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Summary 
The purpose of this paper is to describe a framework for the understanding of rules that 
govern how neural system dynamics are coordinated to produce behavior. The framework, 
structured flows on manifolds (SFM), posits that neural processes are flows depicting system 
interactions that occur on relatively low-dimension manifolds, which constrain possible 
functional configurations. Although this is a general framework, we focus on the application 
to brain disorders. We first explain the Epileptor, a phenomenological computational model 
showing fast and slow dynamics, but also a hidden repertoire whose expression is similar to 
refractory status epilepticus. We suggest that epilepsy represents an innate brain state 
whose potential may be realized only under certain circumstances. Conversely, deficits from 
damage or disease processes, such as stroke or dementia, may reflect both the disease 
process per se and the adaptation of the brain. SFM uniquely captures both scenarios.  
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The Hidden Repertoire of Brain Dynamics and Dysfunction 
 
1. Vignette 
 
Both of us like to run, partly for fitness and partly for mental health. It’s easy and you can do 
it almost anytime and anywhere. The thing about running is that the rules on how to do it 
are fairly simple, but how you do it is quite varied. Running in the heat of the summer on a 
beach is different from running up a hill in the forest or trying to navigate an icy trail in the 
winter. The point here is that while the rules for running are always the same, you would not 
assume that the example of running on beach serves as an accurate characterization of all 
running that we might do. The analogy is meant to suggest this is the approach that we use 
when trying to link brain and behavior. The coordination of behavior by the brain can be 
understood as a reflection of general rules whose specific realization depends on the current 
context and initial conditions. 
 
Stated more boldly, we often assume that the expression of behavior at a point in time is 
sufficient to understand how that behavior is coordinated. Experimental approaches focus 
on the characterization of brain signal time series and how they change with manipulation. 
Theoretical approaches most often focus on defining functions that generate these time 
series. Such approaches are valid insofar as they able to characterize the local conditions 
that generate the time series. If the nervous system of study can only generate that time 
series, then this approach will be successful. 
 
However, a different scenario emerges when we consider that a given realization is but one 
of many that the brain can generate. The brain is a complex adaptive system, showing the 
properties of multiscale behavior, emergence and nonlinearity(Fingelkurts, 2004; Mitchell, 
2009). If we acknowledge this, then a single realization captures only a partial picture of 
what is possible. Changes to the initial conditions for generation of the behavior can change 
the realization to the point where the time series bears little resemblance to other 
realizations. This would be construed as “noise” in most perspectives, but the case we wish 
to make here is that such variations can be considered a valid expressions of the rules under 
which behavior is coordinated.   
 
This perspective can be more saliently appreciated when we consider clinical conditions and 
the variation in expression across persons. For instance, in the case of focal damage from 
stroke, two persons can show similar regional damage, yet show quite different clinical 
outcomes (Price & Friston, 2002).  Person A may be very impaired, whereas Person B shows 
remarkable recovery. Person B, in our framework, is less debilitated because they have more 
options to realize a particular behavior than Person A.  The rules that govern behavior are 
effectively the same for both persons, but the variation in expression is greater in Person B. 
The stroke impairs one particular set of realizations (i.e., a specific trajectory) abolishing the 
behavior in Person A, but for Person B only slightly alters the execution. The differences are 
often explained as resilience or brain reserve, which merely relabels the outcome rather 
than providing a mechanism of explanation.  We propose these mechanisms can be 
captured in the Structured Flows on Manifolds (SFM) framework (Pillai & Jirsa, 2017). 
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2. General Perspective 
 
We present a framework wherein complex brain dynamics can be decomposed into 
probabilistic functional modes. These modes are mathematically operationalized as 
manifolds, along which trajectories evolve as the dynamics unfold embedded in a low-
dimensional space or SFM (Huys, Perdikis, & Jirsa, 2014). The collection of functional modes 
available in a neural network constitutes its functional repertoire, which together 
instantiates a complete set of potential cognitive functions and overt behaviors.  
 
