Warrick and Johnson, 2010; Zhao et al., 65 

2011; Rosenbaum and Marder, 2018). Follower neurons burst in rebound from 66 

inhibition from pacemaker neurons (Marder and Bucher, 2007; Daur et al., 2016), and 67 

post-inhibitory rebound delay scales with the period of hyperpolarizing currents 68 

(Hooper, 1998). Voltage-gated conductances slow enough for cumulative activation 69 

across cycles could promote such phase maintenance (Hooper et al., 2009). Similarly, 70 

short-term depression of graded inhibitory synapses is slow enough to accumulate 71 

over several pyloric cycles, meaning that effective synaptic strength increases with 72 

increasing cycle period (Manor et al., 1997; Nadim and Manor, 2000).  73 

Theoretical studies have shown that short-term synaptic depression, by 74 

increasing inhibition strength with cycle period, should promote phase maintenance 75 

(Manor et al., 2003; Mouser et al., 2008), particularly in conjunction with inactivating (A-76 

type) potassium currents (Bose et al., 2004; Greenberg and Manor, 2005), which 77 

control the rebound delay (Harris-Warrick et al., 1995b; Harris-Warrick et al., 1995a; 78 

Kloppenburg et al., 1999). These predictions remain experimentally untested. 79 

Additionally, postsynaptic responses also depend on the actual trajectory of 80 

synaptic conductances, which are shaped by presynaptic voltage trajectories and 81 

short-term synaptic plasticity (Manor et al., 1997; Mamiya et al., 2003; Zhao et al., 82 
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2011; Tseng et al., 2014). If amplitude, duration, and trajectory of synaptic 83 

conductance determine rebound delay, phase maintenance necessitates all three of 84 

these parameters to change with cycle period in coordination. We used the dynamic 85 

clamp technique to exhaustively explore the range of these parameters and 86 

understand how the coordinated changes in synaptic dynamics determines the phase 87 

of follower neurons in an oscillatory circuit. Our findings are consistent with a 88 

mathematical framework that accounts for the dependence of amplitude and peak 89 

phase of the synaptic conductance on cycle period.  90 

Results 91 

Phase maintenance and latency maintenance 92 

The firing of neurons in oscillatory networks is shaped by a periodic synaptic 93 

input. The relative firing latency of such neurons is often measured relative to a defined 94 

reference time in each cycle of oscillation, and is used to determine the activity phase 95 

of the neuron (see, e.g., Belluscio et al., 2012). For example, in a simple network 96 

consisting of a bursting oscillatory neuron driving a follower neuron (Fig. 1A1), at a 97 

descriptive level, the latency (Δt) of the follower neuron activity relative to the onset of 98 

the oscillator’s burst onset may depend on the oscillation cycle period (P). In response 99 

to a change in period (say, to P2), the follower neuron may keep constant latency (Δt 2 100 

= Δt), or constant phase, i.e., modify its latency proportionally to the change in period 101 

(Δt2 / P2 = Δt / P; Fig. 1A2). However, in many oscillatory systems, for example the 102 

pyloric circuit (Hooper, 1997b, a), the relationship between L and P falls between these 103 

two extremes.  104 

We demonstrated this point in the pyloric follower LP neuron using the following 105 

protocol. We voltage clamped one of the pacemaker PD neurons and drove this 106 

neuron with its own pre-recorded waveform, but applied at five different cycle periods 107 

(P). This protocol entrained the pacemaker group at this period, which forced the 108 

follower LP neuron to obey the same period (Fig. 1B). We then measured the latency 109 

(Δt) of the LP burst onset with respect to onset of the PD neuron burst. A plot of the LP 110 

latency Δt or phase (Δt /P) for different cycle periods demonstrates the above-111 

mentioned finding that the LP neuron activity falls between the two limits of constant 112 

phase and constant latency (Fig. 1C).   113 

 114 
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The burst onset time of the LP neuron depends on the temporal dynamics of its input 115 

The LP neuron does not have intrinsic oscillatory properties, but oscillates due 116 

to the synaptic input it receives from the pacemaker anterior burster (AB) and pyloric 117 

dilator (PD) neurons, and the follower pyloric constrictor (PY) neurons (Fig. 2A). The 118 

burst onset phase of the LP neuron (φLP = Δt / P; Fig. 2A) is shaped by the interaction 119 

between synaptic inputs and the neuron’s intrinsic dynamics that influence post-120 

inhibitory rebound. We measured an overall burst onset phase of the LP neuron of φLP 121 

=0.34 ± 0.03 (N=9).  122 

As a first-order quantification, we measured how inputs to the LP neuron 123 

interact with its intrinsic properties to determine the timing between its bursts, in the 124 

absence of network oscillations. To this end, we blocked the synaptic input from the 125 

pacemaker AB and follower PY neurons to the LP neuron (Fig. 2B) and drove the LP 126 

neuron with a noise current input (see Methods). In response to the noise input, the LP 127 

neuron produced an irregular pattern of spike times, which included a variety of 128 

bursting patterns with different spike numbers (Fig. 2C). We were interested in the 129 

characteristics of inputs producing different burst onset latencies. However, unlike a 130 

periodic input, noise input does not provide a well-defined reference point to measure 131 

the burst onset latency. We categorized bursts with respect to the preceding inter-burst 132 

intervals (IBIs; see Methods), during which no other action potentials occurred. We 133 

classified these IBIs in bins (300, 500, 700 and 900 ms) and tagged bursts based on 134 

the IBI values (Fig. 2C). We characterized the driving input leading to bursts with 135 

specific IBIs by burst-triggered averaging the input current (IBTA; an example shown in 136 

Fig. 2D). Our analysis produced a single IBTA for each of the four IBIs in each 137 

preparation (N=23). IBTA’s of each preparation were first normalized in amplitude by the 138 

(negative) peak value of the IBTA at IBI = 300 ms (Fig. 2E; average shown in Fig. 2F) to 139 

examine how peak amplitude (Ipeak) varied with IBI. These data were then normalized in 140 

time (Fig. 2G) to examine the effect of IBI on peak phase (Δpeak) and the rise (slopeup) 141 

and fall (slopedown) slopes of the input current across preparations. We found that IBI 142 

had a significant effect on Ipeak, Δpeak, slopeup and slopedown (all one-way RM-ANOVA 143 

on ranks; data included in Figure 2-source data). In particular, larger IBIs corresponded 144 

to larger Ipeak values (Fig. 2F-2H; p<0.001, χ2 = 65.87) with smaller (more advanced) 145 

Δpeak (Fig. 2I; p<0.001, χ2 = 41.35). The change in Δpeak was due to a decrease in 146 
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slopeup (p<0.001, χ2 = 65.25), whereas slopedown did not vary as much (Figs. 2J-2K; 147 

p=0.002, χ2 = 14.77). 148 

The burst onset phase of the LP neuron oscillation depends on its synaptic input 149 

Injection of noise current revealed that the timing of the LP response is 150 

exquisitely sensitive to the duration and amplitude of inputs. In the intact system, the 151 

primary determinant of input duration and amplitude is the network period (P), as 152 

increasing P increases both presynaptic pacemaker burst duration (Hooper, 1997b, a) 153 

and synaptic strength (Manor et al., 1997; Nadim and Manor, 2000). To explore the 154 

effect of the duration and strength of the synaptic input, we used dynamic clamp to 155 

drive the LP neuron with a realistic synaptic conductance waveform.  156 

We constructed this realistic waveform by measuring the synaptic current input 157 

to the LP neuron during ongoing pyloric oscillations (Fig. 3A). These measurements 158 

showed the two components of inhibitory synaptic input: those from the pacemaker AB 159 

and PD neurons (left arrow) and those from the follower PY neurons (right arrow). In 160 

each cycle, the synaptic current always had a single peak, but the amplitude and 161 

phase of this peak showed variability across preparations (Fig. 3B, average in blue). 162 

The realistic conductance input was injected periodically with strength gmax (Fig. 163 

3C). For any fixed gmax, φLP decreased as a function of P (Fig. 3D), i.e., the relative 164 

onset of the LP burst was advanced in slower rhythms. In contrast to the effect of P, for 165 

any given P, φLP increased sublinearly as a function of gmax (Fig. 3E). Fig. 3F combines 166 

the simultaneous influence of both parameters on φLP. The results shown in Fig. 3D 167 

indicate that the LP neuron intrinsic properties alone do not produce phase constancy. 168 

