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Abstract 19 

In oscillatory systems, neuronal activity phase is often independent of network 20 

frequency. Such phase maintenance requires adjustment of synaptic input with 21 

network frequency, a relationship that we explored using the crab, Cancer borealis, 22 

pyloric network. The burst phase of pyloric neurons is relatively constant despite a >2-23 

fold variation in network frequency. We used noise input to characterize how input 24 

shape influences burst delay of a pyloric neuron, and then used dynamic clamp to 25 

examine how burst phase depends on the period, amplitude, duration, and shape of 26 

rhythmic synaptic input. Phase constancy across a range of periods required a 27 

proportional increase of synaptic duration with period. However, phase maintenance 28 

was also promoted by an increase of amplitude and peak phase of synaptic input with 29 

period. Mathematical analysis shows how short-term synaptic plasticity can 30 

coordinately change amplitude and peak phase to maximize the range of periods over 31 

which phase constancy is achieved. 32 

150/150 33 

Introduction 34 

Oscillatory neural activity is often organized into different phases across groups 35 

of neurons, both in brain rhythms associated with cognitive tasks or behavioral states 36 

(Hasselmo et al., 2002; Buzsaki and Wang, 2012; Buzsaki and Tingley, 2018), and in 37 

central pattern generating (CPG) circuits that drive rhythmic motor behaviors (Marder 38 

and Bucher, 2001; Marder et al., 2005; Grillner, 2006; Bucher et al., 2015; Katz, 2016; 39 

Stein, 2018). The functional significance of different phases in the latter is readily 40 

apparent, as they for example provide alternating flexion and extension of limb joints, 41 

and coordination of movements between joints, limbs, and segments (Krantz and 42 

Parks, 2012; Grillner and El Manira, 2015; Kiehn, 2016; Le Gal et al., 2017; Bidaye et 43 

al., 2018). A hallmark of many such patterns is that the relative timing between neurons 44 

is well maintained over a range of rhythm frequencies (Dicaprio et al., 1997; Hooper, 45 

1997b, a; Wenning et al., 2004; Marder et al., 2005; Grillner, 2006; Mullins et al., 2011; 46 

Le Gal et al., 2017). If the latency across different groups of neurons changes 47 

proportionally to the rhythm period, phase (latency over period) is invariant, in some 48 

cases providing optimal coordination at all speeds (Zhang et al., 2014). 49 
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The ability to maintain phase arises from central coordinating mechanisms 50 

between circuit elements, as it is present in isolated nervous system preparations, but 51 

the underlying cellular and circuit mechanisms are not well understood. Constant 52 

phase lags between neighboring segments in the control of swimming can be 53 

explained mathematically on the basis of asymmetrically weakly coupled oscillators, 54 

but the role of intrinsic and synaptic dynamics within each segment is unknown (Cohen 55 

et al., 1992; Skinner and Mulloney, 1998; Grillner, 2006; Mullins et al., 2011; Zhang et 56 

al., 2014; Le Gal et al., 2017). 57 

The pyloric circuit of the crustacean stomatogastric ganglion (STG) has inspired 58 

a series of experimental and theoretical studies of cellular and synaptic mechanisms 59 

underlying phase maintenance. The pyloric circuit generates a triphasic motor pattern 60 

with stable phase relationships over a wide range of periods (Eisen and Marder, 1984; 61 

Hooper, 1997b, a; Bucher et al., 2005; Goaillard et al., 2009; Tang et al., 2012; Soofi et 62 

al., 2014). Follower neurons burst in rebound from inhibition from pacemaker neurons 63 

(Marder and Bucher, 2007; Daur et al., 2016), and post-inhibitory rebound delay scales 64 

with the period of hyperpolarizing currents (Hooper, 1998). Voltage-gated 65 

conductances slow enough for cumulative activation across cycles could promote such 66 

phase maintenance (Hooper et al., 2009). Similarly, short-term depression of graded 67 

inhibitory synapses is slow enough to accumulate over several pyloric cycles, meaning 68 

that effective synaptic strength increases with increasing cycle period (Manor et al., 69 

1997; Nadim and Manor, 2000).  70 

Theoretical studies have shown that short-term synaptic depression, by 71 

increasing inhibition strength with cycle period, should promote phase maintenance 72 

(Manor et al., 2003; Mouser et al., 2008), particularly in conjunction with inactivating (A-73 

type) potassium currents (Bose et al., 2004; Greenberg and Manor, 2005), which 74 

control the rebound delay (Harris-Warrick et al., 1995b; Harris-Warrick et al., 1995a; 75 

Kloppenburg et al., 1999). These predictions remain experimentally untested. 76 

Additionally, postsynaptic responses also depend on the actual trajectory of 77 

synaptic conductances, which are shaped by presynaptic voltage trajectories and 78 

short-term synaptic plasticity (Manor et al., 1997; Mamiya et al., 2003; Zhao et al., 79 

2011; Tseng et al., 2014). If amplitude, duration, and trajectory of synaptic 80 

conductance determine rebound delay, phase maintenance necessitates all three of 81 

these parameters to change with cycle period in coordination. We used the dynamic 82 
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clamp technique to exhaustively explore the range of these parameters and 83 

understand how the coordinated changes in synaptic dynamics determines the phase 84 

of follower neurons in an oscillatory circuit. Our findings are consistent with a 85 

mathematical framework that accounts for the frequency dependence of amplitude and 86 

peak phase of the synaptic conductance.  87 

Results 88 

Phase maintenance and latency maintenance 89 

The firing of neurons in oscillatory networks is shaped by a periodic synaptic 90 

input. The relative firing latency of such neurons is often measured relative to a defined 91 

reference time in each cycle of oscillation, and is used to determine the activity phase 92 

of the neuron (see, e.g., Belluscio et al., 2012). For example, in a simple network 93 

consisting of a bursting oscillatory neuron driving a follower neuron (Fig. 1A1), at a 94 

descriptive level, the latency (L) of the follower neuron activity relative to the onset of 95 

the oscillator’s burst onset may depend on the oscillation cycle period (P). In response 96 

to a change in period (say, to P2), the follower neuron may keep constant latency (L2 = 97 

L), or constant phase, i.e., modify its latency proportionally to the change in period 98 

(L2/P2 = L/P; Fig. 1A2). However, in many oscillatory systems, for example the pyloric 99 

circuit (Hooper, 1997b, a), the relationship between L and P falls between these two 100 

extremes. A sample recording of the bursting activity of the lateral pyloric (LP) neuron 101 

in response to controlled changes in the pyloric cycle frequency demonstrates such a 102 

relationship (Fig. 1B and 1C). 103 

The burst onset time of the isolated LP neuron depends on the temporal dynamics of 104 

its input 105 

The LP neuron does not have intrinsic oscillatory properties, but oscillates due 106 

to the synaptic input it receives from the pacemaker anterior burster (AB) and pyloric 107 

dilator (PD) neurons, and the follower pyloric constrictor (PY) neurons (Fig. 2A). The 108 

burst onset phase of the LP neuron (φLP = Δt / P; Fig. 2A) is shaped by the interaction 109 

between synaptic inputs and the neuron’s intrinsic dynamics that influence post-110 

inhibitory rebound. We measured an overall burst onset phase of the LP neuron of φLP 111 

=0.34 ± 0.03 (N=9).  112 

As a first-order quantification, we measured how inputs to the LP neuron 113 

interact with its intrinsic properties to determine the timing between its bursts, in the 114 
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absence of network oscillations. To this end, we synaptically isolated the LP neuron 115 

(Fig. 2B) and drove it with a noise current input (see Methods). In response to the 116 

noise input, the LP neuron produced an irregular pattern of spike times, which included 117 

a variety of bursting patterns with different spike numbers (Fig. 2C). We were 118 

interested in the characteristics of inputs producing different burst onset latencies. 119 