It has been acknowledged by a number of neuroscience researchers that the brain is 
dynamic, but how that translates to their approach to gain understanding varies widely. At 
one end, some consider the brain to be simple input-output system where a signal comes in, 
a cascade is triggered as the signal propagates, and the system produces an output 
appropriate to the input (Petersen & Fiez, 1993; Posner, Petersen, Fox, & Raichle, 1988). 
Other perspectives, stemming from the focus on intrinsic activity in the brain, goes from a 
unidirectional input-output system to one where the input signal itself may be modified 
(Deco, Jirsa, & McIntosh, 2013; Fox et al., 2005; Raichle, 2010). One expression, which falls 
under general category of predictive coding, focuses on the time series of neural signals as 
manifestations of internal models that the brain generates to predict its inputs and its 
ultimate consequences (Friston, 2010; Rao & Ballard, 1999). There is another elaboration of 
this that reflects our SFM framework, which we will cover shortly.  
 
The assumption underlying much predictive coding work is that the expression of behavior 
at a point in time is sufficient to understand how that behavior is coordinated. Other 
theoretical approaches focus on defining mathematical functions for behavioral time series, 
while empirical studies use machine learning algorithms to classify the time series according 
to the behavior they are thought to support (e.g., perceptual categorization).  
 
There are two challenges here. First, if we were to reverse engineer a system that produces 
the observed time series that reflects the behavior of interest, we would not learn how the 
behavior itself was coordinated. Rather we would only know what generates individual time 
series (e.g., the action of a specific set of brain areas). Second, and more problematic, is that 
the model would not be able to generate new behaviors that we had not previously 
measured. Said differently, we may be able to predict what the system has done, but cannot 
predict what it will do. One remedy is to update the model in light of the new behavior and 
building a lookup table that relates the configuration of neural dynamics to a specific 
behavior. The process continues until at some point we have cataloged all the behaviors of 
the system. While this sounds cumbersome, you see it played out in modern neuroscience. 
In neuroimaging, for example, we started with the characterization of activated brain 
regions and relating that to specific behavioral functions (vision, audition, language, 
memory), drawing inferences on the unobservable processes that were needed to 
instantiate such functions. We are now in the era of brain networks, where the coherent 
interactions between regions are the substrate for function (default network, salience 
network, dorsal attention network). A great deal of research now emphasizes the system 
characteristics that support these networks by looking a graph theory metrics (Bullmore & 
Sporns, 2009; Rubinov & Sporns, 2010) and by characterizing feature of the dynamics, such 
as scale-free behavior and criticality (Beggs & Plenz, 2003; Haimovici, Tagliazucchi, 
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Balenzuela, & Chialvo, 2013; Petermann et al., 2009; Tagliazucchi, Balenzuela, Fraiman, & 
Chialvo, 2012). If we pause and examine these observations, we have indeed done a good 
job of characterizing what the system does, but have no idea how and why. 
 
The SFM framework takes a different approach, which still assumes that the brain constructs 
models of the world (as in predictive coding), but takes the focus from the specific 
instantiation of that model (aka the individual trajectory) to discovering the rules that the 
brain uses to develop these models. This is a subtle, but critical, difference. As we describe 
the option that encapsulates SFM, it is useful to borrow an analogy from J.H. Holland on the 
game of chess to illustrate the difference (Holland, 2014). One can learn chess by watching a 
game and tracking the movements of each piece, repeating the observation for subsequent 
games and then build a catalogue of moves and counter moves. This is a formidable 
challenge given that, by rough calculations, there are at least 10^50 possible legal move 
sequences, which is larger than the estimated number of atoms in the universe. The more 
efficient approach is to define the rules that determine the legal moves. By doing this for 
chess, we dramatically reduce the problem from an essentially infinite space to one where a 
dozen or so rules capture all possible realizations of the chess game. Mastery of chess is 
achieved when individual moves are combined and orchestrated into larger motifs, further 
classified into aggressive, defensive and strategic patterns. We understand chess by 
understanding the rules of play, and understand it deeply by using these rules to build 
coordination motifs. And this is the option that motivates the description of SFMs:  the goal 
for understanding brain and behavior is to determine the rules that govern the coordination 
of behavior.  
 
Another illustration that makes the distinction between the emphasis on a specific 
realization versus a model for the rules that generate the realization comes from an example 
of calculating 3 times 4, 3 time 5, and then switch to 13 times 14, in which the majority of 
people will rapidly access their semantic memory for the first two cases, but evoke a 
different model to compute algorithmically the last. If the result of the computation is not in 
memory, then no solution can be found, whereas in the algorithmic case solutions for 
number computations may be found that have never been computed before. The most 
innate and pertinent characteristic of the brain is its capacity to generate dynamic models.  
 
