Human recombinant erythropoietin improves motor function in rats with spinal cord compression myelopathy

Takahiro Tanaka, M.D.^{1¶}, Hidetoshi Murata, M.D., Ph.D.^{1¶*}, Ryohei Miyazaki, M.D.¹,

Tetsuya Yoshizumi, M.D., Ph.D.¹, Mitsuru Sato, M.D.¹, Makoto Ohtake, M.D., Ph.D¹,

Kensuke Tateishi, M.D., Ph.D.¹, Phyo Kim, M.D., Ph.D.², Tetsuya Yamamoto, M.D.,

 $Ph.D.^{1}$

The institutional affiliation of each author

¹ Department of Neurosurgery, Graduate School of Medicine, Yokohama City

University, Yokohama, Japan

² Department of Neurosurgery, Dokkyo Medical University, Tochigi, Japan

[¶] These two authors contributed equally to this work.

*Corresponding Author: Hidetoshi Murata, M.D., Ph.D.

Department of Neurosurgery

Yokohama City University Graduate School of Medical Sciences

3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan

Phone: +81-45-787-2663, Fax: +81-45-783-6121

E-mail: hmurata@yokohama-cu.ac.jp

Conflicts of Interest: Human Recombinant Erythropoietin was kindly provided by Chugai Pharmaceutical Co., Ltd., Osaka, Japan. We do not receive any research funding from this company.

Source of Funding: This work was supported in part by The General Insurance

Association of Japan and a Grant-in-Aid for Scientific Research of Japan (17K10903).

Short title: Erythropoietin improves motor function in rats with developing compression myelopathy

Abstract

OBJECTIVE

Erythropoietin (EPO) is a clinically available hematopoietic cytokine. The aim of this study was to evaluate the effect of EPO on a rat model of cervical cord compression myelopathy and to explore the possibility of its use as a pharmacological treatment.

METHODS

To produce the chronic cervical cord compression model, thin polyurethane sheets were implanted under the C5-C6 laminae of rats and gradually expanded due to water absorption. In this model, motor functions significantly declined from 7 weeks after surgery. Based on the result, EPO administration was started 8 weeks after surgery. Motor function as seen with rotarod performance and grip strength was measured 16 weeks after surgery, and then motor neurons were stained with H-E and NeuN staining, and counted. Apoptotic cell death was assessed with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining. To assess transfer of EPO into spinal cord tissue, the EPO level in spinal cord tissue was measured with an enzyme-linked immunosorbent assay for each group after subcutaneous injection of EPO.

RESULTS

High-dose EPO (5000 IU/kg) administered from 8 weeks after surgery markedly restored and maintained motor function in the Compression groups (P < 0.01). EPO significantly prevented loss of motor neurons in the anterior horn (P < 0.05) and significantly decreased the number of TUNEL-positive apoptotic cells (P < 0.05). The EPO level in spinal cord tissue was significantly higher in the High-dose EPO group than other groups.

CONCLUSIONS

EPO improves motor function in rats with progressive chronic compression myelopathy. EPO protects anterior horn motor neurons and inhibits neuronal cell apoptosis in spinal cord compression. The neuroprotective effects can be produced through transfer of EPO into spinal cord tissue. These findings suggest that EPO has high potential as a treatment for developing compression myelopathy.

Key words: compression myelopathy, erythropoietin, chronic cervical cord compression, medical treatment, motor neuron, apoptosis, rat.

1 Introduction

2 As the population ages, degenerative changes in the cervical spine progress. The spinal canal gradually narrows due to cervical spondylosis, disc hernia, and ossification of the 3 posterior longitudinal ligament [1, 2]. This chronic compression of the cervical spinal 4 5 cord causes cervical myelopathy. The symptoms of chronic compression myelopathy 6 such as motor weakness, sensory disturbances, decreased fine motor coordination, and 7 spastic gait gradually progress over time. The main pathogenesis is presumed to be local compression and spinal cord ischemia at the compressed segment [3]. At this time, 8 9 surgical decompression is often performed to treat cervical compression myelopathy [4-10 6]. However, no optimal medical treatment is available to improve the neurological status 11 in patients with worsening compression myelopathy. 12 To elucidate the biological mechanism of chronic compression myelopathy and develop 13 a treatment strategy for it, a co-author, Kim, established a novel experimental model of 14 chronic cervical cord compression [7]. This model is created by inserting a sheet of water-15 absorbing urethane-compound polymer under the laminae of rats. This model induces 16 delayed motor dysfunction and reproduces the characteristic course of clinical delayed 17 cervical myelopathy. Using this model, we have previously demonstrated that 18 pharmacological agents such as *Limaprost alfadex*, prostaglandin E1 derivative, and