However, unlike a periodic input, noise input does not provide a well-defined reference 120 

point to measure the burst onset latency. We therefore categorized bursts with respect 121 

to the preceding inter-burst intervals (IBIs) during which no other action potentials 122 

occurred. We classified these IBIs in bins (300, 500, 700 and 900 ms) and tagged 123 

bursts based on the IBI values (Fig. 2C). We characterized the driving input leading to 124 

bursts with specific IBIs by burst-triggered averaging the input current (IBTA; an example 125 

shown in Fig. 2D). Our analysis produced a single IBTA for each of the four IBIs in each 126 

preparation (N=23). IBTA’s of each preparation were first normalized in amplitude by the 127 

IBTA amplitude at IBI = 300 ms (Fig. 2E; average shown in Fig. 2F) to examine how 128 

peak amplitude (Ipeak) varied with IBI. These data were then normalized in time (Fig. 129 

2G) to examine the effect of IBI on peak phase (Δpeak) and the rise (slopeup) and fall 130 

(slopedown) slopes of the input current across preparations. We found that IBI had a 131 

significant effect on Ipeak, Δpeak, slopeup and slopedown (all one-way RM-ANOVA on 132 

ranks; data included in Figure 2-source data). In particular, larger IBIs corresponded to 133 

larger Ipeak values (Fig. 2F-2H; p<0.001, χ2 = 65.87) with smaller (more advanced) Δpeak 134 

(Fig. 2I; p<0.001, χ2 = 41.35). The change in Δpeak was due to a decrease in slopeup 135 

(p<0.001, χ2 = 65.25), whereas slopedown did not vary as much (Figs. 2J-2K; p=0.002, χ2 136 

= 14.77). 137 

The burst onset phase of the LP neuron oscillation depends on its synaptic input 138 

Injection of noise current revealed that the timing of the LP response is 139 

exquisitely sensitive to the duration and amplitude of inputs. In the intact system, the 140 

primary determinant of input duration and amplitude is the network period (P), as 141 

increasing P increases both presynaptic pacemaker burst duration (Hooper, 1997b, a) 142 

and synaptic strength (Manor et al., 1997; Nadim and Manor, 2000). To explore the 143 

effect of the duration and strength of the synaptic input, we used dynamic clamp to 144 

drive the LP neuron with a realistic synaptic conductance waveform.  145 

We constructed this realistic waveform by measuring the synaptic current input 146 

to the LP neuron during ongoing pyloric oscillations (Fig. 3A). These measurements 147 
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showed the two components of inhibitory synaptic input, those from the pacemaker AB 148 

and PD neurons (left arrow) and those from the follower PY neurons (right arrow). In 149 

each cycle, the synaptic current always had a single peak, but the amplitude and 150 

phase of this peak showed variability across preparations (Fig. 3B, average in blue). 151 

The realistic conductance input was injected periodically with strength gmax (Fig. 152 

3C). For any fixed gmax, φLP decreased as a function of P (Fig. 3D), i.e., the relative 153 

onset of the LP burst was advanced in slower rhythms. In contrast to the effect of P, for 154 

any given P, φLP increased sublinearly as a function of gmax (Fig. 3E). Fig. 3F combines 155 

the simultaneous influence of both parameters on φLP. The results shown in Fig. 3D 156 

indicate that the LP neuron intrinsic properties alone do not produce phase constancy. 157 

However, level sets of φLP (highlighted for three values in Fig. 3F), indicate that phase 158 

could be maintained over a range of P values, if gmax increases as a function of P. This 159 

finding was predicted by our previous modeling work, in which we suggested that 160 

short-term synaptic depression promotes phase constancy by increasing synaptic 161 

strength as a function of P (Manor et al., 2003; Bose et al., 2004). We will further 162 

discuss the role of synaptic depression below. 163 

To clarify the results of Fig. 3, it is worth examining the extent of phase 164 

maintenance for fixed gmax. An example of this is shown in Fig. 4A (turquoise plots). A 165 

comparison of these data with the theoretical cases in which either delay or phase is 166 

constant suggests that the LP neuron produces relatively good phase maintenance, at 167 

least much better in comparison with constant delay. However, this conclusion is 168 

misleading because, in these experiments, the duty cycle of the synaptic input was 169 

kept constant. Therefore, most of the phase maintenance is due the fact that the 170 

synaptic input keeps perfect phase. In fact, if the reference point measures phase 171 

relative to the end –rather than onset– of the PD burst (Fig. 4B), phase maintenance of 172 

the LP neuron is barely better than in the constant delay case (Fig. 4A, purple plots). It 173 

is therefore clear that phase maintenance by the LP neuron would require the 174 

properties of the synaptic input to change as a function of P, a hallmark of short-term 175 

synaptic plasticity (Fortune and Rose, 2001; Grande and Spain, 2005). As mentioned 176 

above, short-term plasticity such as depression could produce changes in gmax as a 177 

function of P. Independently of gmax, the peak time of the synaptic current is another 178 

parameter that could change with P and influence the timing of the postsynaptic burst. 179 
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We therefore proceeded to systematically explore the influence of P, gmax and the 180 

synaptic peak time on φLP. 181 

A systematic exploration of synaptic input parameters on the phase of the LP neuron 182 

For a detailed exploration of the influence of the synaptic input on φLP, we 183 

approximated the trajectory of the (unitary) synaptic conductance in one cycle by a 184 

simple triangle (Fig. 5A), which could be defined by three parameters: duration (Tact), 185 

peak time (tpeak) and amplitude (gmax) (Fig. 5B). This simplified triangular synaptic 186 

conductance waveform could then be repeated with any period (P) to mimic the 187 

realistic synaptic input to the LP neuron. For a given synaptic duration Tact, the peak 188 

phase of the synapse can be defined as Δpeak = tpeak / Tact). The parameter Δpeak is 189 

known to vary as a function of P (Tseng et al., 2014) and, in a previous study, we found 190 

that Δpeak may influence the activity of the postsynaptic neuron, independent of P and 191 

gmax (Mamiya and Nadim, 2004). We therefore systematically explored the influence of 192 

three parameters of the synaptic input (P, gmax and Δpeak) on φLP. 193 

As with the realistic synaptic waveforms (Fig. 3), we used the dynamic clamp 194 

technique to apply the triangular conductance waveform periodically to the synaptically 195 

isolated LP neuron. Across different runs within the same experiment, the parameters 196 

P, gmax and Δpeak were changed on a grid (see Methods). In addition, all combinations 197 

of these three parameter values were run in two conditions in the same experiment, 1: 198 

with constant duration, i.e., constant Tact across different P values (C-Dur of 300 ms), 199 

and 2: with constant duty cycle, i.e., Tact changing proportionally to P (C-DC of 0.3; Fig. 200 

5C). Using these protocols, we measured the effects of synaptic parameters on φLP 201 

(Fig. 5D). 202 

The LP neuron produced burst responses that followed the synaptic input in a 203 

1:1 manner across all values of P that were used (Fig. 6A1). When gmax and Δpeak were 204 

kept constant, φLP decreased as a function of P (Fig. 6A2). This decrease was always 205 

larger for the C-Dur case than the C-DC case. For both C-DC and C-Dur, this trend 206 

was seen across all values of Δpeak and gmax (Fig 6A3). The effect of P on φLP was 207 

highly significant for both C-DC (Three-Way ANOVA, p<0.001, F=100.677) and C-Dur 208 

(Three-Way ANOVA, p<0.001, F=466.424), indicating that the period and duration of 209 

the inhibitory input to the LP neuron had a significant effect on its phase. 210 
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Changing gmax produced a large effect on the level of hyperpolarization in the 211 

LP neuron, but this usually translated to only a small or modest effect on the time to the 212 

first spike following inhibition (Fig. 6B1). Overall, increasing gmax at constant values of P 213 

and Δpeak produced a significant but only small to moderate increase in φLP (Three-Way 214 