3. Conceptual Description of Structured Flows on Manifolds 
 
The SFM framework lies firmly in the ideas of complex adaptive systems (CAS).  Our 
exposition will thus borrow heavily from analogies of other, non-neural, systems that 
illustrate key principles to build our case, such as emergence, nonlinearity, motifs, flows and 
internal models.  
 
The notion of SFM formalizes some key general properties of CAS. The use of the term flows 
in SFM emphasizes the dynamic nature of brain processes, where the flow formalizes the 
rules that enact the internal model of the system.  The nonlinearities of the system impart 
other properties, such as aggregation and emergence that link the actions at one level of the 
system (e.g., network dynamics) to actions at another (e.g., behavior). The elements (or 
more often called “agents”) can operate at different timescales, and the interactions 
between scales are a critical feature in controlling the flow of the system. Fast time scales 
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may have no overt consequence until slower moving scales reach a certain tipping point, or 
bifurcation, and the flow of the entire system changes. 
 
SFM approaches emphasize the manifolds that can be understood as force fields generating 
the ensemble of all possible trajectories (or flows), and are thus a mathematical expression 
of the rules underlying the generation of behavior. Figure 1 demonstrates the general idea 
of flows on manifolds with one toy example of a spherical manifold having two attractor 
states or domains that support different flows.  The figure also demonstrates a comparable 
manifold architecture in simulated resting stating functional MRI data, where changes in 
functional connectivity dynamics (FCD) switch two states that span a manifold.  

 
Figure 1 Structured Flows on Manifolds (SFMs). Upper figure shows a spherical attractive manifold, displaying various sets 
of initial conditions (black ovals) of trajectories (blue), evolving rapidly towards the manifold and then continue evolving on 
the manifold on a slower time scale. The time scale separation is evidenced by the large angle between trajectory and 
manifold (around 90 degrees). The flow on the manifold is split into two domains, one lower and one upper hemisphere, 
partitioned by a seperatrix (dotted line). The trajectories trace out lines on the manifold, following the flow (black arrows). 
The SFMs display a bi-stable organization with closed circular orbits on both hemispheres. The two lower figures show a 
similar organization, as captured by BOLD signals simulated with TheVirtualBrain (Hansen, Battaglia, Spiegler, Deco, & Jirsa, 
2015; Sanz Leon et al., 2013). On the left, Functional Connectivity Dynamics (FCD) are shown over 20min, in which two large 
segments of invariant Functional Connectivity (FC) are identified as states alpha and beta. For both time windows, a 
principal component analysis was performed spanning state-characteristic subspaces by the leading principal components. 
When the BOLD signals were projected into the characteristic subspaces, the trajectory of the brain signal is unfolded, 
identifying the manifolds and trajectories of the corresponding states (figure on bottom right). 

The link of SFM to flows and emergence can be conceptualized from considering a piece of 
music.  The analogy of the “brain as a symphony” has been made by often, and is used to 
illustrate the fact that the emergence of function comes not from the action of a single brain 
area, but rather the coordination amongst all elements (unlike a symphony, however, in the 
brain there is no conductor).  SFM theory provides a formal framework for these concepts of 
“brain as a symphony”. In a symphony, one can isolate the individual instruments to 
characterize their unique contribution, but it is difficult to appreciate its role in the 
symphony without considering the relation to other instruments. The statement: “The whole 
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is greater than the sum of its parts.” is appropriate here for both the symphony and the 
brain.  
 
We can further develop this analogy to build the intuition about SFM, particularly in the 
context of how different temporal flows (e.g., melody and piano lines in a simple song) 
interact in supporting the emergent behaviour (the whole song). The melody and harmony 
often move in different time scales. Each can be comprehended on their own, but in a well-
composed song, the relation between the lines brings a richness that is not present in either 
alone (e.g., aggregate property). This fluctuation between the melody and harmony evolves 
throughout the song. It is common in classical pieces for the opening melody to be repeated 
as a motif, but over a slightly different piano line, which may completely change the mood of 
the piece. 
 
In the brain, a parallel to the symphony analogy can be drawn. As the instruments in the 
orchestra and musical abilities of the artists define constraints upon the symphony to 
emerge, the anatomical connectivity and dynamic characteristic of the brain regions 
(network nodes) specify the rules for the evolution of dynamics. As we shall see below, this 
is far from a trivial constraint, as the anatomy helps define any spatial and temporal 
constraints for potential network configurations. For example, all things being equal, it is 
more likely that adjacent regions in occipital cortex will interact rather than occipital and 
frontal regions, simply because the occipital and frontal areas have few connections 
between them, and those that are connected indirectly at a long distance, imposing a longer 
time delay for transmission. Thus, anatomy establishes a deterministic architecture that 
prevents random manifolds and flows from occurring. This architecture, set atop the 
(nonlinear) dynamics of neurons and connected populations of neurons establishes the set 
of motifs that are available for the brain to combine in the coordination of behaviour (Sporns 
& Kotter, 2004). We can refer to these as functional modes to emphasize that they can be 
both actual and potential configurations. 
 
