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Abstract 23 

 24 

The population of the United States is shaped by centuries of migration, isolation, growth, and 25 

admixture between ancestors of global origins. Here, we assemble a comprehensive view of 26 

recent population history by studying the ancestry and population structure of over 32,000 27 

individuals in the US using genetic, ancestral birth origin, and geographic data from the National 28 

Geographic Genographic Project. We identify migration routes and barriers that reflect historical 29 

demographic events. We also uncover the spatial patterns of relatedness in subpopulations 30 

through the combination of haplotype clustering, ancestral birth origin analysis, and local 31 

ancestry inference. These patterns include substantial substructure and heterogeneity in 32 

Hispanics/Latinos, isolation-by-distance in African Americans, elevated levels of relatedness 33 

and homozygosity in Asian immigrants, and fine-scale structure in European descents. Taken 34 

together, our results provide detailed insights into the genetic structure and demographic history 35 

of the diverse US population. 36 

 37 
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Introduction 40 

 41 

The United States population is a diverse collection of global ancestries shaped by migration 42 

from distant continents and admixture of migrants and Native Americans. Throughout the past 43 

few centuries, continuous migration and gene flow have played major roles in shaping the 44 

diversity of the US. Mixing between groups that have historically been genetically and spatially 45 

distinct have resulted in individuals with complex ancestries while within-country migration have 46 

led to genetic differentiation.1–6 47 

 48 

Previous genetics studies of the US population have sought to disentangle the relationship 49 

between the genetic ancestry and population history of African Americans, European 50 

Americans, and Hispanics/Latinos. In African Americans, proportions of African, European, and 51 

Native American ancestry vary across the country and reflect migration routes, slavery, and 52 

patterns of segregation between states.2,3,7 European American ancestry is characterized by 53 

both mixing between different European populations as well as admixture with non-European 54 

populations.6,8,9 Isolation and expansions in certain European population have also resulted in 55 

founder effects.10,11 The mixing of European settlers with Native Americans have contributed to 56 

large variations in the admixture proportions of different Hispanic/Latino populations.1,4,5 Among 57 

Hispanics/Latinos, Mexicans and Central Americans carry more Native American ancestry; 58 

Puerto Ricans and Dominicans have higher African ancestry; and Cubans have strong 59 

European ancestry.1,4 Although much effort has been made to understand the genetic diversity 60 

in the US, fine-scale patterns of demography, migration, isolation, and founder effects are still 61 

being uncovered with the growing scale of genetic data, particularly for Latin American and 62 

African descendants with complex admixture history.12,13 At the same time, there has been little 63 

research on the population structure of individuals with East Asian, South Asian, and Middle 64 

Eastern ancestry in the US. 65 

 66 

In addition to being of anthropological interest, understanding fine-scale human history and its 67 

role in shaping genetic variation is also important for interpreting the genetic basis of biomedical 68 

traits. Currently, these roles are best understood in European populations due to Eurocentric 69 

biases in studies.14,15 Consequently, translational interpretability gaps are evident in non-70 

European populations: more variants of unknown significance are identified via genetic testing;16 71 

polygenic risk scores for complex disease risks are much less accurate;15,17 and false positive 72 

genetic misdiagnoses are more common.18 Thus, studies of diverse, heterogeneous populations 73 
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offer substantial value to both our understanding of population history and biomedical 74 

outcomes.19 75 

 76 

In this study, we comprehensively explore the population structure and migration history of over 77 

32,000 genotyped individuals in the US who partook in the National Geographic Genographic 78 

Project, a not-for-profit public participation research initiative to study human migration history.20 79 

Here, we identify patterns of genetic ancestry and haplotype sharing among the project 80 

participants. We combine these patterns with ancestral birth origin records and geographic 81 

information to uncover recent demographic and migration trends. Taken together, we provide 82 

insights into the ancestral origins and complex population histories in the US.  83 

 84 

 85 

Results 86 

 87 

Genetic ancestry and diversity across the United States 88 

To assess the diversity of ancestries among individuals in the Genographic Project, we first 89 

performed PCA and ADMIXTURE analysis (Figure 1A-C; Figure S1-S2).21,22 Since self-90 

reported ancestry does not always reflect genetic ancestry, we objectively assigned continental 91 

ancestry to each Genographic sample using the 1000 Genomes Project data as reference 92 

populations (Methods and Materials). We first trained a Random Forest classifier on the first 93 

10 principal components (PCs) of the 1000 Genome Project samples with super population 94 

classifications as ancestry labels (EUR = European, AMR = Admixed American, AFR = African, 95 

EAS = East Asian, SAS = South Asian). We then used the trained model to assigned continent 96 

ancestry to each individual in the Genographic cohort at 90% confidence. A total of 3,028 97 

individuals (9.3% of total) did not meet the classification threshold, although many have 98 

ancestry patterns similar to other European individuals (Figure 1C; Table S1). The inability to 99 

classify these individuals may be due to the complex and variable admixture profiles of certain 100 

populations such as Hispanics/Latinos. 101 

 102 

Regional differences in genetic ancestry proportions correspond to historical demographic 103 

trends. We evaluated the admixture proportions of classified individuals across the four 104 

designated US Census regions: South, Northeast, Midwest, and West (Figure 1C; Figure S2). 105 