ANOVA, p<0.001, F=10.798). Although increasing gmax produced the same qualitative 215 

effect for both the C-DC and C-Dur (e.g., Fig. 6B2), φLP in the C-DC case was 216 

restricted to a smaller range (Fig. 5F top vs. bottom panels). Overall, this increase was 217 

robust for most values of P and Δpeak (Fig. 6B3).  218 

Increasing Δpeak for a constant value of P and gmax (Fig. 6C1), produced a small 219 

but significant increase in φLP (Three-Way ANOVA, p<0.001, F=17.172). This effect 220 

was robust for most values of P and gmax, for both C-DC and C-Dur (Fig. 6C2 and 6C3). 221 

These results showed that all three parameters that define the shape of the 222 

IPSC influence φLP. Clearly, the strongest effect is the decrease in φLP as a function of 223 

P. However, φLP modestly increases as a function of the other two parameters, gmax 224 

and Δpeak. This raised the question how gmax and Δpeak would have to change in 225 

coordination as a function of P to counteract the effect of P on φLP and achieve phase 226 

constancy. 227 

Coordinated changes of gmax and Δpeak produce the largest effect on phase 228 

To explore how gmax and Δpeak might interact to influence φLP, we examined the 229 

sensitivity of φLP to these two parameters, individually and in combination, for all values 230 

of P in our data (see Methods). Sensitivity of φLP to these two parameters varied across 231 

P values, with larger sensitivity at lower values of P (data not shown; Two-Way RM-232 

ANOVA, p<0.001, F=16.054). For simplicity, we averaged the sensitivity values across 233 

different P values to obtain an overall measure of the influence of gmax and Δpeak. These 234 

results showed that, for the C-DC case, φLP had a positive sensitivity to gmax and a 235 

smaller positive sensitivity to Δpeak (Fig. 7A). The sensitivity was largest if the two 236 

parameters were varied together (gmax + Δpeak) and smallest if they were varied in 237 

opposite directions (gmax - Δpeak; Two-Way RM-ANOVA, p<0.001, F=3.330). Similarly, 238 

these sensitivity values were also significantly different for the C-Dur case (Fig. 7B; 239 

Two-Way RM-ANOVA, p<0.001, F=2.892), with largest sensitivity for gmax + Δpeak and 240 

smallest for gmax - Δpeak. 241 

Level sets of φLP in the P-gmax-φpeak space for C-DC and C-Dur cases 242 
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To search for phase constancy across different P values in our dataset, we 243 

expressed φLP as a function of the three IPSC parameters, P, gmax and Δpeak: 244 

ϕ =Φ ∆max( , , )LP peakP g . Figure 8 shows heat map plots of the function Φ, plotted for the 245 

range of values of P and Δpeak and four values of gmax. In these plots, phase constancy 246 

can be seen as the set of values in each graph that are isochromatic, indicating the 247 

level sets of the function Φ. These level sets are mathematically defined as 248 

hypersurfaces on which the function has a constant value: ϕΦ ∆ =max( , , )peak cP g . For the 249 

C-DC case, in each gmax section of the plot, the level sets (e.g. φc = 0.34 denoted in 250 

white) spanned a moderate range of P values as Δpeak increased (Fig. 8A1). The span 251 

of P values across all four panels indicates the range of cycle periods for which phase 252 

constancy could be achieved by varying gmax and Δpeak. This range of P values 253 

(spanned by the white curves) was considerably smaller for the C-Dur case (Fig. 8A2). 254 

For any constant phase value φc, these level sets can be expressed as 255 

 ϕ= ∆max( , ),
c peakP P g   256 

which describes a surface in the 3D space, yielding the P value for which phase can be 257 

maintained at φc, for the given values of gmax and Δpeak. The level set indicated by the 258 

white curves in panel A for the C-DC case is plotted as a heat map in Fig. 8B1 and can 259 

be compared with the same plot for the C-Dur case in Fig. 8B2. The range of colors in 260 

each plot (marked next to each panel) indicates the range of P values for which phase 261 

can be kept at φc = 0.34. To reveal how this range depends on the desired phase, we 262 

measured this range for all values of φc between 0.2 and 0.8 (Figs. 8C1 and 8C2). We 263 

found that the LP neuron could not achieve phases below 0.3 in the C-DC case (Fig. 264 

8C1), which is simply because the neuron never fired during the inhibitory synaptic 265 

current (which had a duty cycle of 0.3). Furthermore, the range of P values for which 266 

the LP phase could be maintained by varying gmax and Δpeak was much larger for C-DC 267 

inputs compared to C-Dur Inputs, for all φc values between 0.31 and 0.54. 268 

A model of synaptic dynamics could predict activity onset phase of LP neuron 269 

To gain a better understanding of our experimental results, we considered 270 

Equations (7) and (8)—the mathematical description of φLP as a function of P, gmax and 271 

∆peak, for the C-Dur and C-DC cases, respectively, that we derived in the Methods 272 

section—repeated here for convenience:  273 
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τϕ

∆
= ∆ = +( , , ) ln ,

*
peak acts max

LP max peak

Tg
F P g

P g P
  (7) 274 

 τϕ = ∆ = + ∆( , , ) ln .
*

s max
LP max peak peak

g
F P g DC

P g
  (8) 275 

In the C-Dur case, described by Equation (7), the input period has the most 276 

significant affect and φLP decays like 1/P. In contrast, in the C-DC case, described by 277 

Equation (8), φLP  is bounded from below by Δpeak·DC and thus behaves very differently 278 

than in the C-Dur case. In particular, as P increases, φLP approaches Δpeak·DC for the 279 

C-DC case, whereas it approaches 0 in the C-Dur case. 280 

Keeping gmax (respectively, Δpeak) constant in these equations allows us to 281 

obtain a relationship between P and Δpeak (respectively, gmax), for which φLP is kept 282 

constant at φc. Consider Equations (7) and (8) for fixed values of both φLP (= φc) and 283 

gmax. Then these equations reduce to simple functional relationships where Δpeak can be 284 

expressed as a function of P. In the C-DC case, for example, evaluating Δpeak from 285 

Equation (8) produces  286 

 ϕ
τ

∆
 

= ⋅  


−


* exp ( )cmax peak
s

g P DCg   (1) 287 

Equation (12) describes how gmax must vary with P  for the system to maintain a 288 

constant phase φc for any given Δpeak.  289 

Alternatively, Δpeak can be expressed as a function of P. In the C-DC case, 290 

evaluating Δpeak from Equation (8) produces 291 

 ϕ τ
∆ = −

⋅
ln ,

*
c s max

peak
g

DC DC P g
  (2) 292 

This equation describes how Δpeak must vary with P for the system to maintain a 293 

constant phase φc for any given gmax. A comparison of these two cases can be seen in 294 

Fig. 9A, where either gmax (green) or Δpeak (blue) is varied, while keeping the other 295 

parameter constant, to keep φLP constant at φc=0.34 across different P values. (The 296 

red curve is the depressing case, described below.) As the figure shows, phase 297 

constancy can be achieved by varying either parameter, but each parameter produces 298 

a different range of P across which phase is maintained. 299 
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In fact, Equation (13) can be used to calculate the range of P values over which 300 

changing Δpeak (from 0 to 1) can maintain a constant phase φc. Solving 0 < Δpeak < 1 301 

using Equation (13) yields 302 

 τ τ
ϕ ϕ

< <
− *

l ln
*

ns m

c c

ax s max
DC

g g
P

g DC g
  (3) 303 

Performing the same procedure in the C-Dur case, we find 304 

 τ τ
ϕ ϕ ϕ

< < +ln ln .
* *

s max act s max
Dur

c c c

g T g
P

g g
  (4) 305 

If ΔP denotes the range of P values that respectively satisfy Equation (14) or (15), it is 306 

straightforward to show that ΔPDC > ΔPDur (compare black and blue curves in Fig. 9B 307 

and 9C). To see this, note that the lower bound for each interval is the same, thus we 308 

need to show that the upper bound for the C-DC case is larger than that for the C-Dur 309 

case. That is, 310 

 
τϕ

 
< + 

 
1 ln .