The asymmetries in the brain’s space-time structure, set by the structural connectivity, 
establishes a potential for multi-scale actions (Deco et al., 2013). The multi-scale temporal 
character of these modes is founded on the fact that complex processes arise in an 
organism-environment context that inherently covers multiple scales. Armed with functional 
modes as essential building blocks, we propose additional dynamics (called operational 
signals) on time scales slower and faster than that of the modes. The slower process 
effectively binds functional modes together into sequences. More precisely, given functional 
mode emerges via a competition process to temporally dominate the functional dynamics, 
after which it destabilizes and gives way to another mode (Haken, 2006; Perdikis, Huys, & 
Jirsa, 2011). The transient dynamics between modes can be triggered either by ‘internal’ 
events (as in pre-constructed sequences) or by ‘external’ ones (such as perceptual events). 
Once engaged, the temporal attractivity of a modes guarantees functional robustness, 
whereas transitions between modes underlies flexibility for meaningful changes. Further 
variability in the function may arise via additional dynamics operating on times scales faster 
than (or similar to) that of the modes. Accordingly, brain function is organized in multilevel 
dynamical hierarchies. 
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The hierarchical architecture is central to effective information processing, where different 
temporal and spatial scales interact in moving the system through behavioural repertoires. 
Information provided to the brain system is meaningful if and only if it qualitatively changes 
the "state" that the brain occupies at that moment. If an incoming signal does not change 
the state, then the information was not meaningful, and the incoming signal could equally 
have not been present. Thus, while local dynamics may change dramatically, they may not 
have an appreciable effect on the trajectory of the network, and thus rather than change the 
flow to a new part of the manifold, may only result in a trivial variation in the current 
trajectory. If these local dynamics intersect with larger-scale dynamics at a critical point, this 
can establish a new trajectory for the system, either within an existing SFM or moving to a 
new SFM and hence a new emergent behaviour.  
 
4. Mathematical Description of SFM  
 
SFMs are the mathematical objects capturing the dynamic properties required from a 

system capable of the behavior we have discussed thus far. The system under consideration 

is high-dimensional with N degrees of freedom and highly nonlinear. In order to allow for 

this system to generate low-dimensional behavior, that is M dimensions with M<<N, there 

must be a mechanism in place, capable of directing trajectories in the high-dimensional 

space towards the M-dimensional sub-space. Mathematically this translates into two 

components, that are associated with different time scales: first, the low-dimensional 

attractor space contains a manifold f(.) and attracts all trajectories on a fast time scale; 

second, on the manifold a structured flow g(.) prescribes the dynamics on a slow time scale, 

where here slow is meant in comparison to the fast dynamics towards the attractor. For 

compactness and clarity, imagine the state of the system is described by the N-dimensional 

state vector q(t) at any given moment in time t. Then we split the full set of state variables 

into the components u and s where the variables in u define the M task-specific variables 

linked to emergent behavior in a low-dimensional subspace (the functional network) and the 

N-M variables in s define the remaining recruited degrees of freedom.  Naturally, N is much 

greater than M and the manifold in the subspace of the variables u has to satisfy certain 

constraints to be locally stable, then all the dynamics is attracted thereto (Pillai & Jirsa, 

2017). 
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The flow of the nonlinear dynamic system is the right hand side of the differential equations. 
In state space, the flow is a form of force field that drives the state of the system along a 
trajectory. The tracing out of the trajectory is the evolution of the complex dynamic system, 
the flow is the rules that underlie the behavior. The above mathematical representation via 
a time-scale decomposition is not unique and there maybe other equivalent representations, 
capable of capturing the same flow in state space. However, the current representation is 
attractive for two reasons: 1) it provides a clear separation of the time scale via the 
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smallness parameter  , where the slow time scale is  <<1 and the fast time scale is on the 