However, level sets of φLP (highlighted for three values in Fig. 3F), indicate that phase 169 

could be maintained over a range of P values, if gmax increases as a function of P. This 170 

finding was predicted by our previous modeling work, in which we suggested that 171 

short-term synaptic depression promotes phase constancy by increasing synaptic 172 

strength as a function of P (Manor et al., 2003; Bose et al., 2004). We will further 173 

discuss the role of synaptic depression below. 174 

To clarify the results of Fig. 3, it is worth examining the extent of phase 175 

maintenance for fixed gmax. An example of this is shown in Fig. 4A (turquoise plots). A 176 

comparison of these data with the theoretical cases in which either delay or phase is 177 

constant suggests that the LP neuron produces relatively good phase maintenance, at 178 
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least much better in comparison with constant delay. However, this conclusion is 179 

misleading because, in these experiments, the duty cycle of the synaptic input was 180 

kept constant. Therefore, most of the phase maintenance is due the fact that the 181 

synaptic input keeps perfect phase. In fact, if the reference point measures phase 182 

relative to the end –rather than onset– of the PD burst (Fig. 4B), phase maintenance of 183 

the LP neuron is barely better than in the constant delay case (Fig. 4A, purple plots). It 184 

is therefore clear that phase maintenance by the LP neuron would require the 185 

properties of the synaptic input to change as a function of P, a hallmark of short-term 186 

synaptic plasticity (Fortune and Rose, 2001; Grande and Spain, 2005). As mentioned 187 

above, short-term plasticity such as depression could produce changes in gmax as a 188 

function of P. Independently of gmax, the peak time of the synaptic current is another 189 

parameter that could change with P and influence the timing of the postsynaptic burst. 190 

We therefore proceeded to systematically explore the influence of P, gmax and the 191 

synaptic peak time on φLP. 192 

A systematic exploration of synaptic input parameters on the phase of the LP neuron 193 

For a detailed exploration of the influence of the synaptic input on φLP, we 194 

approximated the trajectory of the (unitary) synaptic conductance in one cycle by a 195 

simple triangle (Fig. 5A), which could be defined by three parameters: duration (Tact), 196 

peak time (tpeak) and amplitude (gmax) (Fig. 5B). This simplified triangular synaptic 197 

conductance waveform could then be repeated with any period (P) to mimic the 198 

realistic synaptic input to the LP neuron. For a given synaptic duration Tact, the peak 199 

phase of the synapse can be defined as Δpeak = tpeak / Tact). The parameter Δpeak is 200 

known to vary as a function of P (Tseng et al., 2014) and, in a previous study, we found 201 

that Δpeak may influence the activity of the postsynaptic neuron, independent of P and 202 

gmax (Mamiya and Nadim, 2004). We therefore systematically explored the influence of 203 

three parameters of the synaptic input (P, gmax and Δpeak) on φLP. 204 

As with the realistic synaptic waveforms (Fig. 3), we used the dynamic clamp 205 

technique to apply the triangular conductance waveform periodically to the LP neuron 206 

in the presence of the synaptic blocker picrotoxin. Across different runs within the same 207 

experiment, the parameters P, gmax and Δpeak were changed on a grid (see Methods). In 208 

addition, all combinations of these three parameter values were run in two conditions in 209 

the same experiment, 1: with constant duration, i.e., constant Tact across different P 210 

values (C-Dur of 300 ms), and 2: with constant duty cycle, i.e., Tact changing 211 
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proportionally to P (C-DC of 0.3; Fig. 5C). Using these protocols, we measured the 212 

effects of synaptic parameters on φLP (Fig. 5D). 213 

The LP neuron produced burst responses that followed the synaptic input in a 214 

1:1 manner across all values of P that were used (Fig. 6A1). When gmax and Δpeak were 215 

kept constant, φLP decreased as a function of P (Fig. 6A2). This decrease was always 216 

larger for the C-Dur case than the C-DC case. For both C-DC and C-Dur, this trend 217 

was seen across all values of Δpeak and gmax (Fig 6A3). The effect of P on φLP was 218 

highly significant for both C-DC (Three-Way ANOVA, p<0.001, F=100.677) and C-Dur 219 

(Three-Way ANOVA, p<0.001, F=466.424), indicating that the period and duration of 220 

the inhibitory input to the LP neuron had a significant effect on its phase. 221 

Changing gmax produced a large effect on the level of hyperpolarization in the 222 

LP neuron, but this usually translated to only a small or modest effect on the time to the 223 

first spike following inhibition (Fig. 6B1). Overall, increasing gmax at constant values of P 224 

and Δpeak produced a significant but only small to moderate increase in φLP (Three-Way 225 

ANOVA, p<0.001, F=10.798). Although increasing gmax produced the same qualitative 226 

effect for both the C-DC and C-Dur (e.g., Fig. 6B2), φLP in the C-DC case was 227 

restricted to a smaller range (Fig. 6B3 top vs. bottom panels). Overall, this increase 228 

was robust for most values of P and Δpeak (Fig. 6B3).  229 

Increasing Δpeak for a constant value of P and gmax (Fig. 6C1), produced a small 230 

but significant increase in φLP (Three-Way ANOVA, p<0.001, F=17.172). This effect 231 

was robust for most values of P and gmax, for both C-DC and C-Dur (Fig. 6C2 and 6C3). 232 

These results showed that all three parameters that define the shape of the 233 

IPSC influence φLP. Clearly, the strongest effect is the decrease in φLP as a function of 234 

P. However, φLP modestly increases as a function of the other two parameters, gmax 235 

and Δpeak. This raised the question how gmax and Δpeak would have to change in 236 

coordination as a function of P to counteract the effect of P on φLP and achieve phase 237 

constancy. 238 

Coordinated changes of gmax and Δpeak produce the largest effect on phase 239 

To explore how gmax and Δpeak might interact to influence φLP, we examined the 240 

sensitivity of φLP to these two parameters, individually and in combination, for all values 241 

of P in our data (see Methods). Sensitivity of φLP to these two parameters varied across 242 

P values, with larger sensitivity at lower values of P (Two-Way RM-ANOVA, p<0.001, 243 
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F=16.054; data included in Figure 7-source data). For simplicity, we averaged the 244 

sensitivity values across different P values to obtain an overall measure of the 245 

influence of gmax and Δpeak. These results showed that, for the C-DC case, φLP had a 246 

positive sensitivity to gmax and a smaller positive sensitivity to Δpeak (Fig. 7A). The 247 

sensitivity was largest if the two parameters were varied together (gmax + Δpeak) and 248 

smallest if they were varied in opposite directions (gmax - Δpeak; Two-Way RM-ANOVA, 249 

p<0.001, F=3.330). Similarly, these sensitivity values were also significantly different 250 

for the C-Dur case (Fig. 7B; Two-Way RM-ANOVA, p<0.001, F=2.892), with largest 251 

sensitivity for gmax + Δpeak and smallest for gmax - Δpeak. 252 

Level sets of φLP in the P-gmax-φpeak space for C-DC and C-Dur cases 253 

To search for phase constancy across different P values in our dataset, we 254 

expressed φLP as a function of the three IPSC parameters, P, gmax and Δpeak: 255 

ϕ =Φ ∆max( , , )LP peakP g . Figure 8 shows heat map plots of the function Φ, plotted for the 256 

range of values of P and Δpeak and four values of gmax. In these plots, phase constancy 257 

can be seen as the set of values in each graph that are isochromatic, indicating the 258 

level sets of the function Φ. These level sets are mathematically defined as 259 

hypersurfaces on which the function has a constant value: ϕΦ ∆ =max( , , )peak cP g . For the 260 

C-DC case, in each gmax section of the plot, the level sets (e.g. φc = 0.34 denoted in 261 

white) spanned a moderate range of P values as Δpeak increased (Fig. 8A1). The span 262 

of P values across all four panels indicates the range of cycle periods for which phase 263 

constancy could be achieved by varying gmax and Δpeak. This range of P values 264 

(spanned by the white curves) was considerably smaller for the C-Dur case (Fig. 8A2). 265 

For any constant phase value φc, these level sets can be expressed as 266 

 ϕ= ∆max( , ),
c peakP P g   267 

which describes a surface in the 3D space, yielding the P value for which phase can be 268 

maintained at φc, for the given values of gmax and Δpeak. The level set indicated by the 269 

white curves in panel A for the C-DC case is plotted as a heat map in Fig. 8B1 and can 270 

be compared with the same plot for the C-Dur case in Fig. 8B2. The range of colors in 271 

each plot (marked next to each panel) indicates the range of P values for which phase 272 

can be kept at φc = 0.34. To reveal how this range depends on the desired phase, we 273 

measured this range for all values of φc between 0.2 and 0.8 (Figs. 8C1 and 8C2). We 274 
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found that the LP neuron could not achieve phases below 0.3 in the C-DC case (Fig. 275 