19 *Cilostazol*, a selective type III phosphodiesterase inhibitor, prevent the onset of cervical 20 compression myelopathy [8, 9]. However, functional recovery from developing 21 compression myelopathy has not been elucidated in those studies. 22 We recently confirmed that granulocyte colony-stimulating factor (G-CSF) improves 23 motor function in the progressive phase of compression myelopathy and preserves 24 anterior horn motor neurons in the rat chronic spinal cord compression model [10]. 25 However, in healthy people, G-CSF causes marked leukocytosis, which commonly 26 results in fever, arthralgia, and rarely, thromboembolism and splenomegaly [11]. 27 Erythropoietin (EPO) is a physiological hematopoietic cytokine like G-CSF. EPO is a 28 30.4-kDa glycoprotein secreted from the kidney that stimulates red blood cell (RBC) 29 production (erythropoiesis) after binding to the EPO receptor in the bone marrow 30 [12]. EPO is commonly used in anemic patients undergoing chronic hemodialysis or 31 suffering from cancer and undergoing chemotherapy [13, 14]. EPO is also used for 32 preoperative autologous blood donation in hematologically healthy individuals [15]. 33 Therefore, EPO can often be used safely, even in elderly patients or those with critical 34 disease.

36 anti-inflammatory, anti-oxidative, and angiogenic effects [16-18]. During the last two

35

6

In addition, EPO has multifunctional tissue-protective effects, including anti-apoptotic,

38	
00	infarction, brain contusion, and acute spinal cord injury (SCI) in laboratory investigations
39	[19-23]. Those papers reported its effect of neuroprotection, angiogenesis, and anti-
40	apoptosis in the brain and spinal cord [18, 24]. Recently, recombinant human EPO
41	(rhEPO) was preliminarily used in a randomized clinical trial of acute SCI, and results
42	indicated the possibility of treating acute SCI with EPO [25].
43	However, no reports have shown the neuroprotective effect of EPO for compression
44	myelopathy in experimental or clinical studies.
45	Here, we investigated the neuroprotective effects of EPO for chronic cervical
46	compression myelopathy using our established rat model of spinal cord compression
47	[7].
48	
	Materials and methods
49	

51 This study was approved by the Institutional Animal Care and Use Committee of

52 Yokohama City University School of Medicine (IRB: F-A-15-022). Male Wistar rats

53 (12 weeks old, weight 250-300 g; Japan SLC Inc., Hamamatsu, Japan) were housed in

54 cages for 3 weeks before surgery for adaptation to the environment. All rats were

55	trained to exercise on the rotarod device and to undergo forepaw grip strength
56	measurement for 2 weeks before surgery. Throughout this experimental period, the rats
57	had free access to water and food. Body weight was recorded every week during this
58	study.
59	
60	Surgical procedure to create the chronic compression model
61	The detailed surgical procedure to create the chronic cervical compression model has
62	been described [7]. Under general anesthesia with 2% isoflurane, a midline incision was
63	made in the nuchal area, and the C3-Th1 laminae were exposed. A sheet of expandable
64	ure thane compound polymer (size $2 \times 6 \times 0.7$ mm; Aquaprene C [®] , Sanyo Chemical
65	Industries, Ltd., Tokyo, Japan) was inserted into the sublaminar space of C5-C6 (Fig
66	1A, B). This sheet gradually expands to 230% of the original volume over 48-72 hours
67	by absorbing water in the tissue. In this model, the decline in motor function is delayed,
68	with a latency period after compression introduction, and then gradual progression,
69	whereas no acute damage suggestive of SCI is observed. This model reproduces the
70	characteristic course and features of clinical cervical spondylotic myelopathy [17].
71	

8

73 Fig 1. The Chronic Compression Model

- A: Computed tomography (CT) axial view at the C5 level, 0.5 mm above the
- 75 intervertebral foramen.
- 76 B: CT sagittal view of the cervical spine. Aquaprene® (expandable urethane compound
- sheet, size $2 \times 6 \times 0.7$ mm) was inserted under the C5-C6 laminae.

