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ABSTRACT12

We propose a hierarchical latent Dirichlet allocation model (HiLDA) for characterizing somatic mutation
data in cancer. The method allows us to infer mutational patterns and their relative frequencies in a set of
tumor mutational catalogs and to compare the estimated frequencies between tumor sets. We apply our
method to somatic mutations in colon cancer with mutations classified by the time of occurrence, before
or after tumor initiation. Applying the methods to 16 colon cancers, we found significant associations
between the relative frequencies of mutational patterns and the time of occurrence of mutations. Our
novel method provides higher statistical power for detecting differences in mutational signatures.
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INTRODUCTION20

A variety of mutational processes occur over the lifetime of an individual, and thereby uniquely contribute21

to the catalog of somatic mutations observed in a tumor. Some processes leave a molecular signature: a22

specific base substitution occurring within a particular pattern of neighboring bases. A variety of methods23

exist to discover mutational signatures from the catalog of all somatic mutations in a set of tumors,24

estimating the latent mutational signatures as well as the latent exposures (i.e., fraction of mutations) each25

signature contributes to the total catalog. The first large study of mutational signatures in cancer identified26

variation in mutational signatures and mutational exposures across 21 different cancer types (Alexandrov27

et al., 2013). To better understand the sources of variation in the mutational exposures across cancers, our28

interest is in statistical methods used to characterize these latent mutational exposures across different29

cancer subtypes. Moreover, by classifying mutations by their time of occurrence, before or after tumor30

initiation, we can investigate whether new mutational processes occur during tumor growth.31

Previous studies interested in comparing mutational exposure estimates between different groups of32

tumor catalogs conducted a post hoc analysis. The analysis proceeded in two stages. First, they performed33

one of the several different approaches for mathematically extracting the latent mutational signatures34

and their exposures from the mutational catalogs (see Baez-Ortega and Gori (2017) for a review of such35

methods). Later, they conducted an independent test of association between the point estimates of the36

mutational exposures and external covariates. Examples of 1covariates included cancer subtype, or patient37

history of alcohol or tobacco use. A common choice for the second stage test is a Wilcoxon rank-sum test38

(Mann and Whitney, 1947; Network et al., 2017; Chang et al., 2017; Hillman et al., 2017; Letouzé et al.,39

2017; Meier et al., 2018; Haradhvala et al., 2018; Qin et al., 2018; Olivier et al., 2019; Guo et al., 2018).40

However, the variation of the exposure estimates is affected by two factors, the number of mutations in41

the tumor and the variation in exposure frequency in the patient population. The former, the number of42

mutations in the tumor, affects the accuracy of the exposure estimates. The application of the Wilcoxon43

rank-sum test on the exposure estimates does not take into consideration their accuracy, which can lead to44

loss of efficiency and test power. We address this by introducing a unified parametric model for testing45

variation of mutational exposures between groups of mutational catalogs, where the exposure frequencies46
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are modeled using a Dirichlet distribution.47

We propose a hierarchical latent Dirichlet allocation model (HiLDA) that adds an additional level to the48

latent Dirichlet allocation (LDA) model from Shiraishi et al. (2015). Shiraishi’s model, like the majority49

of deconvolution approaches, focuses on signatures for single-nucleotide substitutions, characterizing the50

mutation types by context, using local features in the genome such as the pattern of flanking bases and51

possibly the transcription strand. For both model parsimony and interpretation, we choose to extend their52

LDA model. First, it requires fewer parameters than competing methods, giving it higher power to detect53

patterns 5 bases in length compared to other models that consider only 3-base contexts (Shiraishi et al.,54

2015). Second, signature visualization methods lead to easy interpretation; an example is the common55

C>T substitution at CpG sites instead of the more complicated NpCpG patterns that appear when using56

the trinucleotide context. Like the LDA model, HiLDA retains all the functionality for estimating both57

the latent signatures and the latent mutational exposure of each signature for each tumor catalog. Our58

newly-added hierarchical level allows HiLDA to simultaneously test whether those mean exposures differ59

between different groups of catalogs while accounting for the uncertainty in the exposure estimates.60