Individuals of European descent make up the majority (78.5%) of the Genographic cohort and 106 

are the most prevalent in the Midwest (82.8% of individuals in the Midwest; P<0.01, Fisher’s 107 
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exact test; Table S1). Individuals classified as having African ancestry are most common in the 108 

South (3.2%), followed by the Northeast (3.0%). Individuals of Native American ancestry are 109 

most prominent in the West and South (9.7% and 7.8% of total individuals in the West and 110 

South, respectively; P<0.05, Fisher’s exact test). East Asians mostly reside in the West (2.1%), 111 

while South Asians are most abundant in the Northeast (1.0%).  112 

 113 

To uncover population substructure, we performed dimensionality reduction with Uniform 114 

Manifold Approximation and Projection (UMAP) on the first 20 PCs of a combined Genographic 115 

and 1000 Genomes Project dataset.23,24 By leveraging multiple PCs at once, UMAP can 116 

disentangle subcontinental structure (Figure 1D-E; Figure S3-S4). Similar to previous 117 

analysis,24 populations in the 1000 Genomes Project form distinct clusters corresponding to 118 

ancestry and geography. The Genographic individuals project into several clusters, overlapping 119 

with the 1000 Genomes Project clusters. Consistent with the PCA and ADMIXTURE analysis, 120 

the largest clusters correspond to European ancestry and cluster closely with the 1000 121 

Genomes CEU and GBR populations (CEU=Utah Residents with Northern and Western 122 

European Ancestry, GBR=British in England and Scotland).  123 

 124 

While UMAP is a visualization tool with no direct interpretation on genetic distance, the 125 

continuum of points connecting UMAP clusters reflects the varying degrees of estimated 126 

admixture between different continental ancestries. In particular, the complex population 127 

structure of Hispanics/Latinos is shown by the points spanning between the clusters of 128 

European, Native American, and African ancestry. Coloring of these points based on ancestry 129 

proportions affirms the relationship between the degree of admixture and their relative position 130 

between reference clusters. Interestingly, African American individuals from both datasets form 131 

a single continuum from the European cluster to the Yoruba (YRI) and Esan (ESN) populations 132 

of Nigeria in the 1000 Genomes Project, indicative of the West African origins of most African 133 

Americans. This observation is consistent with and further expands the previous finding that the 134 

African tracts in the admixed 1000 Genomes populations of ACB and ASW were previously 135 

found to be similar to the Nigerian YRI and ESN populations.2,17 136 

 137 

Population differentiation and migration rate inference across the United States 138 

To better understand the relationship between genetics and geography, we investigated 139 

migration rates for genetically inferred Europeans, African Americans, and Hispanic/Latinos 140 

across the United States. We excluded East Asians and South Asians due to small sample size 141 
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and limited our analysis to the contiguous 48 states. We inferred effective migration rates with 142 

the estimating effective migration surfaces (EEMS) method,25 which statistically characterizes 143 

genetic differentiation via resistance distance across non-homogenous landscapes. By 144 

overlaying a dense regular grid of demes and measuring genetic dissimilarities between 145 

neighboring demes, EEMS quantifies and visualizes areas with high relative rates of effective 146 

migration (colored in blue) and areas with low relative rates of effective migration (also called 147 

migration barriers and colored in dark orange). 148 

  149 

The inferred migration rates for African Americans reveal genetic signatures of historical 150 

demographic events (Figure 2A; Figure S5). Along the Atlantic coast from the Florida 151 

Panhandle to southern Maine, we find high effective migration rates, indicating the constant 152 

migration and similar effective population sizes of African Americans in these states. However, 153 

we also observe a strong north-south barrier to migration starting along the Appalachian 154 

Mountain Range, continuing north up the Mississippi River, and extending west across the rest 155 

of the country. This migration barrier, along with the migration barrier spanning Texas and New 156 

Mexico, reveals a pattern of isolation-by-distance that is consistent with the Great Migration 157 

from the 1910s to the 1960s in which an estimated 6 million African Americans migrated out of 158 

the South to cities across the Northeast, Midwest and West.7,26  159 

  160 

A highly complex pattern of migration exists amongst Hispanics/Latinos with varying migration 161 

rates across the country, capturing regional patterns of genetic similarity. Hispanics/Latinos in 162 

the southwestern states including two regions bordering Mexico--one in California and another 163 

extending from New Mexico to Texas--exhibit high effective migration rates and are separated 164 

by a migration barrier in Arizona (Figure 2B; Figure S5). These two distinct regions likely reflect 165 

known differences in northward migration from east versus west Mexico.8,27 Along the Atlantic 166 

coast from Florida to New York, effective migration has also been fluid. However, barriers to 167 

migration are observed west of the Atlantic coast to the Mississippi River, likely resulting from 168 

varying admixture proportions.  169 

 170 

The patterns of migration for Europeans capture subcontinental structure. Elevated migration 171 

rates are observed across most of the country, except for many states in the Midwest and along 172 

the Atlantic coast. We find low effective migration rates surrounding Minnesota and North 173 