8C1), which is simply because the neuron never fired during the inhibitory synaptic 276 

current (which had a duty cycle of 0.3). Furthermore, the range of P values for which 277 

the LP phase could be maintained by varying gmax and Δpeak was much larger for C-DC 278 

inputs compared to C-Dur Inputs, for all φc values between 0.31 and 0.54. 279 

A model of synaptic dynamics could predict activity onset phase of the LP neuron 280 

To gain a better understanding of our experimental results, we derived a 281 

mathematical description of the phase of a follower neuron such as LP, based on the 282 

following assumptions: 1, that the firing time of this neuron was completely determined 283 

by its synaptic input, 2, that in each cycle the synaptic conductance gsyn increased to a 284 

maximum value gmax for a time interval Tact (the active duration of the synapse) and 285 

decayed to 0 otherwise, and 3, that the follower neuron remained inactive when gsyn 286 

was above some threshold g*. The derivation of this model is described in the 287 

Methods. 288 

This simple model provided a mathematical description of φLP as a function of 289 

P, gmax and ∆peak, for the C-Dur and C-DC cases. In the C-Dur case (Equation (7)), as P 290 

increased, φLP decayed and approached 0 like 1/P. In contrast, in the C-DC case 291 

(Equation (8)), φLP approached its lower limit Δpeak·DC, as P increased, and thus 292 

behaved very differently than in the C-Dur case.  293 

We used these equations to describe gmax as a function of P (for any given 294 

Δpeak) so that LP maintained a constant phase φc, (Equation (10) for the C-DC case). 295 

Alternatively, Δpeak  could be given as a function of P (for any given gmax, Equation (11) 296 

for the C-DC case). We used these derivations to compare how phase constancy 297 

depends on gmax or Δpeak in the C-DC case. A comparison of these two cases can be 298 

seen in Fig. 9A, where either gmax (green) or Δpeak (blue) is varied to keep φLP constant 299 

at φc=0.34 across different P values. (The red curve is the depressing case, described 300 

below.) As the figure shows, phase constancy can be achieved by varying either 301 

parameter, but each parameter produces a different range of P across which phase is 302 

maintained. 303 

These equations and their corresponding counterparts for the C-Dur case can 304 

be used to calculate the range of P values over which changing Δpeak (from 0 to 1) can 305 

maintain a constant phase φc. If ΔP denotes the range of P values for which phase can 306 
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be constant, it is straightforward to show that ΔPDC > ΔPDur (compare black and blue 307 

curves in Fig. 9B and 9C; see Methods for derivation).  308 

Two additional points are notable in Fig. 9C. First, the lower bound on φLP for 309 

which phase constancy can occur is smaller in the C-Dur than the C-DC case. This is 310 

because we have assumed that in the C-DC case the LP neuron cannot fire during 311 

inhibition (i.e., until after Δpeak DC). Second, for φc larger than ~ 0.5, ΔP is larger for the 312 

C-Dur case. This occurs because  Equation (12) can no longer be satisfied when φc is 313 

large. That is, with constant duty cycle, it is not possible to produce an arbitrarily large 314 

follower neuron phase, but with constant duration, any large phase is attainable if the 315 

cycle period is not much larger than the synaptic duration. These findings are 316 

consistent with our experimental results described above (see Fig. 8).  317 

The pacemaker synaptic input to the LP neuron shows short-term synaptic 318 

depression (Rabbah and Nadim, 2007). In a previous modeling study, we explored how 319 

the phase of a follower neuron was affected when the inhibitory synapse from an 320 

oscillatory neuron to this follower had short-term synaptic depression (Manor et al., 321 

2003). In that study the role of the parameter Δpeak was not considered. We now 322 

consider how the presence of short-term synaptic depression influences phase 323 

constancy by changing both gmax and Δpeak. As stated in the Methods (Equation (16)), 324 

the effect of synaptic depression on synaptic strength can be obtained as 325 

= ⋅ ( )max max maxg g s P  ), where smax is an increasing function whose value approaches 1 326 

as P increases. This indicates that the synapse becomes stronger due to more 327 

recovery from depression at longer cycle periods. When synaptic depression dictates 328 

how gmax varies with P and Δpeak also varies with P and gmax (Equation (11)), the 329 

simultaneous changes in gmax and Δpeak (red) greatly increase the range of P values 330 

over which φLP is constant (Fig. 9A). 331 

Note that the C-DC case with short-term depression spans a larger range of P 332 

values than the non-depressing case (Fig. 9B). Similarly, the range of P values for 333 

which phase can be maintained is larger than the non-depressing case across φLP 334 

values, except where φLP is so large that the depressing synapse operates outside its 335 

dynamic range (Fig. 9C). These results are consistent with our experimental results, 336 

indicating that although phase constancy can be achieved when either gmax or Δpeak 337 

increases with P, a concomitant increase of both - which could occur for example with 338 
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a depressing synapse - greatly expands the range of P values for which a constant 339 

phase is maintained. 340 

Discussion 341 

The importance of phase in oscillatory networks 342 

A common feature of oscillatory networks is that the activities of different 343 

neuron types are restricted to specific phases of the oscillation cycle. For example, 344 

different hippocampal and cortical neurons are active in at least three distinct phases of 345 

the gamma rhythm (Hajos et al., 2004; Hasenstaub et al., 2005), and distinct 346 

hippocampal neuron types fire at different phases of the theta rhythm and sharp wave-347 

associated ripple episodes (Somogyi and Klausberger, 2005).  348 

Experimental studies quantify the latency of neural activity with respect to a 349 

reference time in the cycle, but in most cases, these latencies are normalized and 350 

reported as phase. Distinct neuron types can maintain a coherent activity phase, 351 

despite wide variations in the network frequency (30-100 Hz for gamma rhythms, 4-7 352 

Hz for theta rhythms, and 120-200 Hz for sharp wave-associated ripple episodes). 353 

Phase-specific activity of different neuron types is proposed to be important in rhythm 354 

generation (Wang, 2010), and indicates the necessity of precise timing for producing 355 

proper circuit output and behavior (Kopell et al., 2011). For example, phase locking of 356 

spike patterns to oscillations is important for auditory processing, single cell and 357 

network computations and Hebbian learning rules (Kayser et al., 2009; McLelland and 358 

Paulsen, 2009; Panzeri et al., 2010). For brain oscillations, phase relationships may 359 

provide clues about the underlying circuit connectivity and dynamics, but a behavioral 360 

correlate of varying frequencies is not obvious. In contrast, the activity phase of distinct 361 

neuron types in rhythmic motor circuits is a tangible readout of the timing of motor 362 

neurons and muscle contractions, thus defining phases of movement (Grillner and El 363 

Manira, 2015; Kiehn, 2016; Le Gal et al., 2017; Bidaye et al., 2018). Because 364 

meaningful behavior depends crucially on proper activity phases, whether neurons 365 

maintain their activity phase in face of changes in frequency simply translates to 366 

whether the movement pattern changes as it speeds up or slows down. 367 

Determinants of phase 368 

In oscillatory networks, the activity phases of different neuron types depend to 369 

different degrees on the precise timing and strength of their synaptic inputs (Oren et 370 
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al., 2006). Our results from noise current injections showed that the timing of the LP 371 

neuron is strongly dependent on the timing of inputs it receives. Dynamic clamp 372 

injection of realistic or triangular conductance waveforms with different periods (P) 373 

indicated that φLP was largely determined by the duration of the synaptic input. φLP 374 

changed substantially with P when inputs had constant duration, but much less when 375 

inputs had a constant duty cycle, i.e., when duration scaled with P. However, our 376 

experiments also showed that inputs of constant duty cycles alone are insufficient for 377 

phase constancy. φLP decreased with P even with a constant duty cycle of inputs, but 378 

increased with either synaptic strength (gmax) or peak phase of the synaptic input 379 

(Δpeak). The increase in φLP had similar sensitivity to gmax and Δpeak, and therefore a 380 

larger sensitivity to a simultaneous increase in both. Consequently, it was possible to 381 

keep φLP constant over a wide range of cycle periods by increasing both parameters 382 

with P.  383 

The fact that an increase in gmax with P promotes phase constancy is 384 

biologically relevant, as short-term depression in pyloric synapses means that synaptic 385 

strength indeed increases with P (Manor et al., 1997). Previous modeling studies show 386 

that short-term synaptic depression of inhibitory synapses promotes phase constancy 387 