order of 1. 2) The current form has been successfully linked to networks composed of neural 
masses, coupled via multiplicative coupling functions, which are fundamental for the 
emergence of SFM (Pillai & Jirsa, 2017; Woodman & Jirsa, 2013). These multiplicative 
properties are at the heart of conductance-based modeling as embodied by the Hodgkin-
Huxley equations, as well as essential in synaptic couplings. Mathematically the 
multiplicative coupling enables the manifold to be described globally, rather than only locally 
as it has been the case previously in formal theories of self-organization, such as Synergetics 
(Haken, 1996, 2006). The formulation of SFM is a general framework and the link to 
neuroscience is accomplished, for instance, when SFMs are derived from neural network 
equations. In these situations, the state vector q(t) is the vector of all activation variables 
across all brain regions and the SFM is the mathematical representation of the dynamics of 
the brain network. We will provide in the following examples of applications of SFM theory 
to neuroscience problems, which will in all cases refer to the state vector as neural 
activations.  It is non-trivial and not lost on us, that the emergent SFM in brain activation 
space does not necessarily map isomorphically onto the low-dimensional dynamics (and thus 
SFM) in behavior. In other words, the lawfulness and rules underlying cognitive architectures 
may not be isomporphically related to the rules governing its directly associated brain 
dynamics. As attractive such isomorphism conceptually may be, it needs to be demonstrated 
empirically.  
 
5. Modeling SFM in Epilepsy 
 
A consideration about pathologies in the brain adds a critical element to our reflections on 
SFM and model emergence in the brain. Fundamental modeling of epilepsy has led to the 
postulate of the existence of a slow variable that dictates the expression of faster seizure 
activity (Jirsa, Stacey, Quilichini, Ivanov, & Bernard, 2014). During epileptic seizures, the 
firing activity of billions of neurons becomes organized so that oscillatory activity emerges 
that can be observed in electrographic recordings. This organization greatly reduces the 
degrees of freedom necessary to describe the observed activity, from single neurons firing to 
a few oscillatory collective variables. On the other hand, these oscillations trigger a series of 
processes at the microscopic level that slowly leads towards the end of the seizure. These 
slow processes can also be described by a collective variable, the permittivity variable that 
represents the balance (or imbalance) between the slowly varying pro- and anti- seizure 
mechanisms. The fast variables span an SFM and the slow variable guides the brain system 
through the creation and annihilation of the SFM. The composition of fast and slow variables 
in epilepsy is called the Epileptor. 
 
Biophysical parameters that slowly change in the period preceding a seizure and during the 
ictal state are, for example, extracellular levels of ions (Heinemann, Konnerth, Pumain, & 
Wadman, 1986), oxygen (Suh, Ma, Zhao, Sharif, & Schwartz, 2006) and metabolism (Zhao et 
al., 2011). We can thus describe the evolution of a seizure with a few collective variables 
acting on different timescales: fast variables that, depending on the value of their 
parameter, can produce either resting or oscillatory activity with bifurcations separating the 
different regimes; slow variables describing the processes that brings the fast variables 
across the onset and offset bifurcations (Figure 2).  
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Across multiple patients (Saggio, Spiegler, Bernard, & Jirsa, 2017), most had seizures 
characterized by different bifurcations in different moments, which implies that different 
classes of seizure types coexist and can be described with the same model, so that ultra-slow 
changes in the parameters of the fast variables can bring the patient closer to one or the 
other seizure type. From the perspective of dynamical system modeling, this states that 
there must exist some slow variable dynamics (under the assumption of autonomous 
systems).  If the slow variable exists in pathological conditions, we make the assertion that 
slow variable dynamics plays an equally important role in healthy conditions evolving 
together with the fast variable dynamics as the actual emergent subsystem, or in Hermann 
Haken's words “order parameters”.  The novelty here is that the emergent order parameters 
have an intrinsic time scale separation and comprise fast and slow variables, and not the 
typically single time scale of Synergetics. Fast variables act on slow variables and vice versa. 
The mutual presence of multiple time scales in the emergent system, the SFM, is reflective 
of the adaptive nature of the brain. 
 