Dakota, potentially due to the genetic dissimilarity of Finnish and Scandinavian ancestry 174 

abundant in the region (Figure 2C; Figure S5).8 We also find reduced migration rates across 175 
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Ohio, West Virginia, and Virginia, suggesting the existence of genetic differentiation along the 176 

Appalachian Mountains. Many of the major cities, such as Chicago, Philadelphia, and Miami, 177 

are also barriers to migration, perhaps due to higher admixture proportions within cities. The 178 

migration barrier encompassing metropolitan New York City may be explained in part by the 179 

presence of divergent European populations, such as Ashkenazi Jews (Figure 2C).  180 

 181 

Coupling fine-scale haplotype clusters and multigenerational birth records uncovers 182 

distinct subcontinental structure  183 

To disentangle more recent and subtle population structure, we performed identity-by-descent 184 

(IBD) clustering on the Genographic cohort and annotated clusters using multigenerational self-185 

reported birth origin data. We first built an IBD network from pairwise IBD sharing among 31,783 186 

unrelated individuals. In this network, vertices represent individuals and edges represent the 187 

cumulative IBD (in centimorgans, cM) between pairs of individuals. We employed the Louvain 188 

method, a greedy heuristic algorithm, to recursively partition vertices in the graph into clusters 189 

that maximize modularity at each level of hierarchy.8,28 The clusters of individuals resulting from 190 

each iteration can be interpreted as having greater amounts of cumulative IBD shared between 191 

individuals within the cluster than with those outside of the cluster. To aid in the interpretation of 192 

the clusters, we merged clusters with low genetic differentiation (FST < 0.0001) at the lowest 193 

level of hierarchy, resulting in a final set of 25 clusters (Table 1). We annotated each cluster 194 

based on ancestral birth origin and ethnicity data and constructed a neighbor-joining tree based 195 

on the FST values (Figure 3). 98% of the 3,028 individuals that were not classified by our 196 

Random Forest model were assigned to a haplotype cluster. No single cluster was 197 

overrepresented by unclassified individuals, as unclassified individuals comprised of 8-11% of 198 

each cluster. 199 

 200 

Genetic and geographic diversity is greatest amongst Hispanic/Latino haplotype clusters. We 201 

identified a total of five Hispanic-related clusters. The largest of these cluster (n=810) is strongly 202 

associated with south Florida (OR = 10.4; p = 2.5e-25; Figure 4, Table S4) but is also found in 203 

California, and Texas (OR ≥ 2; p < 0.05). No single ancestral birthplace characterizes this 204 

cluster, as the US, Mexico, and Cuba each make up more than 10% of the birth origin labels. 205 

Proportions of European ancestry tracts inferred with RFMix29 are higher in this cluster (mean = 206 

72.7%, sd=20.4%) than in the other Hispanic/Latino clusters (mean = 48.0% - 67.4%). Puerto 207 

Ricans characterize a substantial proportion of another Hispanic/Latino cluster associated with 208 

Florida (OR > 4), as well as New York City (OR > 5). Unlike the other Hispanic clusters, the 209 
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Puerto Rican cluster shares the same branch on the FST tree as the African American clusters, 210 

likely due to high proportions of African ancestry (mean = 11.2%, sd = 9.0%) among Puerto 211 

Ricans. 212 

 213 

Three distinct clusters of Hispanics were found in the Southwest (Figure 4): one strongly 214 

associated with New Mexico (OR > 4; p < 0.05), another primarily in Texas (OR > 3; p < 0.05), 215 

and the third associated with Southern California (OR > 2; p < 0.05). Combined with the EEMS 216 

analysis, these clusters confirm our observation of parallel migration routes from east and west 217 

Mexico into Southwestern United States. While the genetic differentiation of these three clusters 218 

are subtle (FST=0.001-0.003), ancestral birth origin patterns and local ancestry proportions for 219 

these clusters reveal meaningful dissimilarities. Whereas the majority of Hispanics in New 220 

Mexico report US ancestral birth origins through grandparents, the recent ancestors of 221 

Hispanics in Texas are predominantly from Mexico. Nonetheless, these two clusters share 222 

similar local ancestry proportions with only slight genetic dissimilarity that result in a moderate 223 

decrease in migration rate (from darker blue to light blue in Figure 2B). The reduced migration 224 

rate along the Texas-Mexico border may be caused by more recent immigrants. Unlike the 225 

Hispanic clusters associated with New Mexico and Texas, the Hispanics in California cluster 226 

contain greater proportions of ancestors from Central and South American (e.g., Colombia and 227 

El Salvador). Proportions of Native American ancestry is also highest in this cluster (Figure 4). 228 

Taken together, these two differences further explain the presence of the migration barrier in 229 

Arizona between the Hispanics in the California and the Hispanics in New Mexico.  230 

 231 

Historical immigration of Europeans into the US occurred in successive waves, with Northern 232 

and Western Europeans making up one wave from the 1840s to 1880s and another wave 233 

comprising of Southern and Eastern Europeans occurring from the 1880s to 1910s.30 Consistent 234 

with this immigration pattern, haplotype clusters with ancestries from Northwest and Central 235 