(Nadim et al., 2003; Bose et al., 2004), largely because of longer recovery times from 388 

depression at larger values of P.  389 

The finding that an increase of Δpeak with P promotes phase maintenance is 390 

somewhat surprising, as we have previously shown that Δpeak in LP actually decreases 391 

with P (Manor et al., 1997; Tseng et al., 2014). On the face of it, this suggests that an 392 

increase in Δpeak is not a strategy employed in the intact circuit. However, the caveat is 393 

that such results may critically depend on the cause of the change in P, either 394 

technically and biologically. While in our current study we varied Δpeak with direct 395 

conductance injection into LP, previous results were obtained by changing the 396 

waveform and period of the presynaptic pacemaker neurons. When P is changed in an 397 

individual preparation by injecting current into or voltage-clamping the pacemakers, 398 

phase of follower neurons is not particularly well maintained. An example of this is 399 

shown in Fig. 1, where φLP values fall between constant phase and constant duration 400 

and, additionally, all pyloric neurons show behavior that falls between constant phase 401 

and constant latencies (Hooper, 1997b, a). This may reflect that neurons are not 402 

keeping phase particularly well when the only cause of changing P is the presynaptic 403 
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input. This is supported by the observation that even during normal ongoing pyloric 404 

activity, phases change with cycle-to-cycle variability of P in individual preparations 405 

(Bucher et al., 2005). However, it does not preclude the possibility that Δpeak plays an 406 

important role in stable phase relationships when P differs because of temperature, 407 

neuromodulatory conditions, or inter-individual variability (discussed below).  408 

It is noteworthy that a change in the synaptic strength or peak phase with P is 409 

not peculiar to graded synapses. The fact that short-term synaptic plasticity can act as 410 

a frequency-dependent gain control mechanism is well known for many spike-mediated 411 

synaptic connections. In bursting neurons, the presence of a combination of short-term 412 

depression and facilitation in the same spike-mediated synaptic interaction could also 413 

result in changes in the peak phase of the summated synaptic current as a function of 414 

burst frequency and duration, and the intra-burst spike rate (Markram et al., 1998). 415 

The mathematical model in the current study provides mechanistic explanations 416 

for several of our experimental findings. First, it can be used to produce a quantitative 417 

measure of phase, given the values of gmax, Δpeak and P. Thus, these equations can be 418 

used to compare the C-DC and C-Dur cases, which match our experimental results. 419 

They show that, for most phase values, the C-DC case provides a larger range of cycle 420 

periods at which phase constancy can occur. Second, these equations provide the 421 

activity phase no matter how the pacemaker synaptic input duration changes with cycle 422 

period. For instance, our experiments were conducted by changing synaptic input 423 

through sampling individual values of the parameter pairs gmax and Δpeak, and then 424 

calculating the ensuing phase. We then used fitting to find level sets of constant phase 425 

(Fig. 8). In contrast, when we combined our mathematical derivation here with previous 426 

results on the role of short-term synaptic depression (Bose et al., 2004), we could 427 

demonstrate how a neuronal circuit can naturally follow a level set of phase (Equations 428 

(7), (8), (15) and (16)). Moreover, we showed that the combined increase in gmax and 429 

Δpeak with P produces a larger range of periods for phase constancy than increasing 430 

either parameter alone. In short, this mathematical formulation produces a simple 431 

quantitative distillation of our experimental results. 432 

In this study, we did not explore the role of the intrinsic properties of the LP 433 

neuron on its phase. In separate experiments, we simultaneously measured post-434 

inhibitory rebound properties in synaptically isolated LP neurons and the levels of 435 

voltage-gated ionic currents (the transient potassium current IA and the 436 
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hyperpolarization-activated inward current Ih) that influence rebound spiking. These 437 

data were not included in this study for brevity and because they showed that the 438 

timing of post-inhibitory spiking was relatively stable across preparations. Therefore, 439 

we would expect the contribution of intrinsic properties in controlling the timing of the 440 

LP neuron burst onset to be relatively small. However, this result does not generalize 441 

to all follower neurons. For example, the follower ventral dilator (VD) and PY neurons 442 

have a much higher levels of IA, which in turn has a larger effect on the timing of post-443 

inhibitory spiking. In a set of computational studies, we addressed the role of IA in 444 

determining the burst phase in response to periodic inputs (Zhang et al., 2008, 2009) 445 

and in conjunction with short-term depression in the synaptic input (Bose et al., 2004). 446 

An experimental clarification of the relative contribution of intrinsic properties vs. 447 

synaptic input could be done with controlled dynamic clamp synaptic input, such as 448 

those used in the current study, injected in PY or VD neurons. Such a data set would 449 

fittingly complement the results of the current study to elucidate more general rules in 450 

determining the activity phase of neurons in an oscillatory network.  451 

Phase relationships in changing temperatures 452 

An interesting case is provided by the observation that phases are remarkably 453 

constant when pyloric rhythm frequency is changed with temperature. Tang et al. 454 

(2012) report a 4-fold decrease in P of the pyloric rhythm between 7 and 23° C. In this 455 

study, none of the pyloric phases changed significantly, and it is worth noting that 456 

under conditions of changing temperatures, the relationships between P, gmax, and 457 

Δpeak appeared to be fundamentally different from when P is changed at a constant 458 

temperature. Presynaptic voltage trajectories scaled with changing P, and Δpeak of 459 

postsynaptic currents was independent of P, in contrast to the decrease described at 460 

constant temperature (Manor et al., 1997; Tseng et al., 2014). Amplitudes of synaptic 461 

potentials did not change with temperature, despite an increase in synaptic current 462 

amplitudes with increasing temperature (and associated decrease in P). This is in 463 

contrast to the positive relationship between gmax and P that results from synaptic 464 

depression at a constant temperature (Manor et al., 1997). Therefore, it appears that 465 

the likely substantial effects of temperature on synaptic dynamics and ion channel 466 

gating are subject to a set of compensatory adaptations different from when P is 467 

changed at constant temperature. 468 

Variability and slow compensatory regulation of phase 469 
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Phase maintenance in the face of changing P in an individual animal requires 470 

the appropriate short-term dynamics of synaptic and intrinsic neuronal properties. The 471 

fact that characteristic (and therefore similar) phase relationships can also be observed 472 

under the same experimental conditions across individual preparations is a different 473 

conundrum, particularly when P can vary substantially, as is true for brain oscillations 474 

(Hajos et al., 2004; Hasenstaub et al., 2005; Somogyi and Klausberger, 2005). Phases 475 

show different degrees of variability across individuals in a variety of systems, e.g., 476 

leech heartbeat (Wenning et al., 2018), larval crawling in Drosophila (Pulver et al., 477 

2015), and fictive swimming in zebrafish (Masino and Fetcho, 2005), but in all of these 478 

cases phases are not correlated with P. In the pyloric rhythm, phases are also variable 479 

to a degree across individuals, but not correlated with the mean P, which varies >2-fold 480 

(Bucher et al., 2005; Goaillard et al., 2009). This phase constancy occurs despite 481 

considerable inter-individual variability in ionic currents, and is considered the ultimate 482 

target of slow compensatory regulation, i.e., homeostatic plasticity (Marder and 483 

Goaillard, 2006; Ma and LaMotte, 2007; Marder et al., 2014). Slow compensation can 484 

also be observed directly when rhythmic activity is disrupted by decentralization, and 485 

subsequently recovers to similar phase relationships over the course of many hours 486 

(Luther et al., 2003). It is interesting to speculate if our findings about how synaptic 487 

parameters must change to keep phase constant would hold across individuals with 488 

different mean P. The prediction would be coordinated positive correlations of both gmax 489 

and Δpeak with P.    490 

Synaptic inputs to the LP neuron show considerable variability across 491 

preparations (e.g., Fig. 3B), which mirrors the variability seen in the levels of voltage-492 

gated ionic currents in pyloric neurons (Schulz et al., 2006). We did not address the 493 

role and extent of variability in this study, because a proper analysis of variability 494 

required us to first establish the mechanisms that give rise to a consistent output, in 495 

this case phase constancy. Based on our findings regarding the influence of synaptic 496 

parameters on phase, a natural next step is to explore whether the variability of 497 

different parameters defining the synaptic input influences variability of phase or, 498 

alternatively, whether variability in some synaptic parameters may be irrelevant to 499 

phase or restrained by the postsynaptic neuron. 500 

Phase relationships under different neuromodulatory conditions. 501 
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The flipside of the question how neurons maintain phase is the question how 502 

their phase can be changed. In motor systems in particular, changes in phase 503 

relationships are functionally important to produce qualitatively different versions of 504 

circuit output, for example to produce different gaits in locomotion (Vidal-Gadea et al., 505 