78

79

80 Experimental design

81 **Preliminary experiment**

82 As a preliminary experiment, we confirmed the course of motor function decline in

- 83 this model to determine when to administer EPO in the treatment experiment.
- Briefly, 40 rats were allocated to two groups; Sham operation group (n = 15) and
- 85 Compression group (n = 25). In the Sham group, rats underwent a sham operation; the
- 86 polymer sheet was placed under the laminae and removed immediately. In the
- 87 Compression group, this polymer sheet was left in place and continued to compress the
- spinal cord chronically (Fig 1A, B). The motor functions were evaluated once a week
- from 1 week before surgery to 26 weeks after surgery.

91 Treatment experiment (Fig 2)

92	In the treatment experiment, 48 rats were allocated to four groups; Sham group (sham
93	operation + normal saline [NS]; n = 12), Vehicle group (compression + NS; n = 12),
94	Low-dose EPO group (compression + EPO low dose; $n = 12$), and High-dose EPO
95	group (compression + EPO high dose; $n = 12$). From the results of the preliminary
96	experiments, the motor function was significantly decreased 8 weeks after surgery.
97	Therefore, administration of rhEPO or NS was started from 8 weeks after surgery and
98	lasted until 16 weeks; the frequency of administration was twice a week. In the Sham
99	group, rats underwent the sham operation and received administration of NS
100	subcutaneously. In the Vehicle group, rats underwent polymer sheet implantation and
101	received administration of NS subcutaneously. In the Low-dose EPO group, cervical
102	compression model rats received rhEPO 500 IU/kg/day (rhEPO; kindly provided by
103	Chugai Pharmaceutical Co., Ltd., Tokyo, Japan) subcutaneously. In the High-dose EPO
104	group, cervical compression model rats received administration of rhEPO 5000
105	IU/kg/day subcutaneously. The motor functions were also evaluated once a week from 1
106	week before surgery to 16 weeks after surgery. Histological assessment of the anterior
107	horn was evaluated at 16 weeks after surgery (Fig 2A).
108	

- 109
- 110
- 111

112 Fig 2. Treatment Experiment: Experimental Design

113 Administration of low-dose and high-dose EPO and normal saline was started twice a

- 114 week at 8 weeks postoperatively.
- 115 A: Forty-eight rats were divided into four groups (Sham, Vehicle, High-dose EPO,

116 Low-dose EPO). The motor functions of rotarod performance and grip strength were

- 117 evaluated once a week before surgery to 16 weeks after surgery. Every rat was
- 118 sacrificed, and histological analysis was performed (H-E staining and NeuN staining).
- **B:** Another 18 rats were divided into three groups (Sham, Vehicle, High-dose EPO).
- 120 Treatment was done from 8 weeks to 10 weeks after surgery, and all rats were sacrificed
- 121 at 10 weeks after surgery. Apoptotic cells were evaluated with TUNEL staining at 10
- 122 weeks after surgery.
- 123 C: Another 12 rats were divided into three groups (Vehicle, High-dose EPO, Low-dose
- 124 EPO). Each single treatment was done 8 weeks after surgery. All rats were sacrificed 12
- hours after injection, and the EPO level in the spinal cord was measured using a rhEPO
- 126 enzyme-linked immunosorbent assay (ELISA).

127

128

129 Motor function analysis

130 Rotarod performance

- 131 Rotarod performance was assessed by using the rotarod device (ENV-557, Med
- 132 Associates Inc., St. Albans, VT). Based on our previous research, a moderate rotation
- 133 speed of 10 rpm was set [7-10]. All rats could walk on the rotarod for more than 300
- 134 seconds before surgery. Therefore, 300 seconds was set as the cut-off. Three trials in
- each session were performed for all rats. We recorded the longest duration time of the
- 136 three trials.