Additionally, we can now parse out differences in group means in the presence of differences in group61

variances, which is not tenable when using post hoc nonparametric location-scale tests.62

In this paper, we use HiLDA to study the association between the mutational exposures and the time63

of mutation occurrence in tumorigenesis. We classify cancer mutations into trunk or branch mutations:64

trunk mutations being those that occur before growth of the tumor, while branch mutations are those65

that occur during the tumor expansion process. A test of whether mutational exposures differ by time66

of mutation occurrence will allow us to assess whether new mutational processes occur following the67

transformation of the first cancer cell.68

METHODS69

Hierarchical Bayesian Mixture Model70

We introduce a hierarchical latent Dirichlet allocation model (HiLDA) using the following notation,71

also summarized in Table 1. Let i index the mutational catalog and j the mutation. The nucleotide72

substitutions are reduced to six possible types (C>A, C>T, C>G, T>A, T>C, T>G) to eliminate73

redundancy introduced by the complementary strands. Each observed mutation is characterized by74

a vector, XXX i, j describing the nucleotide substitution (e.g. C>T) and a set of genomic features in the75

neighborhood. Example features include the base(s) 3′ and 5′ of the nucleotide substitution (C, G, A, T),76

and the transcription strand (+, −). Each observed feature characteristic, xi, j,l for mutation feature l, takes77

values in the set {1,2, . . . ,Ml} (where Ml = 6 for the nucleotide substitution, or 4 for a flanking base, and78

2 for the transcription strand).79

We assume each mutation belongs to one of K distinct signatures. A specific mutational signature k is80

defined by an l-tuple of probability vectors, FFFk, denoting the relative frequencies of the Ml discrete values81

for the l features, i.e., a vector fff k,l for the Ml values corresponding to feature l. We let zi, j denote the unique82

latent assignment of mutation XXX i, j to a particular signature. Then, given the signature to which a mutation83

belongs, the probability of observing a mutational pattern is calculated as the product of the mutation84

feature probabilities for that signature. Thus, for signature k we write Pr(XXX i, j|zi, j) = ∏l fk,l(xi, j,l |zi, j).85

This assumes independent contributions of each feature to the signature. To model each multinomial86

distribution of fff k,l , we use a non-informative Dirichlet prior distribution with all concentration parameters87

equal to one.88

The unique personal exposure history of each individual leads to them having a particular (latent)89

vector, qqqi, indicating the resulting contribution of each of the K signatures to that individual’s mutational90

catalog. These qqqs are modeled using a Dirichlet distribution with concentration parameters ααα , i.e.,91

qqqi ∼ Dir(ααα). Extending this model to the two-group setting, we allow the Dirichlet parameters to depend92

on group, Dir(ααα(gi)), with gi indexing the group corresponding to the ith catalog (gi = 1 or 2). The mean93

mutational exposures, E(qqqi), denoted by µµµ(gi), are represented by using the concentration parameters, i.e.,94

µµµ(gi) = ααα(gi)/∑ααα(gi).95

With this extension, we can infer differences in mutational processes between groups of catalogs by96

testing whether the mean mutational exposures differ between the two sets, i.e., at least one µk
(1) 6= µk

(2).97

The likelihood and prior of the multi-level model is specified as follows,98
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xi, j,l |zi, j ∼Multinomial( fff zi, j ,l)

zi, j ∼Multinomial(qqqi|g)

qqqiii|gi ∼ Dir(ααα(gi))

For full details see See Text S1. and Fig. S2..99

Testing for Differences in Signature Exposures100

To characterize the signature contributions for different sets of tumor catalogs, we wish to conduct a101

hypothesis test that there is no difference in mean exposures versus the alternative that the mean exposure102

of at least one signature differs between the two groups, i.e. H0 : µµµ(1) = µµµ(2) vs. H1: at least one103

µk
(1) 6= µk

(2). We propose both local and global tests, implemented in a Bayesian framework. The former104

provides signature-level evaluations to determine where the differences in mean mutational exposures105

occur, while the latter provides an overall conclusion about any difference in mean mutational exposures.106