 

 
Figure 2: SFMs in Epilepsy. Ictal and non-ictal discharges have been characterized in nonlinear dynamics by two manifolds, a 
slow one-dimensional manifold illustrating the non-ictal resting state and a fast oscillation tracing out trajectories on a cone 
(see figure on the top). The corresponding time series are shown on the top-right, whereas the canonical SFMs are shown on 
the top-left. On the bottom left, two situations (time series, SFM) are shown for an empirical signal (B: rat, in-tuto 
hippocampus) and a detailed model signal (A: Epileptor), showing the identical topological features in state space. In the 
box on the bottom right, a state space is shown in (a), in which the upper region holds an Epileptor attractor and the lower 
region, separated by a separatrix (indicated in light blue), a so-far unknown attractor, which is hypothesized to be linked to 
refractory status epilepticus.  The respective time series from the two attractor spaces are plotted in the two right panels (b) 
and (c) 

1000 1500 2000 2500 3000

1

0

1

2

3

4

time

Epileptor Dynamics

2

1.5

1

0.5

0

0.5

1

1.5 20

15

10

5

0

3

3.2

3.4

3.6

3.8

4

Phase space

S
lo

w
 m

a
n
ifo

ld

fast m
anifold

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 16, 2019. ; https://doi.org/10.1101/578443doi: bioRxiv preprint 

https://doi.org/10.1101/578443
http://creativecommons.org/licenses/by/4.0/


 

 

10 

 
6. Hidden capacity of networks revealed in the SFM framework 
 
We noted earlier that a distinct advantage of creating models of rules governing 
coordination of behavior is the possibility of identifying novel configurations that had not yet 
been expressed or observed. This advantage can be illustrated from further elaboration of 
the Epileptor model. A parameter sweep of the model provides confirmation of the interplay 
of fast and slow variables in moving the system from a quiescent phase, into seizure, and 
then back out. A broader parameter search identified another SFM, in which the system 
engaged in broad slow oscillations (Figure 2, bottom right) (El Houssaini, Ivanov, Bernard, & 
Jirsa, 2015). Phenomenologically, these trajectories resembled what is seen in refractory 
status epilepticus (RSE). The critical aspect of this observation was that this repertoire was 
not obvious in the initial creation of the model, but this “new behavior” was in fact part of 
the lawful behavior of the system. 
 
The second important aspect of this was the observed dependencies of the seizure and RSE 
behaviors, wherein modification of slow variables allowed a transition between behavior, 
which was confirmed in animal models (El Houssaini et al., 2015). This is also a vital 
observation clinically as it suggests a different treatment path to alleviating RSE is to re-
establish seizure rather than eliminate the dynamics all together. 
 
By modeling the system, rather than a given realization, we were able to identify this hidden 
state that would be invisible to other approaches that attempt only to characterize the 
timeseries/realizations. As we noted earlier, even if one captures a large number of 
realizations, the quantification of these only is relevant to the particular behavior and not to 
the function of the system. Modeling the system, similar to what we propose in with SFM, 
captures both what the system does when you are watching and what is could do you when 
you are not. The Epileptor perfectly embodies this where the model captured the presence 
of the RSE state, even though the system did not need to generate a realization to know that 
the state existed.  
 
The Epileptor model gives a very salient demonstration of the use of SFM framework to 
under “disease potential”. This yields from two postulates. The first stems from the 
physiological fact that anyone’s brain has the potential to show seizures given the right 
conditions. From the SFM perspective, what this suggests is that “seizure” is an existing 
repertoire in anyone’s brain that can be expressed when the parameters are right (Jirsa et 
al., 2014). The phenomenological model provides a useful characterization of the state 
changes that need to occur in order to shift the flows on the manifold to the seizure 
attractor. A further exploration of the Epileptor model indicated that another behaviour can 
be expressed, namely that of RSE, again once the control parameter changes are sufficient 
to move from the seizure attractor to the RSE attractor. 
 
The second postulate stems from the first. If epilepsy is a part of the natural repertoire of 
the brain, can other clinical conditions be similarly regarded? At face value, the suggestion 
would be ‘no’ because epilepsy may be in inherent biophysically property of oscillatory 
networks, while other scenarios arising from acquired brain injury or neurodegenerative 
disorders may not be equally represented across the population. But perhaps we can recast 
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the perspective somewhat. As an adaptive system, the brain is in a constant state of testing 
new configurations to enhance capacity (Minerbi et al., 2009; Ziv & Brenner, 2018). While 
this is generically considered plasticity, these reconfigurations seem to be spontaneous and 
persist when the outcome is adaptive, which is property of complex adaptive systems. These 
changes are considered atop a more stable repertoire, which, usually, prevents a 
catastrophic situation where a maladaptive configuration is reinforced. This gives us a segue 
to consider maladaptive responses in terms of clinical outcome. It may be the case that brain 
disease expression reflects maladaptation. This would explain the observations where two 
persons with ostensibly the same damage can show markedly different clinical expressions, 
one showing severe impairment and the other showing much less, if any. In the first case, 
there is an attempt to adapt the damage but the new manifold or attractor that emerged 
was maladaptive, resulting a dysfunctional realization. In the second case, the adaptation 
was more robust allowing the person’s to maintain more stable manifold, reducing the 
clinical severity.  Thus, unlike the epilepsy case where seizure is a naturally part of the 
brain’s repertoire, in other cases the clinical expression is reflected a given brain’s capacity 
to adapt to a pathological process.  
 