Europe have higher proportions of US ancestral birth origins than haplotype clusters from 236 

Southern and Eastern Europe, suggesting earlier immigration (Figure 5). The two clusters with 237 

the highest proportion (>75%) of US ancestral birth origin (“Northwest Europe 1” and “Northwest 238 

Europe 2”) have ~4.5% of UK ancestral origins. The Central European cluster and the Irish 239 

cluster both have 66.1% and 68.5% of US ancestral origins, respectively. In contrast, the US 240 

makes up only 62.2% and 34.5% of ancestral birth origin for the clusters of Southern Europeans 241 

and Eastern Europeans, respectively.  242 

 243 
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Unlike the larger European clusters, the smaller European clusters reflect the structure of recent 244 

immigrants and genetically isolated populations, recapitulating earlier findings.8 The geographic 245 

distributions of these subpopulations are more concentrated, and their ancestral birth origin 246 

proportions are overrepresented by specific countries and ethnicities (Figure 6).  Specifically, 247 

Finns and Scandinavians are abundant in the Upper Midwest and Washington; French 248 

Canadians are found in the Northeast; Acadians are present in the Northeast and Louisiana; 249 

and Italians, Greeks, Ashkenazi Jews, and Admixed Jews are mostly located in the metropolitan 250 

area of New York City. Of the European clusters, median cumulative IBD sharing and cROH 251 

lengths are highest amongst Ashkenazi Jews (31.8cM and 11.3 Mb, respectively; Table 1). The 252 

two Jewish-related clusters were identified using self-reported ancestral ethnicity data rather 253 

than birth origin data, since Jewish ancestry is not specific to any single location. Jewish 254 

ancestry, particularly Ashkenazi Jewish ancestry, was more consistently reported on both sides 255 

of the family in the larger Jewish cluster (“Ashkenazi Jewish”), suggesting that individuals are 256 

more admixed in the smaller cluster (“Admixed Jewish”).  257 

 258 

We inferred two haplotype clusters of African Americans separated along a north-south cline, 259 

recapitulating the EEMS migration barrier inference. One cluster is primarily distributed amongst 260 

the northern and western states (“African Americans North”) while the other is distributed 261 

amongst the states southeast of the Appalachian Mountains (“African Americans South”) 262 

(Figure S7). The proportion of US birth origin is higher in the northern cluster than the southern 263 

cluster, further evidence of isolation by distance amongst African Americans in the north.7 These 264 

two clusters share similar cROH lengths but differ in admixture proportions and median IBD 265 

sharing, pointing to a cluster with consistent African American ancestors and a cluster with more 266 

admixed ancestors. Median IBD sharing is higher amongst African Americans in the south 267 

(median IBD = 19.6 cM, median cROH = 3.3 Mb) than in the north (median = 15.9 cM; Table 1) 268 

while the average proportion of African ancestry is higher in the northern cluster than the 269 

southern cluster.  270 

 271 

Four of the clusters reflect recent immigrants from Asia (Figure S8), which grew rapidly in the 272 

mid-20th Century after the elimination of national origin quotas.31 The recency of immigration 273 

among these clusters is indicated by the less than 30% of ancestral birth origins coming from 274 

the US. Geographically, individuals in these clusters primarily reside in major cities. East Asians 275 

predominantly inhabit the metropolitan areas of the West and Northeast (OR > 2), Southeast 276 

Asians are enriched in the West (OR > 2.5), and South Asians are strongly associated with the 277 
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Northeast (OR > 2.5). Despite its small size, the cluster of Middle East individuals reflects many 278 

of the known demographic patterns of Arab Americans, as individuals in this cluster are 279 

primarily of Lebanese origin and are distributed in the Northeast as well as metropolitan Detroit. 280 

cROH lengths are particularly long for South Asians (median cROH = 10.3 cM), Southeast 281 

Asians (median cROH = 7.8 cM), and Middle Easterners (median cROH = 8.2 cM), potentially 282 

reflecting inbreeding patterns found in their ancestral regions.32 283 

 284 

Discussion 285 

 286 

As the US population is becoming increasingly diverse, genomic studies are simultaneously 287 

growing in scale and relevance; to increase scientific and ethical parity, these studies must 288 

move beyond the current practice of evaluating genetically homogenous groups in isolation.15 289 

Here, we provide an integrative framework for analyzing population structure in ancestrally 290 

heterogeneous individuals. Our comprehensive approach has allowed us to capture spatial 291 

patterns of gene flow within and between subpopulations that are difficult to infer from a single 292 

method alone. For example, EEMS is limited in identifying unique subpopulations, while 293 

haplotype clustering cannot assign partial membership for admixed individuals to multiple 294 

clusters. An integrative approach can thus enable greater insights into populations with complex 295 

histories.  296 

 297 

Consistent with prior studies,4,9 the recent demographic history of Hispanic/Latino populations is 298 

complex. Large variations in admixture proportions within and between subpopulations are 299 

reflected by US Census data and can likely be explained by numerous inferred migration 300 

barriers. For example, regional differences in the Southwest are highlighted by an inferred 301 

migration barrier in Arizona and distinct haplotype clusters surrounding this region. These 302 

differences are likely due to higher proportions of Native American ancestry as well as more 303 