2011; Grillner and El Manira, 2015; Kiehn, 2016). The activity of neural circuits is 506 

flexible, and much of this flexibility is provided by modulatory transmitters and 507 

hormones which alter synaptic and intrinsic neuronal properties (Brezina, 2010; Harris-508 

Warrick, 2011; Jordan and Slawinska, 2011; Bargmann, 2012; Marder, 2012; Bucher 509 

and Marder, 2013; Nadim and Bucher, 2014 ). The pyloric circuit is sensitive to a 510 

plethora of small molecule transmitters and neuropeptides which affect cycle frequency 511 

and phase relationships (Marder and Bucher, 2007; Stein, 2009; Daur et al., 2016). 512 

Indeed, extensive research has indicated the role of amine modulation of synaptic 513 

strength and neuronal firing phase in the pyloric circuit, and how amine modulation of 514 

synaptic and intrinsic firing properties changes firing phases (Johnson et al., 2003; 515 

Gruhn et al., 2005; Johnson et al., 2005; Peck et al., 2006; Harris-Warrick and 516 

Johnson, 2010; Harris-Warrick, 2011; Kvarta et al., 2012). With respect to our findings, 517 

any given neuromodulator could act presynaptically to alter P, duration, or duty cycle 518 

on the one hand, and gmax and Δpeak on the other. In addition, the neuromodulator could 519 

affect the postsynaptic neuron’s properties and alter its sensitivity to any of these 520 

parameters. Therefore, our findings could not just further our understanding of how 521 

phase can be maintained across different rhythm frequencies, but also provide a 522 

framework for testing if and how changes in synaptic dynamics may contribute to 523 

altering phase relationships under different neuromodulatory conditions. 524 

Materials and Methods  525 

Adult male crabs (Cancer borealis) were acquired from local distributors and 526 

maintained in aquaria filled with chilled (10-13°C) artificial sea water until use. Crabs 527 

were prepared for dissection by placing them on ice for 30 minutes. The dissection was 528 

performed using standard protocols as previously described (Tohidi and Nadim, 2009; 529 

Tseng and Nadim, 2010). The STNS, including the four ganglia (esophageal ganglion, 530 

two commissural ganglia, and the STG) and their connecting nerves, and the motor 531 

nerves arising from the STG, were dissected from the stomach and pinned into a 532 

Sylgard (Dow-Corning) lined Petri dish filled with chilled saline. The STG was 533 

desheathed, exposing the somata of the neurons for intracellular impalement. 534 
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Preparations were superfused with chilled (10-13°C) physiological Cancer saline 535 

containing: 11 mM KCl, 440 mM NaCl, 13 mM CaCl2 · 2H2O, 26 mM MgCl2 · 6H2O, 536 

11.2 mM Trizma base, 5.1 mM maleic acid with a pH of 7.4.  537 

Extracellular recordings were obtained from identified motor nerves using 538 

stainless steel electrodes, amplified using a differential AC amplifier (A-M Systems, 539 

model 1700). One lead was placed inside a petroleum jelly well created to electrically 540 

isolate a small section of the nerve, the other right outside of it. For intracellular 541 

recordings, glass microelectrodes were prepared using the Flaming-Brown 542 

micropipette puller (P97; Sutter Instruments) and filled with 0.6 M K2SO4 and 20 mM 543 

KCl. Microelectrodes used for membrane potential recordings had resistances of 25-544 

30MΩ; those used for current injections had resistances of 15-22 MΩ. Intracellular 545 

recordings were performed using Axoclamp 2B and 900A amplifiers (Molecular 546 

Devices). Data were acquired using pClamp 10 software (Molecular Devices) and the 547 

Netsuite software (Gotham Scientific), sampled at 4-5 kHz and saved on a PC using a 548 

Digidata 1332A (Molecular Devices) or a PCI-6070-E data acquisition board (National 549 

Instruments).  550 

Individual pyloric neurons were impaled and identified via their membrane 551 

potential waveforms, correspondence of spike patterns with extracellular nerve 552 

recordings, and interactions with other neurons within the network (Weimann et al., 553 

1991).  554 

Constructing realistic graded IPSC waveforms 555 

Inhibitory postsynaptic currents (IPSCs) were recorded from LP neurons during 556 

the ongoing rhythm using two-electrode voltage clamp and holding the LP neuron 557 

at -50mV, far from the IPSC reversal potential of ~ -80 mV (Fig. 3A). We refer to the 558 

total current measured in the voltage clamped LP neuron during the activity of the PD 559 

and PY neurons as a synaptic current for the following reasons: 1, the synaptically 560 

isolated LP neuron produces tonic spiking activity (see, e.g., Fig. 2B), and 2, holding 561 

the LP neuron at different voltages (e.g. -60 or -110 mV) produces a similarly shaped 562 

current, but with a different amplitude or reversed sign (at -110 mV). 563 

When the LP soma is voltage clamped at -50 mV, the axon (which is 564 

electrotonically distant from the soma) produced action potentials following the synaptic 565 

inhibition from the PY neuron and the pacemaker neurons. The onset of the LP neuron 566 
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action potentials (recorded in the current trace) was used to calculate the mean IPSC 567 

for each experiment averaging the IPSCs over 10-20 cycles. The IPSC waveforms 568 

were then extracted by normalizing both the amplitude and the duration of the mean 569 

IPSC.  570 

Driving the LP neuron with noise current 571 

In these experiments, the preparation was superfused in Cancer saline plus 572 

10˗5 M picrotoxin (PTX; Sigma Aldrich) for 30 minutes to block the synaptic currents to 573 

the LP neuron.  The removal of synaptic inhibition onto LP neurons changed the 574 

activity of these neurons from bursting to tonic firing. Then, noise current, generated by 575 

the Ornstein-Uhlenbeck (O-U) process (Lindner), was injected into the LP neurons for 576 

60 minutes using the Scope software (available at 577 

http://stg.rutgers.edu/Resources.html, developed in the Nadim laboratory). The 578 

baseline of the noise current was adjusted by adding DC current so that it can provide 579 

enough inhibition to produce silent periods alternating with bursts of action potentials. 580 

The O-U process was defined as  581 

 

1 .t t tdX X dt dW= − +σ
τ   582 

The parameters used for noise injection were τ =10 to 20 ms, σ = 200 pA and a DC 583 

current of -200 to -100 pA. In these experiments we defined bursts as groups of at 584 

least two action potentials with inter-spike intervals < 300 ms, following a gap of at 585 

least 300 ms. 586 

Driving the LP neuron with realistic or triangular IPSC waveforms in dynamic clamp 587 

The dynamic clamp current was injected using the Netclamp software (Netsuite, 588 

Gotham Scientific). We pharmacologically blocked synaptic inputs from the pacemaker 589 

AB and follower PY neurons to the LP neuron by superfusing the perparation in Cancer 590 

saline plus 10˗5 M picrotoxin (PTX; Sigma Aldrich) for 30 minutes. This treatment does 591 

not block the cholinergic synaptic input from the PD neurons for which no clean 592 

pharmacological blocker is known. Although the PD neuron input has some influence 593 

on the LP neuron activity, this input only constitutes <20% of the total pacemaker 594 

synapse and cannot drive oscillations in the follower LP neuron. 595 
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 The LP neuron was driven in PTX with an artificial synaptic current in dynamic 596 

clamp. The synaptic current was given as 597 

 ( )syn syn LP synI g V E= −   598 

where the synaptic conductance gsyn was a pre-determined waveform, repeated 599 

periodically with period P, and Esyn was the synaptic reversal potential set to −80 mV 600 

(Zhao et al., 2011).  601 

Two sets of dynamic clamp experiments were performed on different animals. 602 

In one set of experiments, gsyn was set to be a triangular waveform. We measured the 603 

effects of four different parameters in these triangle conductance injections (Fig. 1): 604 

peak phase (Δpeak), duration (Tact), period (P = time between onsets of dynamic clamp 605 

synaptic injections), and maximal conductance (gmax, the peak value of gsyn). This 606 

allowed us to explore which combinations of the different parameters influences the LP 607 

phase. Five values for P were used: 500, 750, 1000, 1500, and 2000 ms, which cover 608 

the typical range of pyloric cycle periods. Three values of gmax were used: 0.1, 0.2 and 609 

0.4 µS, consistent with previous measurements of synaptic conductance (Zhao et al., 610 