*
s max

act
c

g
DC

T g
  (5) 311 

Equation (16) is true for τs and gmax large enough.  312 

Two additional points are notable from Fig. 9B. First, the lower bound on φLP for 313 

which phase constancy can occur (i.e., φc) is smaller in the C-Dur than C-DC case. 314 

This is because we have assumed that in the C-DC case the LP neuron cannot fire 315 

during inhibition (i.e., until after Δpeak DC). Second, for φc larger than ~ 0.5, ΔP is larger 316 

for the C-Dur case. This occurs because, when φc is sufficiently large, Equation (16) 317 

can no longer be satisfied. These findings are consistent with our experimental results 318 

described above, indicating that although phase constancy can be achieved when 319 

either gmax or Δpeak increases with P, a concomitant increase of both—which could occur 320 

for example with a depressing synapse—greatly expands the range of P values for 321 

which a constant phase is maintained. 322 

We now consider how short-term depression of the synapse—a property known 323 

to exist in the pacemaker to LP synapse (Zhao et al., 2011)—influences phase 324 

constancy by changing gmax and Δpeak. We will restrict this section to the C-DC case. A 325 

similar derivation can be made for the C-Dur case. As mentioned in the Methods, the 326 
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effect of synaptic depression on synaptic strength can be obtained by Equation (11)  327 

(repeated from the Methods): 328 

 = ⋅ ( )max max maxg g s P  (11) 329 

where smax is the maximum value of sd at the onset of the pacemaker burst: 330 

 
α

βα

τ

ττ

− −

− ⋅− −

−
=

−

(1 )/

/(1 )/

1( ) .
1

P DC

max DC PP DC

es P
e e

  331 

Note that smax is a monotonically increasing function with values between 0 and 1. Its 332 

value approaches 1 as P increases, indicating that the synapse becomes stronger. In 333 

this equation, maxg  is constant and is chosen so that the non-depressing and 334 

depressing conductances match at P = 1 s. As seen in Fig. 9A, when synaptic 335 

depression dictates how gmax varies with P as in Equation (11), and Δpeak varies with P 336 

and gmax according to Equation (13), the simultaneous changes in gmax and Δpeak (red) 337 

greatly increase the range of P values over which φLP is constant. 338 

Returning to Fig. 9B, note that the C-DC case with depression spans a larger 339 

range of P values than the non-depressing case. Similarly, in Fig. 9C, the range of P 340 

values for which phase can be maintained is larger than the non-depressing case 341 

across φLP values, except where φLP is so large that the depressing synapse operates 342 

outside its dynamic range. 343 

Discussion 344 

The importance of phase in oscillatory networks 345 

A common feature of oscillatory networks is that the activities of different 346 

neuron types are restricted to specific phases of the oscillation cycle. For example, 347 

different hippocampal and cortical neurons are active in at least three distinct phases of 348 

the gamma rhythm (Hajos et al., 2004; Hasenstaub et al., 2005), and distinct 349 

hippocampal neuron types fire at different phases of the theta rhythm and sharp wave-350 

associated ripple episodes (Somogyi and Klausberger, 2005).  351 

Experimental studies quantify the latency of neural activity with respect to a 352 

reference time in the cycle, but in most cases, these latencies are normalized and 353 

reported as phase. Distinct neuron types can maintain a coherent activity phase, 354 
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despite wide variations in the network frequency (30-100 Hz for gamma rhythms, 4-7 355 

Hz for theta rhythms, and 120-200 Hz for sharp wave-associated ripple episodes). 356 

Phase-specific activity of different neuron types is proposed to be important in rhythm 357 

generation (Wang, 2010), and indicates the necessity of precise timing for producing 358 

proper circuit output and behavior (Kopell et al., 2011). For example, phase locking of 359 

spike patterns to oscillations is important for auditory processing, single cell and 360 

network computations and Hebbian learning rules (Kayser et al., 2009; McLelland and 361 

Paulsen, 2009; Panzeri et al., 2010). For brain oscillations, phase relationships may 362 

provide clues about the underlying circuit connectivity and dynamics, but a behavioral 363 

correlate of varying frequencies is not obvious. In contrast, the activity phase of distinct 364 

neuron types in rhythmic motor circuits is a tangible readout of the timing of motor 365 

neurons and muscle contractions, thus defining phases of movement (Grillner and El 366 

Manira, 2015; Kiehn, 2016; Le Gal et al., 2017; Bidaye et al., 2018). Because 367 

meaningful behavior depends crucially on proper activity phases, whether neurons 368 

maintain their activity phase in face of changes in frequency simply translates to 369 

whether the movement pattern changes as it speeds up or slows down. 370 

Determinants of phase 371 

In oscillatory networks, the activity phases of different neuron types depend to 372 

different degrees on the precise timing and strength of their synaptic inputs (Oren et 373 

al., 2006). Our results from noise current injections showed that the timing of the LP 374 

neuron is strongly dependent on the timing of inputs it receives. Dynamic clamp 375 

injection of realistic or triangular conductance waveforms with different periods (P) 376 

indicated that φLP was largely determined by the duration of the synaptic input. φLP 377 

changed substantially with P when inputs had constant duration, but much less when 378 

inputs had a constant duty cycle, i.e., when duration scaled with P. However, our 379 

experiments also showed that inputs of constant duty cycles alone are insufficient for 380 

phase constancy. φLP decreased with P even with a constant duty cycle of inputs, but 381 

increased with either synaptic strength (gmax) or peak phase of the synaptic input 382 

(Δpeak). The increase in φLP had similar sensitivity to gmax and Δpeak, and therefore a 383 

larger sensitivity to a simultaneous increase in both. Consequently, it was possible to 384 

keep φLP constant over a wide range of cycle periods by increasing both parameters 385 

with P.  386 
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The fact that an increase in gmax with P promotes phase constancy is 387 

biologically relevant, as short-term depression in pyloric synapses means that synaptic 388 

strength indeed increases with P (Manor et al., 1997). Previous modeling studies show 389 

that short-term synaptic depression of inhibitory synapses promotes phase constancy 390 

(Nadim et al., 2003; Bose et al., 2004), largely because of longer recovery times from 391 

depression at larger values of P. 392 

The case is less clear for the finding that an increase of Δpeak with P promotes 393 

phase maintenance, as we have previously shown that Δpeak in LP actually decreases 394 

with P (Manor et al., 1997; Tseng et al., 2014). On the face of it, this suggests that an 395 

increase in Δpeak is not a strategy employed in the intact circuit. However, the caveat is 396 

that such results may critically depend on the cause of the change in P, either 397 

technically and biologically. While in our current study we varied Δpeak with direct 398 

conductance injection into LP, previous results were obtained by changing the 399 

waveform and period of the presynaptic pacemaker neurons. When P is changed in an 400 

individual preparation by injecting current into or voltage-clamping the pacemakers, 401 

phase of follower neurons is not particularly well maintained. An example of this is 402 

shown in Fig. 1, where φLP values fall between constant phase and constant duration 403 

and, additionally, all pyloric neurons show behavior that falls between constant phase 404 

and constant latencies (Hooper, 1997b, a). This may reflect that individuals are not 405 

keeping phase particularly well when the only cause of changing P is the presynaptic 406 

input. This is supported by the observation that even during normal ongoing pyloric 407 

activity, phases change with cycle-to-cycle variability of P in individual preparations 408 

(Bucher et al., 2005). However, it does not preclude the possibility that Δpeak plays an 409 

important role in stable phase relationships when P differs because of temperature, 410 

neuromodulatory conditions, or inter-individual variability (discussed below).  411 