Central and South American origins in the California Hispanics/Latinos compared to other 304 

southwestern Hispanic/Latinos. Interestingly, although the New Mexican cluster is distinct from 305 

the Texan cluster, high levels of gene flow are inferred from southern New Mexico to central 306 

Texas, suggesting that certain individuals in these two clusters are genetically similar and may 307 

share an ancestral origin (i.e. Mexico). In contrast, those in northern New Mexico are more 308 

genetically differentiated, as indicated by a migration barrier, but share the same cluster; these 309 

are likely Nuevomexicanos, descendants of Spanish colonial settlers. 310 

 311 
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The fine-scale population structure of African Americans also reflects known historical events 312 

following the transatlantic slave trade, during which millions of West Africans were forcibly 313 

moved to the Americas. Subsequently, the movement of African Americans during the Great 314 

Migration has been shown to correlate with current patterns of relatedness across US census 315 

regions.7 Our results show barriers to migration and gene flow at fine-scale, particularly along 316 

the Appalachian Mountains. A north-south migration barrier is also present west of the 317 

Mississippi River, and is further supported by the north-south locations of two African American 318 

clusters that emphasize this divide. The southern African American cluster contains more recent 319 

ancestors outside the US, particularly of Caribbean origin, than the northern African American 320 

cluster. These genetic signatures illustrate the impact of recent migration patterns on modern 321 

population structure. 322 

 323 

Our ability to identify population structure for certain ancestries is subject to participation among 324 

individuals from those groups. In particular, individuals with Asian ancestries account for over 325 

5% of US population, but they are underrepresented in US population genetics studies, 326 

hindering the investigation of their ancestry in prior studies.8 Our analyses of East Asian, 327 

Southeast Asian, South Asian, and Middle Eastern populations therefore provide initial insights 328 

into their genetic structure. The ancestral origins and geographic distributions of these clusters 329 

are consistent with US Census reports. Since these populations descend from more recent 330 

immigrants, the observed patterns of homozygosity within several of these clusters likely reflect 331 

consanguinity patterns in some of their ancestral regions. Specifically, the long cROH in South 332 

Asians may reflect endogamy for example related to the caste system in India, while similar 333 

patterns among the Middle Eastern and Southeast Asian clusters may be capturing 334 

consanguineous marriage practices in those regions.33–35 Given the small size of these clusters, 335 

however, further studies of more individuals are needed.   336 

 337 

Population history in the US is best characterized among the most populous European descent 338 

individuals. Genetic diversity tends to be highest in more densely populated regions, likely due 339 

to the presence of multiple subpopulations in the same place. Many of the European 340 

subpopulations we identified are similar to those previously found—e.g., French Canadians, 341 

Acadians, Scandinavians, and Jews (Supplementary Discussion).8 The geographic distribution 342 

of these subpopulations, particularly those that are more genetically diverged, overlap in the 343 

metropolitan areas in the Northeast, Midwest, and California. 344 

 345 
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The precision of population labels assigned to clusters of individuals is a function of 346 

demographic complexity and sample size. For example, Finnish ancestry is clearly European 347 

but genetically distinct from several other European populations due to historical bottlenecks, 348 

making this ancestry cluster relatively easily separable. By contrast, most Americans of 349 

European descent have heterogeneous ancestors from several northwestern European 350 

countries who have admixed over time. Additionally, while we identify and describe some 351 

substantial structure among Hispanic/Latino populations, considerably more is likely to exist and 352 

remains to be learned from larger and more diverse future studies. Similarly, sub-regional 353 

resolution into the ancestry of recent Asian immigrants to the US has been relatively limited in 354 

population genetics studies, and the structure of this immigration will be learned from larger 355 

future studies. Additional considerations relating to population label precision are the accuracy 356 

of self-reported birth records and variable granularity of geopolitical boundaries. 357 

 358 

The emergence of biobank-scale genomic data is enabling more complete pedigrees,36 greater 359 

discoveries of fine-scale population structure, and more precise insights into health-related 360 

associations. An estimated 26 million people have taken a direct-to-consumer ancestry test,37 361 

indicating widespread interest in ancestry and heritable factors. As participation in genetic 362 

studies increase, especially in the US with the All of Us Research Program, so does the need 363 

for inferring more granular demographic histories in study cohorts. Understanding such structure 364 

is important to account for stratification, prevent the overgeneralization of results, and avoid 365 

exacerbating existing biases.14,15 This study demonstrates the potential of coupling genetic data 366 

with geographic and birth origin data to reconstruct such demographic histories, particularly in a 367 

large and heterogeneous population.   368 
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Materials and Methods 369 

 370 

Human Subjects 371 

The Genographic Project and Geno 2.0 Project received full approval from the Social and 372 

Behavioral Sciences Institutional Review Board (IRB) at the University of Pennsylvania Office of 373 