The details of our implementation are given in our Just Another Gibbs Sampler (JAGS) scripts and Source107

code is freely available in Github at https://github.com/USCbiostats/HiLDA (Plummer et al., 2003).108

A local test to identify signatures with different exposures109

We propose a signature-level (local) hypothesis test to allow us to infer which signature(s) contribute a
different mean exposure to the mutational catalogs across tumor sets, i.e., µk

(1) 6= µk
(2). To measure the

difference between mean signature exposure vectors, we implement HiLDA by specifying two Dirichlet
distributions, Dir(ααα(1)) and Dir(ααα(2)), as priors for the distribution of mutational exposures qqqi of each
group (Spiegelhalter et al., 2003). Using this formulation, the difference between the two groups of the
mean exposure of signature k is calculated as,

∆k = µ
(2)
k −µ

(1)
k =

α
(2)
k

∑k α
(2)
k

−
α
(1)
k

∑k α
(1)
k

(1)

For all parameters, α
(1)
k ’s and α

(2)
k ’s, we use independent, non-informative gamma distribution priors

with a rate of 0.001 and shape of 0.001; this results in a mean of 1 and variance of 1000. So,

α
(gi)
k ∼ Gamma(0.001,0.001)

We estimate parameters via Markov chain Monte Carlo (MCMC) using two chains (Carlin and Chib,110

1995). We assess convergence of the two MCMC chains using the potential scale reduction factor (Rhat)111

in Gelman et al. (1992), which is required to be less than or equal to 1.05 for all parameters in order to112

conclude that the MCMC run has converged. After obtaining the posterior distribution of the differences113

(i.e., of ∆k), there are two possible approaches to performing inference. We can: 1) use the Wald test to114

compute the P-value using the means and standard errors of the posterior distribution for ∆k; 2) determine115

whether the 95% credible interval of the posterior distribution for ∆k contains zero.116

A global test using the Bayes factor117

We also propose a global test to provide an overall conclusion on whether the mean exposures differ
between groups of catalogs. It uses the Bayes factor, the ratio of posterior to prior odds in favor of the
alternative (H1: at least one µ

(1)
k 6= µ

(2)
k , k = 1, ...,K) compared to the null (H0: µµµ(1) = µµµ(2)), to indicate

the strength of evidence that they do differ, without explicit details on how they differ. Thus, we can
calculate the Bayes factor as:

Bayes Factor =
Pr(H1|Data)
Pr(H0|Data)

/
Pr(H1)

Pr(H0)
. (2)

Since the likelihood is analytically intractable, the Bayes factor is calculated via MCMC (Carlin and118

Chib, 1995). In order to estimate the Bayes factor, during the MCMC analysis, a single binary hypothesis119

index variable is used to indicate which hypothesis explains the observed data (Lodewyckx et al., 2011).120

The parameters of two Dirichlet distributions, Dir(ααα(1)) and Dir(ααα(2)), are drawn from the same prior if121
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the index takes the value 1, whereas they are drawn from different priors if it takes the value 2. Initially,122

the prior hypothesis odds is set to be 0.5/0.5 = 1, which means that both hypotheses are assumed equally123

likely under the prior. In order to improve computational efficiency in extreme situations in which one124

hypothesis dominates the other, we can use a different prior odds value (Carlin and Chib, 1995).125

Two-stage Inference Methods using the Point Estimates of mutational exposures126

An alternative approach is to perform hypothesis testing using point estimates of the mutational exposures,127

q̂qqi, in a two-stage analysis, which we refer to as the ”two-stage” method (TS). We used the R package128

pmsignature to estimate q̂qq (Shiraishi et al., 2015). Other methods are also available, but we selected129

pmsignature for the purpose of comparisons to the results from HiLDA since it assumes the same model130

for estimating signatures under independence of features. We summarize the steps of the TS method as131

follows:132

1. Jointly estimate the vectors of mutational signature exposures, qqqi, for each mutational catalog.133

2. Test for differential mutational exposures for signature k by performing the Wilcoxon rank-sum test134

on the q̂qqk.135

However, we note that the Wilcoxon rank-sum test in stage 2 is also sensitive to changes in variance136

across the two groups, which might lead to significant results even when there has been no change in137

mean exposures (Kasuya, 2001; Ruxton, 2006). We implemented the two-stage method using R version138