It is noteworthy that a change in the synaptic strength or peak phase with P is 412 

not peculiar to graded synapses. The fact that short-term synaptic plasticity can act as 413 

a frequency-dependent gain control mechanism is well known for many spike-mediated 414 

synaptic connections. In bursting neurons, the presence of a combination of short-term 415 

depression and facilitation in the same spike-mediated synaptic interaction could also 416 

result in changes in the peak phase of the summated synaptic current as a function of 417 

burst frequency and duration, and the intra-burst spike rate (Markram et al., 1998). 418 

Phase relationships in changing temperatures 419 
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An interesting case is provided by the observation that phases are remarkably 420 

constant when pyloric rhythm frequency is changed with temperature. Tang et al. 421 

(2012) report a 4-fold decrease in P of the pyloric rhythm between 7 and 23° C. In this 422 

study, none of the pyloric phases changed significantly, and it is worth noting that 423 

under conditions of changing temperatures, the relationships between P, gmax, and 424 

Δpeak appeared to be fundamentally different from when P is changed at a constant 425 

temperature. Presynaptic voltage trajectories scaled with changing P, and Δpeak of 426 

postsynaptic currents was independent of P, in contrast to the decrease described at 427 

constant temperature (Manor et al., 1997; Tseng et al., 2014). Amplitudes of synaptic 428 

potentials did not change with temperature, despite an increase in synaptic current 429 

amplitudes with increasing temperature (and associated decrease in P). This is in 430 

contrast to the positive relationship between gmax and P that results from synaptic 431 

depression at a constant temperature (Manor et al., 1997). Therefore, it appears that 432 

the likely substantial effects of temperature on synaptic dynamics and ion channel 433 

gating are subject to a set of compensatory adaptations different from when P is 434 

changed at constant temperature. 435 

Slow compensatory regulation of phase 436 

Phase maintenance in the face of changing P in an individual animal requires 437 

the appropriate short-term dynamics of synaptic and intrinsic neuronal properties. The 438 

fact that characteristic (and therefore similar) phase relationships can also be observed 439 

under the same experimental conditions across individual preparations is a different 440 

conundrum, particularly when P can vary substantially, as is true for brain oscillations 441 

(Hajos et al., 2004; Hasenstaub et al., 2005; Somogyi and Klausberger, 2005). Phases 442 

show different degrees of variability across individuals in a variety of systems, e.g., 443 

leech heartbeat (Wenning et al., 2018), larval crawling in Drosophila (Pulver et al., 444 

2015), and fictive swimming in zebrafish (Masino and Fetcho, 2005), but in all of these 445 

cases phases are not correlated with P. In the pyloric rhythm, phases are also variable 446 

to a degree across individuals, but not correlated with the mean P, which varies >2-fold 447 

(Bucher et al., 2005; Goaillard et al., 2009). This phase constancy occurs despite 448 

considerable inter-individual variability in ionic currents, and is considered the ultimate 449 

target of slow compensatory regulation, i.e., homeostatic plasticity (Marder and 450 

Goaillard, 2006; Ma and LaMotte, 2007; Marder et al., 2014). Slow compensation can 451 

also be observed directly when rhythmic activity is disrupted by decentralization, and 452 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/578617doi: bioRxiv preprint 

https://doi.org/10.1101/578617
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

subsequently recovers to similar phase relationships over the course of many hours 453 

(Luther et al., 2003). It is interesting to speculate if our findings about how synaptic 454 

parameters must change to keep phase constant would hold across individuals with 455 

different mean P. The prediction would be coordinated positive correlations of both gmax 456 

and Δpeak with P.    457 

Phase relationships under different neuromodulatory conditions. 458 

The flipside of the question how neurons maintain phase is the question how 459 

their phase can be changed. In motor systems in particular, changes in phase 460 

relationships are functionally important to produce qualitatively different versions of 461 

circuit output, for example to produce different gaits in locomotion (Vidal-Gadea et al., 462 

2011; Grillner and El Manira, 2015; Kiehn, 2016). The activity of neural circuits is 463 

flexible, and much of this flexibility is provided by modulatory transmitters and 464 

hormones which alter synaptic and intrinsic neuronal properties (Brezina, 2010; Harris-465 

Warrick, 2011; Jordan and Slawinska, 2011; Bargmann, 2012; Marder, 2012; Bucher 466 

and Marder, 2013; Nadim and Bucher, 2014 ). The pyloric circuit is sensitive to a 467 

plethora of small molecule transmitters and neuropeptides which affect cycle frequency 468 

and phase relationships (Marder and Bucher, 2007; Stein, 2009; Daur et al., 2016). 469 

With respect to our findings, any given neuromodulator could act presynaptically to 470 

alter P, duration, or duty cycle on the one hand, and gmax and Δpeak on the other. In 471 

addition, the neuromodulator could affect the postsynaptic neuron’s properties and 472 

alter its sensitivity to any of these parameters. Therefore, our findings could not just 473 

further our understanding of how phase can be maintained across different rhythm 474 

frequencies, but also provide a framework for testing if and how changes in synaptic 475 

dynamics may contribute to altering phase relationships under different 476 

neuromodulatory conditions. 477 

Materials and Methods  478 

Adult male crabs (Cancer borealis) were acquired from local distributors and 479 

maintained in aquaria filled with chilled (10-13°C) artificial sea water until use. Crabs 480 

were prepared for dissection by placing them on ice for 30 minutes. The dissection was 481 

performed using standard protocols as previously described (Tohidi and Nadim, 2009; 482 

Tseng and Nadim, 2010). The STNS, including the four ganglia (esophageal ganglion, 483 

two commissural ganglia, and the STG) and their connecting nerves, and the motor 484 
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nerves arising from the STG, were dissected from the stomach and pinned into a 485 

Sylgard (Dow-Corning) lined Petri dish filled with chilled saline. The STG was 486 

desheathed, exposing the somata of the neurons for intracellular impalement. 487 

Preparations were superfused with chilled (10-13°C) physiological Cancer saline 488 

containing: 11 mM KCl, 440 mM NaCl, 13 mM CaCl2 · 2H2O, 26 mM MgCl2 · 6H2O, 489 

11.2 mM Trizma base, 5.1 mM maleic acid with a pH of 7.4.  490 

Extracellular recordings were obtained from identified motor nerves using 491 

stainless steel electrodes, amplified using a differential AC amplifier (A-M Systems, 492 

model 1700). One lead was placed inside a petroleum jelly well created to electrically 493 

isolate a small section of the nerve, the other right outside of it. For intracellular 494 

recordings, glass microelectrodes were prepared using the Flaming-Brown 495 

micropipette puller (P97; Sutter Instruments) and filled with 0.6 M K2SO4 and 20 mM 496 

KCl. Microelectrodes used for membrane potential recordings had resistances of 25-497 

30MΩ; those used for current injections had resistances of 15-22 MΩ. Intracellular 498 

recordings were performed using Axoclamp 2B and 900A amplifiers (Molecular 499 

Devices). Data were acquired using pClamp 10 software (Molecular Devices) and the 500 

Netsuite software (Gotham Scientific), sampled at 4-5 kHz and saved on a PC using a 501 

Digidata 1332A (Molecular Devices) or a PCI-6070-E data acquisition board (National 502 

Instruments).  503 

Individual pyloric neurons were impaled and identified via their membrane 504 

potential waveforms, correspondence of spike patterns with extracellular nerve 505 

recordings, and interactions with other neurons within the network (Weimann et al., 506 

1991).  507 

Constructing realistic IPSC waveforms 508 

Inhibitory postsynaptic currents (IPSCs) were recorded from LP neurons during 509 

the ongoing rhythm using two-electrode voltage clamp and holding the LP neuron 510 

at -50mV, far from the IPSC reversal potential of ~ -80 mV (Fig. 3A). When the LP 511 

soma is voltage clamped at -50 mV, the axon (which is electrotonically distant from the 512 

soma) can still produce action potentials following the synaptic inhibition from the 513 

pacemaker neurons. The onset of the LP neuron action potentials (recorded in the 514 

current trace) was used to calculate the mean IPSC for each experiment averaging the 515 