Regulatory Affairs on April 12, 2005. The IRB operates in compliance with applicable laws, 374 

regulations, and ethical standards necessary for research involving human participants. All data 375 

in this study came from participants that consented to have their results be used in scientific 376 

research. All data was deidentified. 377 

 378 

Participants provided genotype data, geographic location (postal code), ancestral birth origin, 379 

and self-declared ethnicity. We limited our study to those individuals who provided valid 380 

geographic location. Ancestral birth origin and self-declared ethnicity data were collected up to 381 

the grandparents of the participants with ~60% of individuals provided complete pedigrees.  382 

 383 

Genotyping and Quality Control 384 

Participants of the Genographic project were sequenced with the GenoChip array,20 an Illumina 385 

iSelect HD custom genotyping bead array with approximately 150,000 Ancestry Informative 386 

Markers. Quality control and phasing of data is described in Supplemental Materials and 387 

Methods. After QC, 32,589 individuals and 108,003 sites remained. 388 

  389 

Principal Component Analysis 390 

We performed principal component analysis on the quality-controlled samples using FlashPCA 391 

version 2.0.22 We included the genotypes of all 2,504 individuals from the 1000 Genomes 392 

Project as reference samples. We computed PCs across 108,003 shared sites for 1000 393 

Genome Project individuals and then projected the Genographic individuals on the same 394 

principal component space. 395 

  396 

Continental Ancestry Assignment 397 

We assigned continental ancestry to each Genographic sample by using a random forest 398 

classifier. Using the PCs and known super population assignment (AFR=African, 399 

EUR=European, EAS=East Asian, AMR=American, and SAS=South Asian) from the 1000 400 

Genome Project samples as training data, we applied the classifier to assign ancestry to each 401 
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Genographic sample at 90% probability. We considered unassigned ancestries as “other” 402 

(OTH). 403 

  404 

Genetic Ancestry Proportion Estimation 405 

We estimated admixture proportions using ADMIXTURE by first analyzing the 1000 Genomes 406 

Project in unsupervised mode to learn allele frequencies.21 Then, we projected the learned allele 407 

frequencies onto the Genographic samples to obtain the admixture proportions. We ran 408 

ADMIXTURE with k=2-9 and chose k = 5 as the most stable representation. 409 

 410 

UMAP 411 

We applied the Uniform Manifold Approximation and Projection (UMAP) method to visualize 412 

subcontinental structure.23,24 We first combined the PCs of the Genographic samples and the 413 

1000 Genome Project samples into one dataset. We then applied UMAP on the first 20 PCs 414 

from the joint dataset to produce a two-dimensional plot. We tested various parameter choices 415 

for UMAP and found that the default nearest neighbor value of 15 and the minimum distance 416 

values of 0.5 delivered the clearest result. Coloring of UMAP plots are described in the 417 

Supplemental Materials and Methods.  418 

 419 

Estimating Effective Migration Surfaces 420 

We estimated migration and diversity relative to geographic distance using the estimating 421 

effective migration surfaces (EEMS) method for Genographic individuals that were classified 422 

under African, European, and Native American ancestries.25 We excluded East Asian and South 423 

Asian ancestries due to low sample size and density. We used unrelated individuals with 424 

available postal code data. We first computed pairwise genetic dissimilarities with the EEMS 425 

bed2diffs tool and then ran EEMS with runeems_snps, setting the number of demes to 500. Per 426 

the recommendation in the manual, we adjusted the variance for all proposed distributions of 427 

diversity, migration, and degree-of-freedom parameters such that all were accepted 10%-40% 428 

of the time. We increased the number of Markov chain Monte Carlo (MCMC) iterations until it 429 

converged. 430 

  431 

Haplotype Calling and Network Construction  432 

We used IBDSeq version r1206 to generate shared identity-by-descent (IBD) segments from 433 

genotype data for all unrelated individuals.38 Unlike other IBD detection algorithms, IBDseq does 434 

not reply on phased genotype data and is less susceptible to switch errors in phasing that can 435 
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cause erroneous haplotype breaks. We filter for IBD segments greater than 3cM. We removed 436 

segments that overlapped with long chromosomal regions (1 Mb) that had no SNPs across all 437 

unrelated individuals. These sites can result in false positives IBD sharing and likely correspond 438 

to centromeres and telomeres. We calculate the cumulative IBD sharing between individuals by 439 

summing the length of all shared IBD segments. We then constructed a haplotype network of 440 

unrelated individuals by defining vertices an individuals and edge weights between vertices as 441 

the cumulative IBD sharing between individuals. We filtered to keep edges with cumulative IBD 442 

sharing is ≥12 cM and ≤72 cM, as previously described.8  443 

 444 

Detection of IBD Clusters 445 

To identify clusters of related individuals in the haplotype network, we used the Louvain Method 446 

implemented in the igraph package for R. The Louvain Method is a greedy iterative algorithm 447 

that assigns vertices of a graph into clusters to optimize modularity (a measure of the density of 448 

edges within a community to edges between communities). The Louvain Method begins by first 449 

assigning each node as its own community and then adds node i to a neighbor community j. It 450 

then calculates the change in modularity and places i in the community with that maximizes 451 

modularity. The algorithm repeats this continuously and terminates when no vertices can be 452 

reassigned.  453 

 454 

We partitioned the haplotype network into clusters by recursively applying the Louvain Method 455 

within subcommunities. At the highest level, we take the full, unpartitioned haplotype graph and 456 

identify a set of subcommunities. We isolate the vertices within each subcommunity, keeping 457 

only the edges between those vertices to create separate new networks. We then apply the 458 