2011; Tseng et al., 2014). The value of Δpeak was varied to be 0, 0.25, 0.5, 0.75 or 1. In 611 

the same experiment, all runs were done in two conditions: with Tact constant across 612 

different P values (C-Dur case with Tact = 300 ms) or with Tact changing proportionally 613 

to P (C-DC case with duty cycle DC = Tact /P = 0.3).  614 

In the other set of experiments, gsyn was a realistic IPSC waveform, based on a 615 

pre-recorded IPSC in the LP neuron. In these experiments, P was varied to be 500, 616 

750, 1000, 1250, 1500, or 2000 ms by scaling the realistic waveform in the time 617 

direction. In these experiments, gmax was set to be 0.1, 0.2, 0.4, 0.6, or 0.8 μS. The LP 618 

neuron burst onset delay (Δt) was measured relative to the onset of the pacemaker 619 

component of the synaptic input (identified by the kink in the synaptic conductance 620 

waveform) in each cycle. The burst phase was calculated as φLP = Δt /P. Phase 621 

constancy means that Δt changed proportionally to P. To measure the LP neuron 622 

phase with respect to the end of the pacemaker input, this reference used was the 623 

point on the synaptic conductance waveform marked by drawing a horizontal line from 624 

the kink that identified the onset of the pacemaker input. 625 
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Determining relationship between cycle period (P), synaptic strength (gmax) and LP 626 

phase (φLP) using the realistic IPSC waveform 627 

We determined how well the mathematical model derived for constant input 628 

duty cycles (see Equation (8) below), matched the experimental data obtained with 629 

realistic IPSC waveforms. To this end, we fit the model to φLP values measured for all 630 

values of gmax and P, using the standard fitting routine 'fit' in MATLAB (Mathworks). 631 

Sensitivity of φLP to gmax and Δpeak across all P values 632 

To explore how gmax and Δpeak may interact to influence φLP, we examined the 633 

sensitivity of φLP to these two parameters, individually and in combination, for all values 634 

of P in our data. For each P, we computed the mean value of φLP across all 635 

experiments, and all values of gmax (0.1, 0.2, 0.3 and 0.4 µS) and Δpeak (0, 0.25, 0.5, 636 

0.75 or 1). (The φLP value for gmax = 0.3 µS was obtained in this case by linearly 637 

interpolating the values for 0.2 and 0.4 µS.) This produced a 4 by 5 matrix of all values. 638 

For each data point in the matrix, we moved along eight directions (+gmax, +Δpeak, –gmax, 639 

–Δpeak, +gmax & +Δpeak, –gmax & –Δpeak, +gmax & –Δpeak, +gmax & –Δpeak). Here “+” denotes 640 

increasing and “-“ denotes decreasing. We then calculated the change in φLP per unit 641 

gmax (normalized by 0.4 µS), Δpeak, or both. For example, the sensitivity of φLP when 642 

Δpeak was changed from 0.25 to 0.5 was measured as  643 

ϕ ϕ∆ = − ∆ =
−

(at 0.5) (at 0.5)
0.5 0.25

LP peak LP peak  644 

Similarly, the sensitivity of φLP when gmax was changed from 0.2 to 0.4 was measured 645 

as 646 

ϕ ϕ= − =
−

max max(at 0.4) (at 0.2)
(0.4 0.2) / 0.4

LP LPg g
 647 

These data are provided in Figure 7-source data. As the next step, we averaged the 648 

sensitivity along each aligned direction: [+gmax and –gmax]; [+Δpeak and –Δpeak]; [+gmax & 649 

+Δpeak and –gmax & –Δpeak]; [+gmax & –Δpeak and +gmax & –Δpeak]. This produced the four 650 

cardinal directions, shown in Fig. 7. Finally, we averaged the sensitivity across all P 651 

values. 652 

A model of synaptic dynamics  653 
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In the derivation of the model, the firing time of the LP neuron was assumed to 654 

be completely determined by its synaptic input. This synaptic conductance (gsyn) was 655 

assumed to rise and fall with distinct time constants. The following holds over one cycle 656 

period and therefore time is reset with period P (t (mod P)): 657 

 
τ

τ
− <

=  − ≥

max( )  (mod )
/  (mod )

r

ps

syn peaksyn

syn eak

g g t P tdg
g t P tdt

  (1) 658 

where the time tpeak, corresponding to ∆peak, is tpeak = Δpeak Tact. We assumed that LP 659 

neuron remained inactive when gsyn was above a fixed threshold (g∗) less than gmax. 660 

Because the synaptic input is periodic with period P, we solved for the minimum and 661 

maximum values of gsyn in each cycle. The minimum (glo) occurred just before the onset 662 

(t = 0) of AB/PD activity, whereas the maximum occurred at the peak synaptic phase 663 

∆peak for the C-Dur case. In the C-DC case, Tact = DC ·P, where DC is the duty cycle 664 

(fixed at 0.3 in our experiments). 665 

To calculate g*, we set the value t = 0 so that gsyn(0) = glo (and, by periodicity, 666 

gsyn(P) = glo), and solved the first part of Equation (1) where gsyn increases until t = tpeak. 667 

This yielded 668 

 τ−= = + − /  )   ( ) ( peak rt
peak syn peak max lo maxg eg g t g g   (2) 669 

We then used the second part of Equation (1) to track the decay of gsyn for tpeak < t < P: 670 

 τ− −= ( )/  ( )  peak st t
syn peakg t g e   (3) 671 

Using Equation (3), we calculated the time ∆t at which the synaptic conductance 672 

gsyn(∆t) = g∗ as follows: 673 

 τ− ∆ −= ( )/ * peak st t
peakg g e   (4) 674 

Solving Equation (4) for ∆t yielded 675 

 
τ∆ = +

( )
ln .

*
peak

s peak

g t
t t

g   676 

Dividing this equation by P yielded φLP: 677 
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τ

ϕ = ∆ = +( , , ) ln ,
*

peak peaks
LP max peak

g t
F P g

P g P
  (5) 678 

where gpeak is given by Equation (2). This expression provides a description of the 679 

dependence of φLP as a function of P, gmax and Δpeak. To explore the role of the 680 

parameters in this relationship, we made a simplifying assumption that the synaptic 681 

conductance gsyn(t) rapidly reached its peak (i.e., τr was small), stayed at this value and 682 

started to decay at t = tpeak. In this case g(t) = gmax on the interval (0,tpeak) and the value 683 

of glo is irrelevant. With this assumption, Equation (5) reduced to 684 

 
τϕ = +*ln .peaks max

LP

tg
P g P

  (6) 685 

Substituting tpeak = Δpeak·Tact in Equation (6), gave 686 

 ϕ τ 
= ∆ = + ∆ 

 

1( , , ) ln ,
*

max
LP max peak s peak act

g
F P g T

P g
  (7) 687 

which we used to describe the LP phase in the C-Dur case. To describe the C-DC 688 

case, after substituting tpeak = Δpeak·DC·P, we obtained 689 

 ϕ τ 
= ∆ = + ∆ 

 

1( , , ) ln .
*

max
LP max peak s peak

g
F P g DC

P g
  (8) 690 

Note that these equations also describe the relationship between φLP with Tact in the C-691 

Dur case, and DC in the C-DC case). 692 

Equations (7) and (8) can be used to approximate a range of parameters over 693 

which φLP is maintained at a constant value φc. To do so, we assumed a specific 694 

parameter set, say ∆̂ˆ ˆ( , , )max peakP g , satisfies 695 

 ϕ∆ =ˆˆ ˆ( , , ) ,max peak cF P g   696 

for some fixed phase value, φc. We could now ask whether there are nearby 697 

parameters for which phase remains constant, i.e., F remains equal to φc. The Implicit 698 

Function Theorem (Krantz and Parks, 2012) guarantees that this is the case, provided 699 

certain derivatives evaluated at ∆̂ˆ ˆ( , , )max peakP g are non-zero, which turns out to be true 700 
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over a large range of parameters. Since the partial derivative with respect to ∆peak of 701 

F(P,gmax,∆peak) at this point is a non-zero constant equal to Tact/P (or DC) in the C-Dur 702 

(or C-DC) case, there is a function ∆peak = h(P,gmax) such that  703 

 ϕ=( , , ( , ))max max cF P g h P g   (9) 704 

for values of P and gmax near )ˆ ˆ( , maxP g . In other words, the Implicit Function Theorem 705 

guarantees that small changes in P and gmax can be compensated for by an appropriate 706 

choice of Δpeak in order to maintain a constant LP phase. A similar analysis can be 707 

done by solving for gmax in terms of P and Δpeak or by solving for P in terms of gmax and 708 