3.5.0 (R Core Team, 2017). A two-sided P value of less than 0.05 was considered statistically significant.139

Choosing the Number of Signatures140

The number of signatures, K, needs to be determined prior to any of the above analyses. We adopted the141

method of Shiraishi et al. (2015) to determine K . Their method is based on the following criteria:142

1. The optimal value of K is selected over a range of K values such that the likelihood remains143

relatively high while simultaneously having relatively low standard errors for the parameters.144

2. Pairwise correlations between any two signatures (the kth signature and the k′th signature, say)145

are measured by calculating the Pearson correlation between their estimated exposures across all146

samples, (i.e., the correlation between (q̂1,k, . . . , q̂I,k) and (q̂1,k′ , . . . , q̂I,k′)). K is chosen such that no147

strong correlation (i.e., >0.6) exists between any pair.148

For full details see Shiraishi et al. (2015).149

Application to Tumor Evolution150

USC Colon Cancer Data151

Our goal is to identify whether any new mutational signatures occur during colon cancer growth that152

distinguish cancer evolution from normal tissue evolution. To achieve this, we classify somatic mutations153

into two catalogs according to time of occurrence: those that accumulated between the time of the zygote154

and the first tumor cell, which we call trunk mutations, and those that occur de novo during tumor growth,155

which we refer to as branch mutations. We then estimate mutational signatures in the two sets of catalogs156

and test whether the mean mutational exposures differ between them.157

We analyzed a total of 16 colon tumors. Tumor and adjacent normal tissue were subject to whole158

exome sequencing, and somatic mutations called using the GATK pipeline and MuTect (details below).159

Somatic mutations in the tumors were defined as nucleotide variants that were detected in tumor tissue160

but did not also appear in the patient-matched normal tissue. We used multi-region tumor sampling to161

allow us to distinguish between trunk from branch mutations (Siegmund and Shibata, 2016). Each tumor162

was sampled twice, with bulk tissue samples taken from opposite tumor halves. We classified somatic163

mutations appearing in both tumor halves as trunk, because only trunk mutations are likely to appear164

in both tumor halves, while mutations found on only one side of a tumor were labeled as branch. This165

approach has previously been shown to be 99% sensitive for calling trunk mutations and 85% sensitive166

for calling branch mutations (Siegmund and Shibata, 2016). Fifteen of the 16 tumors were previously167

analyzed in a study of cell motility (Ryser et al., 2018).168

The sequence data were processed using the GATK pipeline version 3.7 (DePristo et al., 2011) and169

somatic mutations called with MuTect version 1.1.7 (Cibulskis et al., 2013), applying the quality filters170

KEEP (default parameters) and COVERED (read depth of 14 in tumor and 10 in matched normal - use of171
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a lower coverage threshold in normal tissue is as recommended in (Cibulskis et al., 2013)). We excluded172

any mutations that either had an allele frequency less than 0.10, because sequencing errors are more173

common among low-frequency mutations (Cibulskis et al., 2013), or that were not also found by Strelka174

(Saunders et al., 2012), which we used as a confirmatory control. Somatic mutations on chromosomes 1175

to 22 were used for mutational signature analysis.176

RESULTS177

Application to Tumor Evolution178

A total of 12,554 somatic single-nucleotide substitutions were identified, with a median of 277 per sample179

(range: 82 - 1,762) (See Table S3.). One tumor with microsatelite instability has more than double the180

number of somatic mutations (1751 side A, 1762 side B) than any of the remaining 30 catalogs (all <750181

mutations). In our first analysis, we compared the mutational exposures in side A to those in side B. If the182

tumors represent a single clonal expansion, we would expect similar mutational exposure frequencies in183

the two catalogs from the same tumor. Indeed, this is what we found (Table 2).184