Louvain Method to the new subgraphs. We repeat this process up to four levels. We combined 459 

subcommunities with low genetic divergence based on FST values of < 0.0001. 460 

 461 

Annotation of IBD Clusters 462 

We used a combination of ancestral birth origins and self-reported ethnicities to discern 463 

demographic characteristics of each cluster. For each cluster, we quantified the proportion of 464 

each birth origin (i.e. country of origin) amongst all four grandparents, treating each 465 

grandparent’s origin equality. We use these proportions to inform population labels. Clusters in 466 

which a single non-US birth origin was in high proportions was labeled with that country. In 467 

cases where multiple non-US birth locations exists in approximately equally high proportions, 468 

we assigned a label representing the broader region (e.g. Eastern Europeans for Poland, 469 
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Lithuania, Ukraine, and Slovakia; East Asia for Japan, China). For certain clusters, annotations 470 

could not be easily discerned by birth origin data. In these cases, we relied on self-reported 471 

ethnicities to label the clusters as these populations were found to be less associated with a 472 

non-US country (e.g. Ashkenazi Jews) or the population has resided in the US for generations 473 

(African Americans, Acadians).  474 

 475 

Mapping IBD Clusters 476 

We mapped individuals using their present-day geographic location. We aggregated individuals 477 

from the same county using the postal code to county FIPS code mapping provided by the US 478 

Census.  Longitude and latitude points of each county was found using the same data from the 479 

US Census. We identified enriched counties for each cluster by performing a Fisher's exact test 480 

on each county that had ≥30 individuals to obtain an odds ratio and significance value. We 481 

mapped only counties with statistically significant (p<0.05) enrichment and an odds ratio (OR) of 482 

greater than 1. The size of the circles is scaled to the number of individuals in each location. 483 

 484 

Runs of Homozygosity 485 

We used PLINK v1.90b3.39 to infer runs of homozygosity with a window of 25 SNPs.39 We 486 

calculated the cumulative runs of homozygosity (cROH) size by summing the lengths of 487 

homozygous segments. 488 

 489 

Local Ancestry Inference 490 

We inferred local ancestry with RFMix v1.5.4 for Genographic samples in clusters that were 491 

annotated as Hispanics/Latinos and African Americans.29 We used samples of African (LWK, 492 

MSL, GWD, YRI, ESN, ACB, and ASW; N = 661), European (CEU, GBR, FIN, IBS, and TSI; N 493 

= 503), and Native American (MXL, PUR, CLM, and PEL; N = 347) ancestry from the 1000 494 

Genomes Project as the reference population. We ran RFMix with the default minimum window 495 

size (0.2 cM) and a node size of 5 with the flags: -w 0.2, -n 5. Global ancestry proportions were 496 

derived by quantifying the proportions of total local ancestry tracts for each ancestry.  497 

 498 

Genetic Divergence 499 

We computed weighted Weir-Cockerham FST estimates for each pair of haplotype clusters using 500 

PLINK v1.90b3.39.39 Using the distance matrix of FST values between clusters, we constructed 501 

an unrooted phylogenetic tree using the neighbor joining method implemented in scikit-bio.40 We 502 

visualized the tree using Interactive Tree Of Life.41  503 
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Data and Code Availability 504 

Genotype data and associated metadata are available to researchers through an application 505 

process and data usage agreement. We encourage qualified researchers to email the 506 

Genographic team at National Geographic Society (genographic@ngs.org) for information on 507 

and access to the Genographic database. 508 

 509 

Custom scripts generated to analyze the data in this paper are available through GitHub 510 

(https://github.com/chengdai/genographic_ancestry). 511 
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Figure 1. Genetic Diversity of the US Population 625 

(A) Principal Components Analysis of individuals in the United States and in the 1000 Genome 626 

Project. Each individual is represented by a single dot. Individuals in this study are colored in 627 

grey while 1000 Genome Population individuals are colored by super population (EUR = 628 

European, AFR = African, AMR = Admixed American, EAS = East Asian, SAS = South Asian). 629 

Principal components (PC) 1 and PC2 are shown. 630 

(B) Similar to (A), with PC3 and PC4 shown. 631 

(C) ADMIXTURE analysis at K=5 of individuals in this study. Each individual was assigned a 632 

continent-level ancestry label using a Random Forest model trained on the super population 633 

labels and the first 10 PCs of the 1000 Genome Project dataset. OTH = individuals who did not 634 

meet the 90% confidence threshold for classification. 635 

(D) UMAP projection of the first 20 PCs. Each dot represents one individual. In (D), individuals 636 

in the 1000 Genomes Project are colored by population, while Genographic Project individuals 637 

from this study are in grey. In (E), 1000 Genome Project individuals are colored in grey while 638 

Genographic Project individuals are colored based on their admixture proportions from 639 

ADMIXTURE. The color for each dot was calculated as a linear combination of each individual’s 640 

admixture proportion and the RGB values for the colors assigned to each continental ancestry 641 