137

138 Forelimb grip strength

139 Forelimb grip strength was assessed by using a digital force meter (MK-380CM/F,

140 Muromachi Kikai, Tokyo, Japan). We assessed grip strength according to the methods

- 141 of Meyer et al [26]. The animals were evaluated before surgery and once a week after
- 142 surgery. All rats also performed three trials in each session, and the maximum score (in
- 143 newtons: N) was used for data analysis.

145 Histological analysis

146 Hematoxylin and eosin (H-E) staining

- 147 At 16 weeks after surgery, transcardial perfusion was performed with 4%
- 148 paraformaldehyde in phosphate-buffered saline (PBS) in all rats. The spinal cord
- segment at C5-6 was removed en bloc and placed in 4% paraformaldehyde solution for
- 150 3 days. After this process, these C5-6 segments were embedded in paraffin and
- 151 sectioned at a slice thickness of 5 μm and a gap interval of 5 μm over 1000 μm length,
- according to stereological considerations of motor neurons [7-10]. One hundred
- 153 specimens of all rats were stained with H-E. Motor neurons have large nuclei and well-
- developed, densely stained Nissl bodies in the cytoplasm. The characteristic large
- nucleolus has a uniform diameter of approximately 5 μ m [27, 28]. In H-E-stained
- 156 sections, we regarded such cells as motor neurons. Motor neurons on both sides of the
- 157 anterior horn gray matter were counted.
- 158

159 NeuN staining

- 160 NeuN protein appears in neuron-specific nuclei. The nucleus of the motor neuron is
- 161 more clearly detected with NeuN staining compared with H-E staining.

162	In the treatment experiment, 10 specimens (thickness = 5 μ m, gap interval = 50 μ m) of
163	five rats in all groups were stained with immunohistochemistry. Both sides of the
164	anterior horn were also evaluated with NeuN staining following application of the
165	chromogen diaminobenzidine (Dako North America, Santa Clala, CA, USA, 1:100)
166	using the labeled streptavidin biotin technique [29]. Rabbit anti-NeuN (EMD Millipore
167	Corporation, Burlington, MA, USA, 1:100) was used as the primary antibody. NeuN-
168	positive cells on both sides of the anterior horn gray matter were counted.
169	
170	Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin
171	nick end labeling (TUNEL) staining
171 172	nick end labeling (TUNEL) staining Apoptotic cell death was investigated 10 weeks after surgery. Another 18 rats (Sham
172	Apoptotic cell death was investigated 10 weeks after surgery. Another 18 rats (Sham
172 173	Apoptotic cell death was investigated 10 weeks after surgery. Another 18 rats (Sham group; $n = 6$, Vehicle group; $n = 6$, high-dose EPO group; $n = 6$) were perfused
172 173 174	Apoptotic cell death was investigated 10 weeks after surgery. Another 18 rats (Sham group; $n = 6$, Vehicle group; $n = 6$, high-dose EPO group; $n = 6$) were perfused transcardially with 4% paraformaldehyde in PBS (Fig 2B). The C5-6 segment of the
172 173 174 175	Apoptotic cell death was investigated 10 weeks after surgery. Another 18 rats (Sham group; $n = 6$, Vehicle group; $n = 6$, high-dose EPO group; $n = 6$) were perfused transcardially with 4% paraformaldehyde in PBS (Fig 2B). The C5-6 segment of the spinal cord was embedded in optimal cutting temperature compound and frozen in
172 173 174 175 176	Apoptotic cell death was investigated 10 weeks after surgery. Another 18 rats (Sham group; $n = 6$, Vehicle group; $n = 6$, high-dose EPO group; $n = 6$) were perfused transcardially with 4% paraformal dehyde in PBS (Fig 2B). The C5-6 segment of the spinal cord was embedded in optimal cutting temperature compound and frozen in liquid nitrogen. Three sections from C5-6 segments (thickness = 20 μ m, gap interval =

180	(Molecular Probes, Eugene, OR). The TUNEL stain signal was observed under an
181	FV300 confocal microscope (Olympus Optical Company, Ltd., Tokyo, Japan). TUNEL-
182	and DAPI-positive cells were counted, and the ratios of apoptotic cells to total nuclei
183	were evaluated in each group.