We identified a median of 174 trunk and 186 branch mutations per tumor. The numbers ranged from 49185

to 1,578 trunk mutations and from 66 to 503 branch mutations (Fig. 1A). Interestingly, the microsatellite186

instable tumor had the most trunk mutations, but not the most branch mutations, suggesting that during187

tumor growth the mutation frequency is similar in microsatellite stable and instable tumors. Fig. 1B188

shows that the C>T substitution is most common in all trunk catalogs, and most branch catalogs. The189

spontaneous deamination of methylated Cs in CpGs is known to contribute to hotspots of C>T mutation190

in the genome.191

We identified three mutational signatures in our data (see Fig. S4.). Those three signatures, and their192

corresponding exposures, are depicted in Fig. 2. The signature shown in the yellow box in the same193

figure, involving C>T mutations at NpCpG sites, resembles signature 7 in Shiraishi et al. (2015), where194

it was identified in 25 out of 30 cancer types and likely relates to the deamination of 5-methylcytosine195

(‘aging’); the signature in the orange box, involving T>G mutations at GpGpTpGpN sites, is novel; the196

third signature, in the red box, is qualitatively similar to signature 17 in Shiraishi et al. (2015), reflecting a197

signal specific to colorectal cancers. The pairwise cosine similarities between pairs of signatures are 0.12,198

0.01, and 0.02 which are rather dissimilar from each other given the [0, 1] range for cosine similarity.199

Using HiLDA, we test whether the three signatures differ in mean exposure between trunk and branch200

mutations.201

Our global test strongly suggests that, in our data, the signature exposures statistically differ between202

trunk and branch catalogs (Bayes Factor 1265.0). Each of the individual signatures (depicted in Fig. 2B) is203

found to differ in exposure between the two sample groups, a conclusion supported by both HiLDA and the204

two-stage method (Table 3). From Fig. 2A, it is evident that the exposures of the first (‘aging’) signature205

in trunk mutations is almost always greater than that for the matching catalog of branch mutations, which206

is intuitively consistent with the fact that trunk mutations may well reflect an accumulation of mutations207

over the life of the subject, whereas branch mutations are accumulated only after tumor initiation. For the208

previously unseen signature, the higher exposures in branch catalogs might suggest that this signature’s209

underlying mechanism for generating mutations might be associated with the processes occurring during210

tumor evolution as opposed to normal development. From Fig. 2C, we observed that the distributional211

ranges of the two groups of mutational exposures have some overlaps, but that the centers of each group,212

i.e., the means of mutational exposures, are clearly deviated from each other. However, the distributional213

radii, indicating the variances of mutational exposures, do not substantially differ between the groups.214

We sought to validate the discovery of the previously unseen signature using both targeted sequencing215

data from the same tumor set (Siegmund and Shibata, 2016) and using publicly available data from the216

Cancer Genome Atlas. Four T>G substitutions that we assigned to the previously unseen signature217

were part of an independent validation set of mutations subjected to targeted, high-coverage Ampliseq218

technology (Siegmund and Shibata, 2016); all four of these T>G substitutions failed to validate. Further,219

a systematic analysis of data from the Cancer Genome Atlas Williams et al. (2016) also did not find220

evidence for this signature. Therefore, we cannot rule out that the signature is the result of sequencing221

error. We now go on to assess the reliability of results using a simulation study.222
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Simulation Study223

We conducted a simulation study to assess the performance of both HiLDA and the two-stage approach in224

terms of the false-positive rate (FPR) and true-positive rate (TPR), in local, univariate tests of the difference225

in mean exposure between two groups of mutational catalogs. In order to assess the functionality of the226

methods in a setting similar to that of the USC data, we simulate somatic mutations directly using the227

estimated signatures ( fff k) from Fig. 2 for the same number of mutational catalogs (two groups of 16228

catalogs each) and somatic mutations per catalog (Ji in S3 Table). The mutational exposures (qqqiii) were229

indirectly used to derive the concentration parameters of the Dirichlet distributions. The scenarios are as230

follows:231

1. The two groups of mutational catalogs are from separate Dirichlet distributions with parame-232

ters ααα(1) = (9.2,0.2,7.5) and ααα(2) = (4.2,0.6,7.3). Here, the αααs corresponds to the maximum-233

likelihood estimated parameters from the three exposure distributions in the trunk and branch muta-234

tional catalogs. This gives mean exposures of µµµ(1) = (0.54,0.01,0.44) and µµµ(2) = (0.35,0.05,0.60)235

in trunk and branch catalogs, respectively, for the aging signature, new signature, and random236

signature.237

2. The two groups of mutational catalogs are from the same Dirichlet distribution, Dir(4.2,0.6,7.3),238

(so here we use the concentration parameters estimated from the branch mutational catalogs).239