∆peak. 709 

Keeping gmax (respectively, Δpeak) constant in these equations allows us to 710 

obtain a relationship between P and Δpeak (respectively, gmax), for which φLP is kept 711 

constant at φc. Consider Equations (7) and (8) for fixed values of both φLP (= φc) and 712 

gmax. Then these equations reduce to simple functional relationships where Δpeak can be 713 

expressed as a function of P. In the C-DC case, for example, evaluating Δpeak from 714 

Equation (8) produces   715 

 ϕ
τ

∆
 

= ⋅  


−


* exp ( )cmax peak
s

g P DCg   (10) 716 

Equation (10) describes how gmax must vary with P  for the system to maintain a 717 

constant phase φc for any given Δpeak.  718 

Alternatively, Δpeak can be expressed as a function of P. In the C-DC case, 719 

evaluating Δpeak from Equation (8) produces 720 

 ϕ τ
∆ = −

⋅
ln ,

*
c s max

peak
g

DC DC P g
  (11) 721 

Equation (11) can be used to calculate the range of P values over which changing Δpeak 722 

(from 0 to 1) can maintain a constant phase φc. Solving 0 < Δpeak < 1 using Equation 723 

(11) yields 724 

 τ τ
ϕ ϕ

< <
− *

l ln
*

ns m

c c

ax s max
DC

g g
P

g DC g
  (12) 725 
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Performing the same procedure in the C-Dur case, we find 726 

 τ τ
ϕ ϕ ϕ

< < +ln ln .
* *

s max act s max
Dur

c c c

g T g
P

g g
  (13) 727 

The lower limits of the two cases (PDC and PDur) are the same. The upper limit 728 

for PDC is larger than that of PDur if 729 

 
τϕ

 
< + 

 
1 ln .

*
s max

act
c

g
DC

T g
  (14) 730 

If ΔP denotes the range of P values that respectively satisfy Equation (12) or (13), then 731 

ΔPDC > ΔPDur if the inequality given by (14) holds, which it does for true for τs and gmax 732 

large enough.  733 

Adding synaptic depression to the model of synaptic dynamics  734 

In a previous modeling study, we explored how the phase of a follower neuron 735 

was affected when the inhibitory synapse from an oscillatory neuron to this follower 736 

had short-term synaptic depression (Manor et al., 2003). In that study the role of the 737 

parameter Δpeak was not considered. It is straightforward to add synaptic depression to 738 

Equations (7) and (8) and therefore examine how phase is affected if Δpeak increases 739 

with P and synaptic strength also changes with P according to the rules of synaptic 740 

depression. We will restrict this section to the C-DC case. A similar derivation can be 741 

made for the C-Dur case. 742 

An ad hoc model of synaptic depression can be made using a single variable sd 743 

which will be a periodic function that denotes the extent of depression and takes on 744 

values between 0 and 1 (Bose et al., 2004). sd decays during the AB/PD burst (from 745 

time 0 to Tact, indicating depression) and then recovers during the inter-burst interval 746 

(from Tact to P, indicating recovery). Thus, sd can be described by an equation of the 747 

form: 748 

 β

α

τ
τ

− ≤
=  − < <

/  (mod )    
(1 ) /  (mod )    

d actd

d act

s t P Tds
s T t P Pdt

  749 

Using periodicity, it is straightforward to show that the maximum value of sd, which 750 

occurs at the start of the AB/PD burst, is given by: 751 
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α

βα

τ

ττ

− −

− ⋅− −

−
=

−

(1 )/

/(1 )/

1( ) .
1

P DC

max DC PP DC

es P
e e

  (15) 752 

Note that smax is a monotonically increasing function with values between 0 and 1. Its 753 

value approaches 1 as P increases, indicating that the synapse becomes stronger. For 754 

a complete derivation and description, see (Bose et al., 2004). The effect of synaptic 755 

depression on synaptic strength can be obtained by setting  756 

 = ⋅ ( )max max maxg g s P   (16) 757 

where smax is given by Equation (15). 758 

Software, analysis and statistics 759 

Data were analyzed using MATLAB scripts to calculate the time of burst onset 760 

and the phase. Statistical analysis was performed using Sigmaplot 12.0 (Systat). 761 

Significance was evaluated with an α value of 0.05, error bars and error values 762 

reported denote standard error of the mean (SEM). 763 
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Figures 994 

 995 

Figure 1: Latency constancy and phase constancy as a function of period 996 
A1. Schematic diagram showing that a follower neuron (F) strongly inhibited by a 997 
bursting oscillatory neuron (O) with period P can produce rebound bursts with the 998 
same period at a latency Δt. A2. If the period of O changes to a new value (P2), the 999 
new F burst latency (Δt2) typically falls between two extremes: it could stay constant 1000 
(top trace) or change proportionally to P2, so that the burst phase (Δt / P) remains 1001 
constant (middle trace). B. Example traces of the pyloric pacemaker PD neuron and 1002 
the follower LP neuron represent the O and F relationship in panel A. Here, the PD 1003 
neuron is voltage clamped and a pre-recorded waveform of the same neuron is used to 1004 
drive this neuron to follow different cycle periods. The LP neuron follows the same 1005 
period because of the synaptic input it receives. C. A measurement of the LP neuron 1006 
burst onset time (Δt) with respect to the onset of the PD neuron burst shows that Δt 1007 
falls between the two limits of constant latency and constant phase. Dotted curves 1008 
represent constant latency matched to the latencies at the two extreme P values.  1009 
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 1010 

Figure 2: Inputs to the LP neuron influence burst time, spike number and interval 1011 
A. Simultaneous intracellular recording of the LP neuron and extracellular recording of 1012 
the lateral ventricular nerve (lvn), containing the axons of the LP, PD and PY neurons 1013 
(arrows). Period (P) and the burst onset time (Δt) of the LP neuron are defined in 1014 
reference to the pacemaker group (PD) burst. B. Blocking the AB and PY synaptic 1015 
inputs (10 µM picrotoxin) to the LP neuron disrupts its bursting oscillations. C. The LP 1016 
neuron, in picrotoxin, was driven with a noise current input (Inoise) for 60 minutes. In 1017 
response, the LP neuron produced an irregular pattern of bursting. Specific inter-burst 1018 
intervals (IBIs) were tagged and used for burst-triggered averaging. D. Example of 1019 
burst-trigger-averaged input current (IBTA, green). Individual traces are shown in grey.  1020 
E. For each IBI (300, 500, 700, 900 ms), IBTA was calculated and normalized to the 1021 
(negative) peak value of IBTA for IBI=300 ms. Different traces in each panel show the 1022 
IBTA of different preparations. F. The mean (across preparations) of the normalized IBTAs  1023 
shown in panel E. G. Traces in panel F normalized by IBI. H-K. Four parameters define 1024 
the shape of the IBTA: peak amplitude Iamp (H), peak phase Δpeak (I), slopeup (J) and 1025 
slopedown (K) across preparations. IBI had a significant effect on amplitude Iamp 1026 
(p<0.001), peak phase Δpeak (p<0.001), slopeup (p<0.001) and slopedown (p=0.002).  1027 
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 1028 

Figure 3: Cycle period and synaptic strength affect the phase of LP burst onset in 1029 
opposite directions. 1030 
A. The synaptic input to the LP neuron was measured by voltage clamping it at a 1031 
holding potential of -50mV during ongoing oscillations. The onset of the pacemaker 1032 
(AB/PD) activity is seen as a kink in the synaptic current (ILP, blue). Dashed line: 0 nA. 1033 
B. Synaptic input averaged across (last 5 of 30) cycles from 9 different LP neurons. 1034 
Traces are aligned to the onset of the PD neuron burst (dotted vertical red line; see 1035 
panel A), normalized by the cycle period and terminated at the end of the downslope 1036 
(coincident with the first LP action potential when present). The blue trace shows the 1037 
average. C. An example of the LP neuron driven by the realistic synaptic waveform in 1038 
dynamic clamp. The burst onset time (Δt) was measured relative to the AB/PD onset 1039 
and used to measure the LP phase (φLP). gmax denotes the conductance amplitude. D. 1040 
Mean φLP (N=9 preparations) shown as a function of P and fit with the function given by 1041 
Equation (8) (fit values τs = 26.0 ms, g* = 0.021 µS and Δpeak·DC = 0.43). E. Mean φLP 1042 
plotted against gmax also shown with the fit to Equation (8). F. Heat map, obtained from 1043 
fitting Equation (8) to the data in panels D and E, shows φLP as a function of both gmax 1044 
and P. Black curves show the level sets of phase constancy for three values of φLP 1045 
(0.47, 0.49, and 0.52). 1046 
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 1047 