184

185 Hematological assessment

186 Another 12 rats were divided into three groups. All these rats underwent the operation

187 to place the polymer sheet under the C5-6 laminae and were treated with NS or rhEPO

- 188 twice a week from 8 weeks after surgery. The Vehicle group, Low-dose EPO group, and
- 189 High-dose EPO group were examined. All rats were subjected to inhalation anesthesia
- 190 with 2% isoflurane. Blood samples (0.5 ml/body) were collected by venipuncture from
- 191 the tail vein at 2, 4, and 6 weeks after the first EPO administration. Blood samples were
- 192 collected into blood collection tubes with EDTA 2K (BD Microtainer, Japan Becton,
- 193 Dickinson and Company, Tokyo, Japan) immediately. RBC, hemoglobin (Hb), and
- 194 hematocrit (Ht) values were assessed with an automated hematology analyzer (XE
- 195 2100, Sysmex, Hyogo, Japan).

196

197 The rhEPO level in spinal cord tissue

198	To assess whether subcutaneously injected EPO was transferred to the spinal cord, we
199	measured EPO levels in the spinal cord with an enzyme-linked immunosorbent assay.
200	Another 12 rats were divided into three groups; Vehicle group, Low-dose EPO group,
201	and High-dose EPO group. All these rats underwent the operation in which the polymer
202	sheet remained under the C5-6 laminae. They received NS or rhEPO 8 weeks after
203	surgery. Twelve hours after subcutaneous injection of NS or rhEPO, all rats were
204	sacrificed under anesthesia, and blood was completely removed by transcardial
205	perfusion with PBS to exclude rhEPO from blood (Fig 2C). The spinal cord segment at
206	the C5-6 level was removed en bloc. These tissues were homogenized in IP buffer with
207	an ultra Turrax homogenizer and centrifuged at 12000 rpm at 4°C for 5 min.
208	Supernatants were removed and analyzed to determine the levels of rhEPO in the spinal
209	cord tissue. The total protein of the spinal cord tissue was determined using bovine
210	serum albumin as a standard. The rhEPO concentration in spinal cord tissue was
211	measured with a rhEPO enzyme-linked immunosorbent assay kit (R&D Systems
212	Europe, Abingdon, UK) according to the manufacturer's instructions. The concentration
213	was described as the rhEPO level per 1 g tissue (mIU/g) and tissue dose % of injected
214	dose (%ID).
045	

215

216 Statistical Analysis

217	GraphPad Prism	6 software for	r Windows	(GraphPad	Software In	nc., La Jolla,	CA,
-----	----------------	----------------	-----------	-----------	-------------	----------------	-----

- 218 USA) was used for statistical analysis. Data are expressed as the means \pm standard error
- 219 of the mean. The duration of walking on the rotarod, forelimb grip strength, and
- 220 hematological data were analyzed using two-way repeated-measures analysis of
- 221 variance. The number of anterior horn motor neurons with H-E, NeuN, and TUNEL
- staining and the rhEPO level in spinal cord were tested using one-way analysis of

223 variance. P values <0.05 were regarded as significant.

224

225 **Results**

226 Motor function

227 Preliminary experiment

228 Rotarod performance declined gradually with a latency period of 4 weeks in the

- 229 Compression group. At 7 weeks after surgery, the walking duration significantly
- decreased in the Compression group compared to the Sham group (P < 0.001). In the
- 231 Compression group, the duration declined gradually and reached a plateau after 16

232 weeks (Fig 3A).