For each tumor, mutational exposures qqqiii, are drawn from the Dirichlet distribution. Each set of240

probabilities parameterize a multinomial distribution later used to probabilistically choose the underlying241

mutational signature for a mutation (See Fig. S5.). Then, every mutation feature in the mutational242

pattern of the mutation is simulated independently from a corresponding multinomial distribution of the243

chosen signature. To estimate the FPRs, 1000 sets of data were simulated for scenario 2, when there is244

no difference in the exposure distribution between two groups of mutational catalogs. The two-stage245

method is slightly conservative for 1st and 3rd signatures (resulting FPRs of 4.3%, 5.2%, and 4.3%) when246

testing at the 5% significant level (Table 4). In comparison, HiLDA showed better control of the FPR by247

using the 95% credible interval of the posterior distributions (4.8%, 5.0%, and 5.1%). The Wald test also248

showed control of the FPR, except in the case of the rare signature when it was noticeably lower (3.7%),249

presumably due to the asymmetric posterior distribution.250

We then moved to scenario 1, where we simulated 200 data sets with a difference in mean exposures251

between the two groups of catalogs. Here, the statistical powers of both HiLDA and the two-stage method252

are high when detecting the difference in exposures for the 1st and 3rd signatures (Table 4). In contrast,253

for the 2nd signature, which has the lowest mean mutational exposure, the TPRs of all methods are254

lower (77.5% - 85.5%). By using the 95% credible interval of posterior distributions, HiLDA is able to255

distinguish a difference more often than the two-stage method (99.5% vs. 99.0%, 85.5% vs. 77.5%, and256

91.5% vs. 88.0%). At the same time, using the credible interval resulted in higher TPRs compared to257

performing a Wald test (85.5 % vs. 80.5% for the 2nd signature). In summary, across tests involving these258

three mutational signatures, HiLDA provides higher statistical power to the TS method with a tendency of259

better improvement for signatures with lower mutational exposures, i.e., the power difference between260

HiLDA and the TS method is the highest (8%) for signature 2 with the lowest mean mutational exposures.261

The improvements in the power to detect the mean exposure difference is presumably due to the fact that262

HiLDA accounts for the uncertainty in the estimated mutational exposures and provides better model fit263

of the posterior distributions. All data were simulated in R 3.5.0 using the hierarchical Bayesian mixture264

model described in the methods section. All replicates reached convergence with an Rhat value less than265

1.05 for each of the scenarios shown in Tables 2-4.266

DISCUSSION267

In this paper, we present a new hierarchical method, HiLDA, that allows the user to simultaneously268

extract mutational signatures and infer mutational exposures between two different groups of mutational269

catalogs, e.g., trunk and branch mutations in our example application. Our method is built on the approach270

of Shiraishi et al. (2015), in which mutational signatures are characterized under the assumption of271

independence, and it is the first to provide a unified way of testing whether mutational processes differ272

between groups (here, between early and late stages of tumor growth). As a result, our method allows273

us to appropriately control the false positive rates while providing higher power by accounting for the274

accuracy in the estimated mutational exposures.275
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In our analysis of the USC data, which consist of 32 mutational catalogs extracted from tumors from276

16 CRC patients, our method detected three signatures and indicated a statistically significant difference277

in mean exposures between groups. Two of the three signatures resemble signatures 7 and 17 found by278