IPSCs over 10-20 cycles. The IPSC waveforms were then extracted by normalizing 516 

both the amplitude and the duration of the mean IPSC.  517 
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Driving the LP neuron with noise current 518 

In these experiments, the preparation was superfused in Cancer saline plus 519 

10˗5 M picrotoxin (PTX; Sigma Aldrich) for 30 minutes to block the synaptic currents to 520 

the LP neuron.  The removal of synaptic inhibition onto LP neurons changed the 521 

activity of these neurons from bursting to tonic firing. Then, noise current, generated by 522 

the Ornstein-Uhlenbeck process (Lindner), was injected into the isolated LP neurons 523 

for 60 minutes using the Scope software (available at 524 

http://stg.rutgers.edu/Resources.html,developed in the Nadim laboratory). The baseline 525 

of the noise current was adjusted by adding DC current so that it can provide enough 526 

inhibition to produce silent periods alternating with bursts of action potentials.  527 

Driving the LP neuron with realistic or triangular IPSC waveforms in dynamic clamp 528 

The dynamic clamp current was injected using the Netclamp software (Netsuite, 529 

Gotham Scientific). The synaptically isolated (10-5 M PTX) LP neuron was driven with 530 

an artificial synaptic current in dynamic clamp. The synaptic current was given as 531 

 ( )syn syn LP synI g V E= −   532 

where the synaptic conductance gsyn was a pre-determined waveform, repeated 533 

periodically with period P, and Esyn was the synaptic reversal potential set to −80 mV 534 

(Zhao et al., 2011).  535 

Two sets of dynamic clamp experiments were performed on different animals. 536 

In one set of experiments, gsyn was set to be a triangular waveform. We measured the 537 

effects of four different parameters in these triangle conductance injections (Fig. 1): 538 

peak phase (Δpeak), duration (Tact), period (P = time between onsets of dynamic clamp 539 

synaptic injections), and maximal conductance (gmax, the peak value of gsyn). This 540 

allowed us to explore which combinations of the different parameters influences the LP 541 

phase. Five values for P were used: 500, 750, 1000, 1500, and 2000 ms, which cover 542 

the typical range of pyloric cycle periods. Three values of gmax were used: 0.1, 0.2 and 543 

0.4 µS, consistent with previous measurements of synaptic conductance (Zhao et al., 544 

2011; Tseng et al., 2014). The value of Δpeak was varied to be 0, 0.25, 0.5, 0.75 or 1. In 545 

the same experiment, all runs were done in two conditions: with Tact constant across 546 

different P values (C-Dur case with Tact = 300 ms) or with Tact changing proportionally 547 

to P (C-DC case with duty cycle DC = Tact /P = 0.3).  548 
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In the other set of experiments, gsyn was a realistic IPSC waveform, based on a 549 

pre-recorded IPSC in the LP neuron. In these experiments, P was varied to be 500, 550 

750, 1000, 1250, 1500, or 2000 ms by scaling the realistic waveform in the time 551 

direction. In these experiments, gmax was set to be 0.1, 0.2, 0.4, 0.6, or 0.8 μS. The LP 552 

neuron burst onset delay (Δt) was measured relative to the onset of the pacemaker 553 

component of the synaptic input (identified by the kink in the synaptic conductance 554 

waveform) in each cycle. The burst phase was calculated as φLP = Δt /P. Phase 555 

constancy means that Δt changed proportionally to P. To measure the LP neuron 556 

phase with respect to the end of the pacemaker input, this reference used was the 557 

point on the synaptic conductance waveform marked by drawing a horizontal line from 558 

the kink that identified the onset of the pacemaker input. 559 

Determining relationship between cycle period (P), synaptic strength (gmax) and LP 560 

phase (φLP) using the realistic IPSC waveform 561 

We determined how well the mathematical model derived for constant input 562 

duty cycles (see Equation 8 below), matched the experimental data obtained with 563 

realistic IPSC waveforms. To this end, we fit the model to φLP values measured for all 564 

values of gmax and P, using the standard fitting routine 'fit' in MATLAB (Mathworks). 565 

Sensitivity of φLP to gmax and Δpeak across all P values 566 

To explore how gmax and Δpeak might interact to influence φLP, we first examined 567 

the sensitivity of φLP to these two parameters, individually and in combination, for all 568 

values of P in our data. For each cycle period, we computed the mean phase across all 569 

of our experiments (N=9) and all values of gmax (0.1, 0.2 and 0.4 µS) and we 570 

interpolated the φLP for gmax (0.2 and 0.4) to obtain φLP for 0.3 and Δpeak (0, 0.25, 0.5, 571 

0.75 or 1). This produced a 4 by 5 matrix of all of the values. For each data point in the 572 

matrix, we moved along eight different directions (increase both gmax and Δpeak,, increase 573 

gmax, increase Δpeak,, decrease both gmax and Δpeak,, decrease gmax, decrease Δpeak, 574 

increase gmax and decrease Δpeak, and decrease gmax and increase Δpeak) and calculated 575 

the change in phase per unit (normalized) in gmax, Δpeak, or both.  576 

A model of synaptic dynamics  577 

In the derivation of the model, the firing time of the LP neuron was assumed to 578 

be completely determined by its synaptic input. This synaptic conductance (gsyn) was 579 
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assumed to rise and fall with distinct time constants. The following holds over one cycle 580 

period and therefore time is reset with period P (t (mod P)): 581 

 
τ

τ
− <

=  − ≥

max( )  (mod )
/  (mod )

r

ps

syn peaksyn

syn eak

g g t P tdg
g t P tdt

  (6) 582 

where the time tpeak, corresponding to ∆peak, is tpeak = Δpeak Tact. We assumed that LP 583 

neuron remained inactive when gsyn was above a fixed threshold (g∗) less than gmax. 584 

Because the synaptic input is periodic with period P, we solved for the minimum and 585 

maximum values of gsyn in each cycle. The minimum (glo) occurred just before the onset 586 

(t = 0) of AB/PD activity, whereas the maximum occurred at the peak synaptic phase 587 

∆peak for the C-Dur case. In the C-DC case, Tact = DC ·P, where DC is the duty cycle 588 

(fixed at 0.3 in our experiments). 589 

To calculate g*, we set the value t = 0 so that gsyn(0) = glo (and, by periodicity, 590 

gsyn(P) = glo), and solved the first part of Equation (1) where gsyn increases until t = tpeak. 591 

This yielded 592 

 τ−= = + − /  )   ( ) ( peak rt
peak syn peak max lo maxg eg g t g g   (7) 593 

We then used the second part of Equation (1) to track the decay of gsyn for tpeak < t < P: 594 

 τ− −= ( )/  ( )  peak st t
syn peakg t g e   (8) 595 

Using Equation (3), we calculated the time ∆t at which the synaptic conductance 596 

gsyn(∆t) = g∗ as follows: 597 

 τ− ∆ −= ( )/ * peak st t
peakg g e   (9) 598 

Solving Equation (4) for ∆t yielded 599 

 
τ∆ = +

( )
ln .