233	Forelimb grip strength increased until 5 weeks after surgery and started to decrease
234	from 6 weeks in the Compression group. The strength gradually declined and
235	significantly decreased after 7 weeks compared with the Sham group ($P < 0.001$) (Fig
236	3B).
237	Based on these results, we decided to administer EPO beginning 8 weeks after surgery
238	as a treatment experiment.
239	
240	
241	Fig 3. Preliminary experiment
242	A: Time course of rotarod performance measured by walking time on a rotarod (cut-off
243	300 seconds). In the Compression group, the walking time gradually started to decline
244	from 4 weeks, and showed a significant decrease at 7 weeks after surgery ($P < 0.001$).
245	The performance reached a plateau with a low duration of about 50 seconds after 15
246	weeks.
247	B: Time course of grip strength. In the Compression group, grip strength decreased at 1
248	week after surgery, but gradually increased as body weight increased. However, grip
249	strength gradually declined from 6 weeks, and showed a significant difference at 7

weeks after surgery (P < 0.0001) After that, the strength continued to decrease

250

251	gradually, reaching approximately 10.5 N at 26 weeks postoperatively.
252	
253	
254	Treatment experiment
255	The rotarod performance of the Compression groups (Vehicle, Low-dose EPO, High-
256	dose EPO groups) declined gradually from 5 weeks after surgery, and a significant
257	decrease was seen from 7 weeks compared with the Sham group (P < 0.005) as in the
258	preliminary experiments (Fig 3A).
259	After EPO administration beginning 8 weeks after surgery, rotarod performance
260	started to improve in the treatment groups (Low-dose EPO, High-dose EPO group).
261	Especially in the High-dose EPO group, rotarod performance significantly improved
262	compared with the other Compression groups (Vehicle, Low-dose EPO groups),
263	although the performance gradually declined from 13 weeks. The effects of EPO
264	continued for 5 weeks after EPO administration ($P < 0.01$). Furthermore, the High-dose
265	EPO group improved to the level at which no significant difference in motor function
266	was seen between the Sham and High-dose EPO groups at 9 weeks after surgery. The

267 Low-dose EPO group showed slightly improved rotard	d performance	, but did not show
--	---------------	--------------------

- significant improvement compared with the Vehicle group (Fig 4A).The forelimb grip strength of the Compression groups decreased at 1 week after
- surgery but started to recover gradually from 2 weeks after surgery. The strength of the
- 271 Compression group showed an improvement course equal to that of the Sham group
- from 2 weeks after surgery and then started to decrease gradually from 7 weeks; at this
- 273 time, the strength was significantly decreased compared with the Sham group (P <
- **274** 0.001) (Fig 4B).
- 275 After EPO administration at 8 weeks after surgery, grip strength started to improve in
- the treatment groups (Low-dose EPO, High-dose EPO groups).
- 277 In the High-dose EPO group, the strength significantly improved compared with the
- 278 other Compression groups (Vehicle, Low-dose EPO groups) (P < 0.0001). Its effects
- continued throughout the period of EPO administration (9 to 16 weeks after surgery),
- although the strength gradually decreased from 4 weeks after EPO administration.
- 281 In contrast, the Low-dose EPO group showed a slight improvement in strength, but did
- not show significant improvement compared with the Vehicle group (Fig 4B).
- 283
- 284

285 Fig 4. Treatment experiment: Motor function

286	A: Time course of rotarod performance measured by walking time on a rotarod (cut-off
287	300 seconds). In the Compression models (Vehicle, Low-dose EPO, and High-dose
288	EPO groups), rotarod performance gradually declined from 3 weeks after surgery, and
289	showed a significant difference at 7 weeks after surgery. After administration of EPO
290	from 8 weeks, rotarod performance improved in the EPO groups. Especially in the
291	High-dose EPO group, performance markedly improved. This effect was maintained
292	with a significant difference by week 13 after surgery (P < 0.01). In the Low-dose EPO
293	group, slight improvement in rotarod performance was observed, but it did not reach
294	statistical significance compared with the Vehicle group.
295	B: Time course of grip strength. In the Compression groups, the strength started to
296	decline from 6 weeks after surgery, and a significant decline was observed at 7 weeks.
297	EPO was administered at 8 weeks, and grip strength improved, especially in the High-
298	dose EPO group. Significant improvement was seen from 9 weeks in the High-dose
299	EPO group ($P < 0.0001$) and continued up to 16 weeks after surgery. In the Low-dose
300	EPO group, grip strength slightly improved, but no significant difference was found
301	compared with the Vehicle group.
302	