(EUR = red, AFR = yellow, NAT or Native American = green, EAS = blue, SAS = purple). 642 

Distances in UMAP do not directly correspond to genetic distance. See Materials and Methods 643 

for specific population labels.  644 
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Figure 2. Migration Rates of African Americans, Hispanics/Latinos, and Europeans within 646 

the United States. 647 

(A) - (C) Migration rates inferred with EEMS for African Americans (A), Hispanics/Latinos (B), 648 

and Europeans (C). Colors and values correspond to inferred rates, m, relative to the overall 649 

migration rate across the country. Shades of blue indicate logarithmically higher migration (i.e. 650 

log(m) = 1 represents effective migration that is ten-fold faster than the average) while shades 651 

of orange indicate migration barriers. 652 

 653 

 654 

Figure 3. Genetic differentiation of haplotype clusters 655 

Unrooted phylogenetic tree of haplotype clusters was constructed using the neighbor joining 656 

method with FST as genetic distance. Negative branch lengths were converted to zero.  657 
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 658 

Figure 4. Distribution of Hispanic/Latino Haplotype Clusters 659 

(A) Map of counties in which Hispanic/Latino haplotype clusters are enriched. Each dot 660 

corresponds to a county, and the size of the dot signifies the number of samples of the 661 

particular cluster in that county. Only the Hispanic/Latino cluster with the highest odds ratio is 662 

shown for each county, and only the top ten locations with the highest odds ratios are shown for 663 

each cluster. Maps showing the full distribution for each haplotype cluster can be found in the 664 

supplement (Figure S8). 665 

(B) Ancestral birth origin proportions of each cluster for individuals with complete pedigree 666 

annotations, up to grandparent level. Proportions were calculated from aggregating the birth 667 

locations of all grandparents corresponding to members of each haplotype cluster. For each 668 

chart, only the top five birth origins are shown as individual slices; the remaining birth origins are 669 

aggregated into one slice (lightest color).  670 
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(C) Ternary plots of ancestry proportions based on local ancestry inference for each haplotype 671 

cluster. Each dot represents one individual. 672 

 673 

Figure 5. Distribution of European American Haplotype Clusters 674 

(A) Geographic distributions of haplotype clusters corresponding to regional European 675 

ancestries. Each county containing present-day individuals is represented by a dot. The top 20 676 

locations with the highest odds ratio are shown for each cluster. Maps showing the full 677 

distribution for each cluster can be found in the supplement (Figure S8). 678 

(B) Ancestral birth origin proportions for each cluster in (A). Only individuals with complete 679 

pedigree annotations, up to grandparent level, are included. For each chart, only the top five 680 

birth origins are visualized as individual slices; the remaining birth origins are aggregated into 681 

one slice (lightest color).    682 
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 683 

 684 

Figure 6. Distribution of European American Haplotype Clusters 685 

(A) Present-day location of individuals in clusters of more genetically isolated European 686 

populations, similar to Figure 5A. For clarity, the top ten locations with the highest odds ratio are 687 

shown for each cluster. 688 

(B) Ancestral birth origin proportions for each cluster in (A). Only individuals with complete 689 

pedigree annotations, up to grandparent level, are shown. For each chart, only the top five birth 690 

origins are shown as individual slices; the remaining birth origins are aggregated into one slice 691 

(lightest color).  692 

  693 
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Cluster Samples 
Median 

Cumulative ROH 
Median 

Cumulative IBD 

Northwest Europe 1 11,725 2.88 15.23 

Northwest Europe 2 1,571 2.80 15.15 

Ireland 2,137 2.85 15.42 

Central Europe 3,116 2.83 15.06 

Eastern Europe 2,471 3.16 15.37 

Southern Europe 1,626 2.73 14.98 

Italy 697 6.91 14.64 

Greece-Italy 238 7.28 15.02 

Scandinavia 717 3.02 15.54 

Finland 314 3.67 17.50 

Acadia 249 3.89 19.48 

French Canadian 314 2.89 16.60 

Ashkenazi Jewish 1,475 11.26 31.75 

Admixed Jewish 445 2.75 15.50 

Hispanics/Latinos 810 3.53 16.38 

Hispanics/Latinos in California 573 4.10 17.11 

Hispanics/Latinos in New Mexico 163 5.52 21.92 

Hispanics/Latinos in Texas 177 6.27 23.65 

Puerto Rico 350 8.01 26.23 

African Americans South 761 3.34 19.56 

African Americans North 420 2.94 15.90 

East Asia 561 3.65 19.63 

Southeast Asia 325 8.44 17.90 

South Asia 389 10.42 14.82 

Greater Middle East 93 9.01 17.16 

 694 

Table 1. Summary of Haplotype Clusters 695 

Cumulative runs of homozygosity (cROH) was calculated by summing the regions of continuous 696 

homozygous segments. Cumulative IBD was determined by summing IBD segments of ≥ 3 cM 697 

and filtering for only pairs ≥ 12cM and ≤ 72 cM. Statistics were determined within haplotype 698 

clusters, rather than across the ancestrally heterogeneous and imbalanced full network. 699 
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