These two postulates can be unified under the idea that the facility with which one moves 
from one manifold to another will dictate clinical outcome. For epilepsy, many persons will 
never have a seizure, suggesting the despite the existence of the seizure manifold, the 
system configuration is such that moving to this manifold never happens. In the case of 
perturbation from acquired brain injury or degenerative disorders, the maladaptive 
response comes because the existing system repertoire was not able to accommodate the 
perturbation. Where the clinical outcome is less severe, the perturbation still has a negative 
effect, but the existing repertoire is able to adapt sufficiently so as to limit disability.  
 
The perspective changes the way we consider clinical progression from one where the brain 
is static and the clinical expression is simple the loss of function to one where the clinical 
progression is an expression of the continual adaptation of the brain.  The adaptation itself 
may indeed be as debilitating as the triggering event.  
 
If this is true, then it should be possible to characterize the capacity of a given brain to adapt 
to negative perturbation by construction and exploration of a person’s SFM. An even more 
intriguing potential is that such a characterization may suggest a course of intervention that 
makes use of the capacity of a given person to traverse their SFM and adapt. 
 
7. Future directions and final thoughts: 
 
There already exists a growing body of work that characterizes neurophysiological data using 
dimensionality reduction techniques that is a step towards defining low-dimensional 
manifolds that constrain network flows (Gallego et al., 2018). Indeed, recent work in 
functional neuroimaging is focusing on the configurations of functional networks and the 
changes in their configurations in relation to behavior (Khambhati, Sizemore, Betzel, & 
Bassett, 2018; Shine et al., 2019). Analysis of the changes in functional networks per se, also 
referring to a functional connectivity dynamics (Figure 1) (Hansen et al., 2015; Hutchison et 
al., 2013), provides a relatively straight path to manifold estimation.  
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There are established methods for manifold estimation that extend beyond functional 
connectivity and instead define the space (i.e., manifold) that constrains the variance of 
specific neurophysiological signals. Here, trial-by-trial signals are considered together to 
define the dimensionality of the system and then characterize the manifold features 
(Gallego, Perich, Miller, & Solla, 2017). Methods such as principal components analysis can 
give access to the manifold space (Banerjee, Tognoli, Assisi, Kelso, & Jirsa, 2008), while 
others explicitly characterize the manifold such as Stochastic Neighborhood Embedding and 
Uniform Manifold Approximation and Projection (Ma & Fu, 2011). Algebraic Topology 
methods are also proving to be powerful complementary techniques by giving access to 
geometrical characterizations of manifolds that can then be related to cognition and 
behavior. For example, Saggar and colleagues looked at topological structures in relation to 
cognitive performance fMRI data (2018), finding that those with a more distributed topology 
showed better cognition (Figure 3). Additional features of estimated manifolds, such as 
switching, dwell time, transitional probabilities, are important aspects that emphasize the 
temporal flows on the manifold. Along these lines, an emphasis on trial-by-trial time series, 
rather than simple averages of data, are preferable. Differences in average features may 
have some utility in selection of key nodes for network identification, but obliterate the 
higher order statistical moments of the data, which are central to SFM expression.  
 

 
Figure 3: Excerpt from Saggar et al (2018) showing the comparison of shape graphs constructed using Topological Data 
Analysis of the dynamics of network evolution measured with fMRI. Graphs for two subjects (top panel a) are shown and 
were quantified based on modularity (Qmod) and showed a wide difference in performance (%Correct), with S14 (left) showing 
low modularity and S07 (right) showing higher modularity. Panel b shows the correlation between modularity indices across 
all subjects and different aspect of behavior. The pattern suggests subject with higher modularity, which may suggest of a 
more complex manifold architecture, have better behavior. 