Figure 4: The constant duty cycle of synaptic conductance is a major factor in phase 1048 
maintenance. 1049 
A. The change in φLP values with P are compared with the constant phase (solid curve) 1050 
and constant latency (dashed curve) extremes. Lime traces show the usual values of 1051 
φLP, calculated from the LP burst onset latency with respect to the onset of the PD 1052 
burst. Lavender traces show φLP calculated from the LP burst onset latency with 1053 
respect to the end of the PD burst. Data shown are the same as in Fig. 3D for gmax=0.4 1054 
µS. B. Schematic diagram shows the latency of LP burst onset measured with respect 1055 
to the (estimated) onset and end of the PD burst in the dynamic clamp experiments 1056 
(see Methods). Bottom panel shows the synaptic current waveform measured in the 1057 
voltage-clamped LP neuron during ongoing pyloric activity. Top panel shows the 1058 
dynamic clamp injection of the synaptic conductance waveform into the LP neuron. 1059 
The current waveform of the bottom panel is aligned to the conductance waveform of 1060 
the top panel for the comparison used in determining the PD burst onset and end in the 1061 
top panel.  1062 
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 1063 

Figure 5: Four parameters describing synaptic shape were varied in the experimental 1064 
paradigm.  1065 
A. A triangle shaped conductance was used to mimic the synaptic input to the LP 1066 
neuron. B. The triangular waveform can be described by period (P), duration (Tact), 1067 
peak time (tpeak) and amplitude (gmax). C. In dynamic clamp runs, the synapse duration 1068 
Tact was kept constant at 300 ms (C-Dur) or maintained at a constant duty cycle (Tact 1069 
/P) of 0.3 (C-DC) across all values of P. D. Intracellular voltage recording of the LP 1070 
neuron during a dynamic clamp stimulation run using the triangle conductance (in 1071 
picrotoxin). The burst onset time (Δt, calculated in reference to the synaptic 1072 
conductance onset) was used to calculate the activity phase (φLP = Δt/P).  1073 
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 1074 

Figure 6: The LP burst onset phase decreases as a function of P, but increases as a 1075 
function of gmax and Δpeak.  1076 
Periodic injection of an inhibitory triangular waveform conductance into the LP neuron 1077 
(in picrotoxin) produced bursting activity from which φLP was calculated. The 1078 
parameters gmax, Δpeak and P were varied across runs for both C-Dur and C-DC cases. 1079 
A. φLP decreases as a function of P. A1. Intracellular recording of an LP neuron 1080 
showing a C-DC conductance input across five periods. A2. φLP for the example shown 1081 
in A1 plotted as a function of P (for gmax = 0.4 μS, Δpeak = 0.5) for both C-Dur and C-DC 1082 
cases. φLP decreases rapidly with P and the drop is larger for the C-Dur case. A3. φLP 1083 
decreased with P in both the C-DC case (Three-Way RM ANOVA, p<0.001, F=100.7) 1084 
and the C-Dur case (Three-Way RM ANOVA, p<0.001, F=466.4) for all values of Δpeak. 1085 
The range of φLP drop was greater for the C-Dur case compared to the C-DC case. B. 1086 
φLP increases as a function of gmax. B1. Intracellular recording of an LP neuron showing 1087 
the conductance input across three values of gmax.  B2. φLP for the example shown in 1088 
B1 plotted as a function of P (for P = 500 ms, Δpeak = 0.25) shows a small increase for 1089 
both C-Dur and C-DC cases. B3. φLP increased with gmax in almost all trials for both C-1090 
DC and C-Dur cases and all values of Δpeak. C. φLP increases as a function of Δpeak. C1. 1091 
Intracellular recording of the LP neuron showing the conductance input for five values 1092 
of Δpeak. C2. φLP for the example neuron in C1 plotted as a function of Δpeak (for P = 500 1093 
ms, gmax = 0.4 μS) for both C-DC and C-Dur cases. C3. φLP increased with Δpeak for 1094 
both C-DC and C-Dur cases and for all values of gmax. In all panels, error bars show 1095 
standard deviation.  1096 
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 1097 

Figure 7: Sensitivity analysis shows that φLP increases more effectively if gmax and Δpeak 1098 
increase together.  1099 
A. The sensitivity of φLP to local changes in gmax and Δpeak was averaged across all 1100 
values of P for the C-DC case. Sensitivity was largest if both parameters were 1101 
increased together (gmax + Δpeak) and smallest if they were varied in opposite directions 1102 
(gmax - Δpeak; One-Way RM-ANOVA, p<0.001, F=3.330). B. The same sensitivity 1103 
analysis in the C-Dur case shows similar results (One-Way RM-ANOVA, p<0.001, 1104 
F=2.892). In both panels, error bars show standard deviation.  1105 
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 1106 

Figure 8: Simultaneous increase of both Δpeak and gmax across their range of values can 1107 
produce phase maintenance across a large P range in the C-DC case and a much 1108 
smaller P range in the C-Dur case  1109 
A. Heat map plots of the function Φ (see Methods), plotted for the range of values of P 1110 
and Δpeak and 4 values of gmax for the C-DC (A1) and C-Dur (A2) cases. The white 1111 
curves show the level set of φLP = 0.34, shown as an example of phase constancy. The 1112 
color maps are interpolated from sampled data (see Methods; N=9 experiments). The 1113 
locations of the sampled data are marked by black dots. B. Heat map for the level sets 1114 
φLP = 0.34 for the C-DC (B1) and C-Dur (B2) cases. Range of colors in each panel 1115 
indicate the range of P values for which φLP could remain constant at 0.34 for each 1116 
case, as indicated by the grey arrows on the side of the heatmap color legend. C. The 1117 
range (ΔP) of P values for which φLP could remain constant at any value between 0.2 1118 
and 0.8 for the C-DC (C1) and C-Dur cases (C2). Filled circles show the values shown 1119 
in panel B. The LP neuron cannot achieve φLP values below 0.3 in the C-DC case. For 1120 
φLP values between 0.3 and ~0.65, the range was larger in C-DC case.   1121 
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 1122 

Figure 9: Model prediction of the range of phase constancy. 1123 
A. For the C-DC case, a constant phase of φLP = 0.34 can be maintained across a 1124 
range of cycle periods P when gmax is constant (at 335 nS; blue plane) and Δpeak varies 1125 
from 0 to 1 according to Equation (11) (blue), or when Δpeak is fixed (at 0.5; green 1126 
plane) and gmax varies from 200 to 800 nS according to Equation (10). Alternatively, 1127 
gmax and Δpeak can covary to maintain phase, as in a depressing synapse, where gmax 1128 
varies with P according to Equation (16), and Δpeak is calculated for each P and gmax 1129 
value according to Equation (11). As seen in the 2D coordinate-plane projections of the 1130 
3D graph (right three graphs), the range of P values for which phase constancy is 1131 
achieved is largest when gmax and Δpeak covary (dotted lines show limits of P for phase 1132 
constancy). The depressing synapse conductance is chosen to be 335 nS at P = 1 s. 1133 
B, C. A comparison between the C-DC and C-Dur cases shows that in the latter case a 1134 
constant phase of φLP can be maintained across a larger range of P values when Δpeak 1135 
increases with P (and gmax is fixed at 400 nS) according to Equation (11). The 1136 
relationship of Δpeak and P is shown in B for φLP  = 0.34. C shows the range of P values 1137 
(ΔP) of cycle periods for which phase remains constant at φLP. If gmax also varies with 1138 
P, as in a depressing synapse (red; Equation (16)), the range of P values for which 1139 
phase is constant is further increased. (Dotted line: φLP  = 0.34.)  1140 
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Source Data Files 1141 

Figure 2-1. File: Figure2_sourcedata.xlsx   1142 
This Excel file contains 4 sheets, including all measured attributes of the burst-1143 
triggered average current (IBTA) for different IBIs (N=23) as shown in Fig. 2H-2K.  1144 

Figure 7-1. File: Figure7_sourcedata.xlsx   1145 
This Excel file contains 2 sheets for the C-DC and C-Dur cases. These sheets include 1146 
all sensitivity values for each value of P, at each gmax and each Δpeak in all 8 directions: 1147 
(+gmax, +Δpeak, –gmax, –Δpeak, +gmax & +Δpeak, –gmax & –Δpeak, +gmax & –Δpeak, +gmax & –1148 
Δpeak). Fig. 7 shows the sensitivities, averaged across all P values, and averaged 1149 
across aligned directions: [+gmax and –gmax]; [+Δpeak and –Δpeak]; [+gmax & +Δpeak and –1150 
gmax & –Δpeak]; [+gmax & –Δpeak and +gmax & –Δpeak]. 1151 
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