304	Histopathological analysis
305	H-E staining
306	At 16 weeks after surgery, loss of anterior horn motor neurons and vacuolar
307	degeneration in the spinal cord were observed in H-E-stained sections from the
308	Compression groups (Vehicle, Low-dose EPO, and High-dose EPO group) (Fig 5A).
309	The numbers of motor neurons were 1834.7 ± 115.4 (Sham group), 1421.6 ± 50.1
310	(Vehicle group), 1484.7 ± 74.2 (Low-dose EPO group), and 1640.0 ± 66.9 (High-dose
311	EPO group). The number of motor neurons on both sides of the anterior horn was
312	significantly decreased in every Compression group compared to the non-compression
313	Sham group (P < 0.0001). In the High-dose EPO group, however, the motor neurons
314	were significantly preserved compared with the other Compression groups (Vehicle and
315	Low-dose EPO group; P < 0.0001, P < 0.0005) (Fig 5B).
316	
317	

- 318 Fig 5. Treatment experiment: Anterior motor neurons
- 319 A:

320	Top panels: CT axial view in C5. In the Compression groups (Vehicle, Low-dose EPO,
321	and High-dose EPO), the spinal cord was compressed by Aquaprene $^{\mathbb{R}}$ (expandable
322	ure thane compound sheet, size 2 \times 6 \times 0.7 mm). The yellow dotted figure shows the
323	outline of the spinal cord.
324	Second panels: The spinal cord at the C5 level was sliced into 5-µm thick sections at 16
325	weeks after surgery. Hematoxylin and eosin staining of cross sections of spinal cord is
326	shown (original magnification ×4, scale bar = 100 μ m). In the Compression groups, the
327	spinal cord was flattened. Black box shows the region of the anterior horn.
328	Third panels: The black box in the second panel was magnified (×10, scale bar 20 μ m).
329	Cells with large nuclei and well-developed, densely stained Nissl bodies in the
330	cytoplasm indicate motor neurons. In the Vehicle and Low-dose EPO groups, motor
331	neurons decreased, and vacuolar degeneration was obvious. In the High-dose EPO
332	group, motor neurons were preserved, although vacuolar degeneration was present.
333	Bottom panels: NeuN staining of the anterior horn (×10, scale bar 20 μ m). The nuclei of
334	motor neurons are clearly detected with NeuN staining compared with H-E staining.
335	Motor neurons decreased in the Vehicle and Low-dose EPO groups, but were preserved
336	in the High-dose EPO group.
337	

338	B: Counting of anterior horn cells in H-E-stained tissue. The number of cells with large
339	nuclei in the anterior horn was counted in every group. The number was significantly
340	decreased in the Compression groups compared with the Sham group (* $P < 0.0001$).
341	However, in the High-dose EPO group, the number was significantly preserved
342	compared with the other two Compression groups (Vehicle and Low-dose EPO group)
343	
344	C: Counting of anterior horn cells in NeuN-stained tissue. NeuN-positive cells were
345	significantly decreased in the Compression groups compared with the Sham group (*P
346	< 0.0001). However, in the High-dose EPO group, the number was significantly
347	preserved compared with the other two Compression groups (* $P < 0.0001$). The
348	tendency in the cell count was similar to that with H-E staining.
349	
350	
351	Cell counting of NeuN-positive cells
352	The number of NeuN-positive cells in 10 slices of each group was 286.8 ± 17.6 (Sham
353	group), 176.0 \pm 14.3 (Vehicle group), 178.0 \pm 17.1 (Low-dose EPO group), and 220.4 \pm
354	9.4 (High-dose EPO group). NeuN-positive cells in each Compression group decreased
355	compared with the Sham group, but the number in the High-dose EPO group was

356	significantly preserved compared with the Vehicle and Low-dose EPO groups. This
357	tendency was similar to that of the number of motor neurons in H-E-stained sections
358	(Fig 5B, 5C).