Shiraishi et al. (2015). But, in addition, we found a novel signature Shiraishi et al. (2015). Signature 7279

appears significantly more often in trunk mutations, which is consistent with the fact that it has previously280

been related to aging and trunk mutations have a longer time over which to occur (conceivably over the281

lifetime of the patient) than do branch mutations (which occur only during tumor growth). The new282

signature, which occurred more often in low frequency branch mutations, is very similar to a sequencing283

artifact described by Alexandrov et al. (2018) (cosine similarity = 0.93). We note that, for the USC data,284

the conclusions obtained from HiLDA were qualitatively the same as those obtained from the TS method.285

This is likely due to the relatively large effect size here (i.e., the difference of mean exposures between the286

two groups, divided by the standard errors of same, also known as the signal-to-noise ratio). (Alexandrov287

et al., 2018).288

In the simulation study, both HiLDA and the TS approach were applied to datasets consisting of 16289

tumors simulated under two scenarios to test for between group differences in the mutational exposures of290

three signature. The results indicated that our unified approach has higher statistical power for detecting291

differences in exposures for these signatures while controlling the 5% false positive rate. We suspect that292

the improvement in statistical power is because our unified method explicitly allows for the uncertainty293

of inferred mutational exposures, while the two-stage method fails to do so since it incorporates only294

the point estimates of those exposures. In addition, HiLDA provides posterior distributions for each295

parameter, thereby allowing construction of 95% credible intervals for parameters, and their differences,296

for example. As expected, this fully parametric approach is then more powerful than nonparametric297

approaches, which we see particularly when testing for differences in the rarer signatures.298

We also note that the two-stage approach can become problematic with regards to controlling the type299

I error rate in particular scenarios, e.g., when the variances of exposures differ widely between the two300

groups. In our simulation study, we aimed to emulate the USC data, meaning that the exposure variances301

were quite similar between groups. Consequently, the Wilcoxon rank-sum test, the second-stage of the302

TS approach, was able to maintain a type I error of 5%. However, we note that the Wilcoxon rank-sum303

test is sensitive to differences found in either location or scale parameters of the two distributions being304

tested, i.e., it is sensitive to changes in both the mean and the variance. Therefore, when the variances305

change between two groups, the Wilcoxon rank-sum test may indicate statistically significant differences306

in distributions even when the means have not changed, (i.e., due to the difference in shape parameters307

rather than a difference between location parameters). In contrast, HiLDA explicitly focuses on detecting308

differences in means, and is robust to effects such as changes in variance. Consequently, when applying309

the TS method, one should be wary of interpreting significant results as evidence of a ”difference in310

means” when using the TS method (as seems to be common Qin et al. (2018); Meier et al. (2018); Network311

et al. (2017)). We note that scenarios in which the variance of the estimated exposures differs will be312

common if the numbers of mutations per tumor varies between the two groups (e.g. when comparing313

microsatellite instable vs. microsatellite stable colon tumors), leading to an inflated false-positive rate if314

results from the TS method are interpreted as being evidence of a difference in means. (See Fig. S6. for a315

specific example of this.) We intend to explore this issue further in a future paper. We also intend to more316

fully investigate the factors that drive the ability to detect significant difference between groups across a317

much wider variety of scenarios.318
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Notation Description

I Total number of mutational catalogs (indexed by i)
Ji Number of observed mutations in ith mutational catalog (indexed by j)
L Number of features to include. Here, we use the nucleotide substitution, flanking bases

and transcription strand (indexed by l)
MMM Vector of the maximum numbers of possible values, (M1, . . . ,ML), for each mutation

feature, (indexed by Ml), M1 = 6 for nucleotide substitution, M2 = 4 for flanking base,
(A, C, G, T), ML = 2 for transcription strand, (+,−)

K Total number of mutational signatures (indexed by k)
XXX i, j Observed mutation characteristic vector, (xi, j,1, . . . ,xi, j,L), for the jth mutation from

the ith mutational catalog (indexed by xi, j,l)
zi, j Index of the latent assignment for XXX i, j, zi, j ∈ {1, . . . ,K}
qqqi,k Probability vector of signature k exposure in mutational catalog i, (qi,1, . . . ,qi,K), with

∑k qi,k = 1
fff k,l Probability vector of observing any of Ml elements for lth mutation feature, fff k,l =

( fk,l,1, . . . , fk,l,Ml ) with ∑ml
fk,l,ml = 1

FFFk A tuple of probability vectors with length L, ( fff k,1, . . . , fff k,L)

ggg A vector indicating group membership of the samples. (gi ∈ {1,2} for each sample i)
ααα A tuple of concentration parameters of a Dirichlet distribution with length K,

(α1, . . . ,αK), where the dispersion φ = ∑k αk
µµµ A tuple of expected values of qqq of a Dirichlet distribution with length K, (µ1, . . . ,µK),

where ∑k µk = 1.