*
peak

s peak

g t
t t

g   600 

Dividing this equation by P yielded φLP: 601 

 
τϕ = ∆ = +( , , ) ln ,

*
peak peaks

LP max peak

g t
F P g

P g P
  (10) 602 
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where gpeak is given by Equation (2). This expression provides a description of the 603 

dependence of φLP as a function of P, gmax and Δpeak. To explore the role of the 604 

parameters in this relationship, we made a simplifying assumption that the synaptic 605 

conductance gsyn(t) rapidly reached its peak (i.e., τr was small), stayed at this value and 606 

started to decay at t = tpeak. In this case g(t) = gmax on the interval (0,tpeak) and the value 607 

of glo is irrelevant. With this assumption, Equation (5) reduced to 608 

 
τϕ = +*ln .peaks max

LP

tg
P g P

  (11) 609 

Substituting tpeak = Δpeak·Tact in Equation (6), gave 610 

 
τϕ

∆
= ∆ = +( , , ) ln ,

*
peak acts max

LP max peak

Tg
F P g

P g P
  (12) 611 

which we used to describe the LP phase in the C-Dur case. To describe the C-DC 612 

case, after substituting tpeak = Δpeak·DC·P, we obtained 613 

 τϕ = ∆ = + ∆( , , ) ln .
*

s max
LP max peak peak

g
F P g DC

P g
  (13) 614 

Note that these equations also describe the relationship between φLP with Tact (or DC, in 615 

the C-DC case). 616 

Equations (7) and (8) can be used to approximate a range of parameters over 617 

which φLP is maintained at a constant value. To do so, we assumed a specific 618 

parameter set, say ∆̂ˆ ˆ( , , )max peakP g , satisfies 619 

 ϕ∆ =ˆˆ ˆ ˆ( , , ) ,max peak LPF P g   620 

for some fixed phase value, ϕ̂LP . We could now ask whether there are nearby 621 

parameters for which phase remains constant, i.e., F remains equal to ϕ̂LP . The Implicit 622 

Function Theorem (Krantz and Parks, 2012) guarantees that this is the case, provided 623 

certain derivatives evaluated at ∆̂ˆ ˆ( , , )max peakP g are non-zero, which turns out to be true 624 

over a large range of parameters. Since the partial derivative with respect to ∆peak of 625 

F(P,gmax,∆peak) at this point is a non-zero constant equal to Tact/P (or DC) in the C-Dur 626 

(or C-DC) case, there is a function ∆peak = h(P,gmax) such that  627 
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 ϕ= ˆ( , , ( , ))max max LPF P g h P g   (14) 628 

for values of P and gmax near )ˆ ˆ( , maxP g . In other words, the Implicit Function Theorem 629 

guarantees that small changes in P and gmax can be compensated for by an appropriate 630 

choice of Δpeak in order to maintain a constant LP phase. A similar analysis can be 631 

done by solving for gmax in terms of P and Δpeak or by solving for P in terms of gmax and 632 

∆peak. 633 

Adding synaptic depression to the model of synaptic dynamics  634 

In a previous modeling study, we explored how the phase of a follower neuron 635 

was affected when the inhibitory synapse from an oscillatory neuron to this follower 636 

had short-term synaptic depression (Manor et al., 2003). In that study the role of the 637 

parameter Δpeak was not considered. It is, however, straightforward to add synaptic 638 

depression to Equations (7) and (8). 639 

An ad hoc model of synaptic depression can be made using a single variable sd 640 

which will be a periodic function that denotes the extent of depression and takes on 641 

values between 0 and 1 (Bose et al., 2004). sd decays during the AB/PD burst (from 642 

time 0 to Tact, indicating depression) and then recovers during the inter-burst interval 643 

(from Tact to P, indicating recovery). Thus, sd can be described by an equation of the 644 

form: 645 

 β

α

τ
τ

− ≤
=  − < <

/  (mod )    
(1 ) /  (mod )    

d actd

d act

s t P Tds
s T t P Pdt

  646 

Using periodicity, it is straightforward to show that the maximum value of sd, which 647 

occurs at the start of the AB/PD burst, is given by: 648 

 
α

βα

τ

ττ

− −

− ⋅− −

−
=

−

(1 )/

/(1 )/

1( ) .
1

P DC

max DC PP DC

es P
e e

  (15) 649 

Note that smax is a monotonically increasing function with values between 0 and 1. Its 650 

value approaches 1 as P increases, indicating that the synapse becomes stronger. For 651 

a complete derivation and description, see (Bose et al., 2004). The effect of synaptic 652 

depression on synaptic strength can be obtained by setting  653 

 = ⋅ ( )max max maxg g s P   (16) 654 
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where smax is given by Equation (10). 655 

Software, analysis and statistics 656 

Data were analyzed using MATLAB scripts to calculate the time of burst onset 657 

and the phase. Statistical analysis was performed using Sigmaplot 12.0 (Systat). 658 

Significance was evaluated with an α value of 0.05, error bars and error values 659 

reported denote standard error of the mean (SEM). 660 
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Figures 862 

 863 

Figure 1: Latency constancy and phase constancy as a function of period 864 

A1. Schematic diagram showing that a follower neuron (F) strongly inhibited by a 865 

bursting oscillatory neuron (O) with period P can produce rebound bursts with the 866 

same period at a latency L. A2. If the period of O changes to a new value (P2), the new 867 

F burst latency (L2) typically falls between two extremes: it could stay constant (top 868 

trace) or change proportionally to P2, so that the burst phase (L / P) remains constant 869 

(middle trace). B. Example traces of the pyloric pacemaker PD neuron and the follower 870 

LP neuron represent the O and F relationship in panel A. Here, the PD neuron is 871 

voltage clamped and a pre-recorded waveform of the same neuron is used to force the 872 

neuron to follow different cycle periods. C. A measurement of the LP neuron burst 873 

onset phase with respect to the onset of the PD neuron burst shows that it falls 874 

between the two limits of constant latency and constant phase. Dotted curves 875 

represent constant latency matched to the latencies at the two extreme P values. 876 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/578617doi: bioRxiv preprint 

https://doi.org/10.1101/578617
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

877 
Figure 2: Inputs to the LP neuron influence burst time, spike number and interval 878 

A. Simultaneous intracellular recording of the LP neuron and extracellular recording of 879 

the lateral ventricular nerve (lvn), containing the axons of the LP, PD and PY neurons 880 

(arrows). Period (P) and the burst onset time (Δt) of the LP neuron are defined in 881 
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reference to the pacemaker group (PD) burst. B. Blocking the synaptic inputs (10 µM 882 

picrotoxin) to the LP neuron disrupts its bursting oscillations. C. The synaptically 883 

isolated LP neuron was driven with a noise current input (Inoise) for 60 minutes. In 884 

response, the LP neuron produced an irregular pattern of bursting. Specific inter-burst 885 

intervals (IBIs) were tagged and used for burst-triggered averaging. D. Example of 886 

burst-trigger-averaged input current (IBTA, green). Individual traces are shown in grey.  887 

E. For each IBI (300, 500, 700, 900 ms), IBTA was calculated and normalized to the 888 

amplitude of IBTA for IBI=300 ms. Different traces in each panel show the IBTA of 889 

different preparations. F. The mean (across preparations) of the normalized IBTAs  890 

shown in panel E. G. Traces in panel F normalized by IBI. H-K. Four parameters define 891 

the shape of the IBTA: peak amplitude Iamp (H), peak phase Δpeak (I), slopeup (J) and 892 

slopedown (K) across preparations. IBI had a significant effect on amplitude Iamp 893 

(p<0.001), peak phase Δpeak (p<0.001), slopeup (p<0.001) and slopedown (p=0.002).  894 
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 895 

Figure 3: Cycle period and synaptic strength affect the phase of LP burst onset in 896 

opposite directions. 897 

A. The synaptic input to the LP neuron was measured by voltage clamping it at a 898 

holding potential of -50mV during ongoing oscillations. The onset of the pacemaker 899 

(AB/PD) activity is seen as a kink in the synaptic current (ILP, blue). B. Synaptic input 900 

averaged across cycles from 9 different LP neurons. The blue trace shows the 901 

average. C. An example of the LP neuron driven by the realistic synaptic waveform in 902 

dynamic clamp. The burst onset time (Dt) was measured relative to the AB/PD onset 903 

and used to measure the LP phase (φLP). gmax denotes the conductance amplitude. D. 904 

Mean φLP (N=9 preparations) shown as a function of P and fit with the function given by 905 