 
There is an additional aspect that highlights the unique aspect of the SFM framework, which 
is that the behavior that emerges from the brain must also be characterized as flows on 
manifolds. This enables a new level of analysis to better characterize brain-behavior 
relationship in terms how the specific evolution of flows on manifolds in brain constrain and 
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are constrained by the flows on manifolds in behavior. Here there are fewer methods that 
map such interdependency between flows, though some candidates do exist (Breakspear & 
Terry, 2002; Flack, 2017; Terry & Breakspear, 2003). 
 
This begs the question as to whether cognitive processes, such as memory and emotion can 
be characterized under the SFM framework. Although most behavioral measures of 
cognition are often single points, such as reaction time or accuracy of responses, the notion 
of mental flows is pervasive in theory (Spivey, 2007). A recent expression emphasizes a 
seamless flow capturing the process of moving between sensation and action and back 
where the lines between traditional states (e.g., sensation, perception, memory) is blurred if 
not absent. For cognitive processes this is a challenge as they are not easily measured.  
However, their impact on ongoing behavior, such as eye movements or reaching (Song & 
Nakayama, 2009), has been used successfully to characterize the dynamics of processes and 
does give a potential access point for the creation of behavioral SFMs that can be linked to 
brain SFMs. The trajectories create a personal space that can be translated to a manifold. 
Across realizations, the flows along the manifold can then be related with the corresponding 
flow elicited in the brain – essentially mapping SFMs in behavior to those of the brain. This 
will yield new understanding of how the richness of behavior that we observe is enabled by 
the richness brain dynamics that we measure. 
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Figure Captions 
 
Figure 1: Structured Flows on Manifolds (SFMs). Upper figure shows a spherical attractive 
manifold, displaying various sets of initial conditions (black ovals) of trajectories (blue), 
evolving rapidly towards the manifold and then continue evolving on the manifold on a 
slower time scale. The time scale separation is evidenced by the large angle between 
trajectory and manifold (around 90 degrees). The flow on the manifold is split into two 
domains, one lower and one upper hemisphere, partitioned by a seperatrix (dotted line). 
The trajectories trace out lines on the manifold, following the flow (black arrows). The SFMs 
display a bi-stable organization with closed circular orbits on both hemispheres. The two 
lower figures show a similar organization, as captured by BOLD signals simulated with 
TheVirtualBrain (Hansen et al., 2015; Sanz Leon et al., 2013). On the left, Functional 
Connectivity Dynamics (FCD) are shown over 20min, in which two large segments of 
invariant Functional Connectivity (FC) are identified as states alpha and beta. For both time 
windows, a principal component analysis was performed spanning state-characteristic 
subspaces by the leading principal components. When the BOLD signals were projected into 
the characteristic subspaces, the trajectory of the brain signal is unfolded, identifying the 
manifolds and trajectories of the corresponding states (figure on bottom right). 
 
Figure 2: SFMs in Epilepsy. Ictal and non-ictal discharges have been characterized in 
nonlinear dynamics by two manifolds, a slow one-dimensional manifold illustrating the non-
ictal resting state and a fast oscillation tracing out trajectories on a cone (see figure on the 
top). The corresponding time series are shown on the top-right, whereas the canonical SFMs 
are shown on the top-left. On the bottom left, two situations (time series, SFM) are shown 
for an empirical signal (B: rat, in-tuto hippocampus) and a detailed model signal (A: 
Epileptor), showing the identical topological features in state space. In the box on the 
bottom right, a state space is shown in (a), in which the upper region holds an Epileptor 
attractor and the lower region, separated by a separatrix (indicated in light blue), a so-far 
unknown attractor, which is hypothesized to be linked to refractory status epilepticus.  The 
respective time series from the two attractor spaces are plotted in the two right panels (b) 
and (c) 
 
Figure 3: Excerpt from Saggar et al (2018) showing the comparison of shape graphs 
constructed using Topological Data Analysis of the dynamics of network evolution measured 
with fMRI. Graphs for two subjects (top panel a) are shown and were quantified based on 
modularity, with S14 (left) showing low modularity and S07 (right) showing higher 
modularity. Panel b shows the correlation between modularity indices across all subjects 
and different aspect of behavior. The pattern suggests subject with higher modularity, which 
may suggest of a more complex manifold architecture, have better behavior. 
 
 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 16, 2019. ; https://doi.org/10.1101/578443doi: bioRxiv preprint 

https://doi.org/10.1101/578443
http://creativecommons.org/licenses/by/4.0/