Table 1. List of notation.
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Figure 1. The numbers of somatic mutations in 32 mutational catalogs obtained from 16 colon cancer
patients in the USC data and their mutation spectra.
(A) The number of somatic mutations in 16 tumors, each of which contributes 2 mutational catalogs
denoted as trunk (dark blue) and branch (light blue).
(B) The percentage bar plot of relative frequencies for six substitution types in the 16 trunk mutational
catalogs (left side) and the 16 branch mutational catalogs (right side).
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Figure 2. mutational exposures and three mutational signatures from the analysis of 16 trunk mutational
catalogs and 16 branch mutational catalogs in the USC data (16 colon cancer patients).
(A) From top to bottom, the three plots represent the somatic mutation counts, the corresponding
mutational exposures, and the mutational exposures sorted by group (trunk/branch) and the exposure
frequency of the first signature (yellow).
(B) The three mutational signatures with four flanking bases.
(C) The distributions of mutational exposures of the three mutational signatures highlighted by group,
where the branch mutational catalogs are highlighted as pink and the trunk ones are highlighted as blue.

10/15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/577452doi: bioRxiv preprint 

https://doi.org/10.1101/577452


Side A - Side B HiLDA-CI HiLDA-Wald TS-Wilcoxon

Testsa Coef.
[
95% C.I.

]
b p value p value

∆1 0.002
[
-0.079, 0.083

]
0.9863 0.7804

∆2 0.000
[
-0.029, 0.029

]
0.9875 0.8965

∆3 -0.002
[
-0.083, 0.086

]
0.9608 0.9852

H0 : ∆1 = ∆2 = ∆3 = 0 Bayes FactorM2/M1
= 0.021

a ∆k =
α
(2)
k

∑k α
(2)
k

− α
(1)
k

∑k α
(1)
k

, the difference in the mean exposure of signature k in group 1 and 2.

b 95% credible interval from the posterior distribution.

Table 2. Comparing mutational exposures from two sets of mutational catalogs, Side A and Side B, in
the USC data.
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Branch - Trunk HiLDA-CI HiLDA-Wald TS-Wilcoxon

Testsa Coef.
[
95% C.I.

]
p value p value

∆1 -0.210
[
-0.295, -0.127

]
<0.0001 0.0002

∆2 0.064
[
0.035, 0.099

]
0.0001 0.0075

∆3 0.146
[
0.056, 0.231

]
0.0011 <0.0001

H0 : ∆1 = ∆2 = ∆3 = 0 Bayes FactorM2/M1
= 1265.0

a ∆k =
α
(2)
k

∑k α
(2)
k

− α
(1)
k

∑k α
(1)
k

, the difference in the mean exposure of signature k in group 1 and 2.

b 95% credible interval from the posterior distribution.

Table 3. Comparing mutational exposures in colorectal cancer from two sets of mutational catalogs,
trunk and branch, in the USC data.
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Methods ∆1 ∆2 ∆3

FPRs HILDA-CIa 4.8 % 5.0% 5.1%
HILDA-Waldb 5.1 % 3.7% 5.4%
TS-Wilcoxon 4.3 % 5.2% 4.3%

TPRs HILDA-CI 99.5% 85.5% 91.5%
HILDA-Wald 99.5% 80.5% 92.5%
TS-Wilcoxon 99.0% 77.5% 88.0%

a Percentage of 95% credible intervals that exclude zero.
b Percentage of P-values <0.05 after applying the Wald test to the posterior distribution.

Table 4. The false positive rates (n = 1,000) and true positive rates (n = 200) of both the two-stage
method and HiLDA when applied to the simulated data.
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