Equation (8) (fit values τs = 26.0 ms, g* = 0.021 µS and Δpeak·DC = 0.43). E. Mean φLP 906 

plotted against gmax also shown with the fit to Equation (8). F. Heat map, obtained from 907 

fitting Equation (8) to the data in panels D and E, shows φLP as a function of both gmax 908 

and P. Black curves show the level sets of phase constancy for three values of φLP 909 

(0.47, 0.49, and 0.52). 910 
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 911 

Figure 4: The constant duty cycle of synaptic conductance is a major factor in phase 912 

maintenance. 913 

A. The change in φLP values with P are compared with the constant phase (solid curve) 914 

and constant duration (dashed curve) extremes. Lime traces show the usual values of 915 

φLP, calculated from the LP burst onset latency with respect to the onset of the PD 916 

burst. Lavender traces show φLP calculated from the LP burst onset latency with 917 

respect to the end of the PD burst. Data shown are the same as in Fig. 3D for gmax=0.4 918 

µS. B. Schematic diagram shows the latency of LP burst onset measured with respect 919 

to the (estimated) onset and end of the PD burst in the dynamic clamp experiments 920 

(see Methods). Bottom panel shows the synaptic current waveform measured in the 921 

voltage-clamped LP neuron during ongoing pyloric activity. Top panel shows the 922 

dynamic clamp injection of the synaptic conductance waveform into a synaptically-923 

isolated LP neuron. The current waveform of the bottom panel is aligned to the 924 

conductance waveform of the top panel for the comparison used in determining the PD 925 

burst onset and end in the top panel. 926 
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 927 

Figure 5: Four parameters describing synaptic shape were varied in the experimental 928 

paradigm.  929 

A. A triangle shaped conductance was used to mimic the synaptic input to the LP 930 

neuron. B. The triangular waveform can be described by period (P), duration (Tact), 931 

peak time (tpeak) and amplitude (gmax). C. In dynamic clamp runs, the synapse duration 932 

Tact was kept constant at 300 ms (C-Dur) or maintained at a constant duty cycle (Tact 933 

/P) of 0.3 (C-DC) across all values of P. D. Intracellular voltage recording of the 934 

synaptically isolated LP neuron during a dynamic clamp stimulation run using the 935 

triangle conductance. The burst onset time (Δt, calculated in reference to the synaptic 936 

conductance onset) was used to calculate the activity phase (φLP = Δt/P). 937 
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938 
Figure 6: The LP burst onset phase decreases as a function of P, but increases as a 939 

function of gmax and Δpeak.  940 

Periodic injection of an inhibitory triangular waveform conductance into the isolated LP 941 

neuron produced bursting activity from which φLP was calculated. The parameters gmax, 942 

Δpeak and P were varied across runs for both C-Dur and C-DC cases. A. φLP decreases 943 

as a function of P. A1. Intracellular recording of an LP neuron showing a C-DC 944 

conductance input across five periods. A2. φLP for the example shown in A1 plotted as 945 

a function of P (for gmax = 0.4 μS, Δpeak = 0.5) for both C-Dur and C-DC cases. φLP 946 

decreases rapidly with P and the drop is larger for the C-Dur case. A3. φLP decreased 947 

with P in both the C-DC case (Three-Way RM ANOVA, p<0.001, F=100.7) and the C-948 

Dur case (Three-Way RM ANOVA, p<0.001, F=466.4) and all values of Δpeak. The 949 
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range of φLP drop was greater for the C-Dur case compared to the C-DC case. B. φLP 950 

increases as a function of gmax. B1. Intracellular recording of an LP neuron showing the 951 

conductance input across three values of gmax.  B2. φLP for the example shown in B1 952 

plotted as a function of P (for P = 500 ms, Δpeak = 0.25) shows a small increase for both 953 

C-Dur and C-DC cases. B3. φLP increased with gmax in almost all trials for both C-DC 954 

and C-Dur cases and all values of Δpeak. C. φLP increases as a function of Δpeak. C1. 955 

Intracellular recording of the LP neuron showing the conductance input for five values 956 

of Δpeak. C2. φLP for the example neuron in C1 plotted as a function of Δpeak (for P = 500 957 

ms, gmax = 0.4 μS) for both C-DC and C-Dur cases. C3. φLP increased with Δpeak for 958 

both C-DC and C-Dur cases and all values of gmax. 959 

 960 

Figure 7: Sensitivity analysis shows that φLP increases more effectively if gmax and Δpeak 961 

increase together.  962 

A. The sensitivity φLP to local changes in gmax and Δpeak was averaged across all values 963 

of P for the C-DC case. The sensitivity was largest if both parameters were increased 964 

together (gmax + Δpeak) and smallest if they were varied in opposite directions (gmax - 965 

Δpeak; One-Way RM-ANOVA, p<0.001, F=3.330). B. The same sensitivity analysis in 966 

the C-Dur case shows similar results (One-Way RM-ANOVA, p<0.001, F=2.892). 967 
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968 
Figure 8: Simultaneous increase of both Δpeak and gmax across their range of values can 969 

produce phase maintenance across a large P range in the C-DC case and a much 970 

smaller P range in the C-Dur case  971 

A. Heat map plots of the function Φ, plotted for the range of values of P and Δpeak and 4 972 

values of gmax for the C-DC (A1) and C-Dur (A2) cases. The white curves show the 973 

level set of φLP = 0.34, shown as an example of phase constancy. The color maps are 974 

interpolated from sampled data (see Methods; N=9) B. Heat map for the level sets φLP 975 

= 0.34 for the C-DC (B1) and C-Dur (B2) cases. Range of colors in each panel indicate 976 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/578617doi: bioRxiv preprint 

https://doi.org/10.1101/578617
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

the range of P values for which φLP could remain constant at 0.34 for each case, as 977 

indicated by the grey arrows on the side of the heatmap color legend. C. The range 978 

(ΔP) of P values for which φLP could remain constant at any value between 0.2 and 0.8 979 

for the C-DC (C1) and C-Dur cases (C2). Filled circles show the values shown in panel 980 

B. The LP neuron cannot achieve φLP values below 0.3 in the C-DC case. For φLP 981 

values between 0.3 and ~0.65, the range was larger in C-DC case.   982 
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 983 

Figure 9: Model prediction of the range of phase constancy. 984 

A. For the C-DC case, a constant phase of φLP = 0.34 can be maintained across a 985 

range of cycle periods P when gmax is constant (at 335 nS; blue plane) and Δpeak varies 986 

from 0 to 1 according to Equation (13) (blue), or when Δpeak is fixed (at 0.5; green 987 

plane) and gmax varies from 200 to 800 nS according to Equation (12). Alternatively, 988 

gmax and Δpeak can covary to maintain phase, as in a depressing synapse, where gmax 989 

varies with P according to Equation (11), and Δpeak is calculated for each P and gmax 990 

value according to Equation (13). As seen in the 2D coordinate-plane projections of the 991 

3D graph (right three graphs), the range of P values for which phase constancy is 992 

achieved is largest when gmax and Δpeak covary (dotted lines show limits of P for phase 993 

constancy). The depressing synapse conductance is chosen to be 335 nS at P = 1 s. 994 

B, C. A comparison between the C-DC and C-Dur cases shows that in the latter case a 995 

constant phase of φLP can be maintained across a larger range of P values when Δpeak 996 

increases with P (and gmax is fixed at 400 nS) according to Equation (13). The 997 

relationship of Δpeak and P is shown in B for φLP  = 0.34. C shows the range of P values 998 

(ΔP) of cycle periods for which phase remains constant at φLP. If gmax also varies with 999 

P, as in a depressing synapse (red; Equation (11)), the range of P values for which 1000 

phase is constant is further increased. (Dotted line: φLP  = 0.34.)  1001 
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Source Data Files 1002 

Figure 2-1. File: Figure2_sourcedata.xlsx   1003 

This Excel file contains 4 sheets, including all measured attributes of the burst-1004 

triggered average current (IBTA) for different IBIs (N=23) as shown in Fig. 2H-2K.  1005 
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