359

- 360 TUNEL staining
- 361 TUNEL-positive cells were significantly increased in the Vehicle group compared
- 362 with the other two groups (Sham and High-dose EPO groups) (P < 0.0001) (Fig 6A,
- 363 6B). We found no significant difference between the Sham and High-dose EPO groups.
- 364 The ratios of TUNEL-positive cells to DAPI-positive cells (%) were $1.72 \pm 0.59\%$
- 365 (Sham group), $35.01 \pm 9.17\%$ (Vehicle group), and $5.66 \pm 2.27\%$ (High-dose EPO
- 366 group). The ratio in the Vehicle group was significantly higher than that in the other two
- 367 groups (P < 0.0001), and we found no significant difference between the Sham and
- 368 High-dose EPO groups (Fig 6A, 6C).
- 369
- 370

371 Fig 6. Treatment experiment: TUNEL staining

- A: TUNEL staining was performed to detect apoptotic cells at 10 weeks after surgery.
- 373 DAPI/TUNEL double staining is shown in each group (DAPI staining, TUNEL

staining, DAPI/TUNEL staining, Bar = $100 \mu m$). The Vehicle group showed the highest

375	number of TUNEL-positive cells.
376	B: The number of TUNEL-positive cells was counted in each group. The number of
377	TUNEL-positive cells in the Vehicle group was significantly higher than in the other
378	two groups (*P < 0.0001), with no significant difference between the Sham group and
379	High-dose EPO group.
380	C: The percentage of TUNEL-positive cells in each group. The percentage in the
381	Vehicle group was significantly higher than in the other two groups (* $P < 0.0001$).
382	
383	

384 Hematological data

374

385 After administration of EPO, the RBC, Hb, and Ht values increased immediately in the

386 EPO-administered groups (Low-dose and High-dose EPO groups) (P < 0.0001). The

387 trend in RBC and Hb values showed a similar increasing tendency after EPO

administration (Fig 7A, B). Eventually, the RBC and Hb values increased to

approximately 1.2 and 1.4 times in the Low-dose and High-dose EPO groups,

390 respectively, compared to the baseline value (Vehicle group). The values were

391	significantly	higher in both	EPO-administered	groups than the	Vehicle group until 6
-----	---------------	----------------	------------------	-----------------	-----------------------

392 weeks after administration (
$$P < 0.0001$$
) (Fig 7A, B).

- 393 The Ht value in the EPO-administered groups was the highest at 4 weeks and
- increased to approximately 1.3 and 1.4 times in the Low-dose and High-dose EPO
- groups, respectively, compared to the baseline value (P < 0.0001). At 6 weeks after
- administration of EPO, the Ht value of the EPO-administered groups started to peak.
- 397 The Ht value of the High-dose EPO group was significantly higher than that of the other

```
398 two groups (P = 0.005) at 6 weeks (Fig 7C).
```

- 399
- 400

401 Fig 7. Treatment experiment: Hematological data

402 A: Time course of red blood cells (RBCs). RBCs increased immediately in the Low-

dose and High-dose EPO groups (P < 0.0001). From 4 weeks after administration, we

- 404 found a significant difference between the Low-dose and High-dose EPO groups (P <
- 405 0.0001). Eventually, RBCs increased up to approximately 1.2 and 1.4 times in the Low-
- 406 dose and High-dose EPO groups, respectively, compared with the Vehicle group.
- 407 B: Time course of hemoglobin (Hb). The Hb value increased immediately in the Low-
- 408 dose and High-dose EPO groups (P < 0.0001). The time course was similar to that of

409	RBCs. Eventually, the Hb value increased up to approximately 1.2 and 1.4 times in the
410	Low-dose and High-dose EPO groups, respectively, compared with the Vehicle group.
411	C: Time course of hematocrit (Ht). The Ht value increased immediately in the Low-dose
412	and High-dose EPO groups ($P < 0.0001$). The Ht value was the highest at 4 weeks, and
413	then peaked. The maximum Ht value was approximately 1.3 and 1.4 times in the Low-
414	dose and High-dose EPO groups, respectively, compared with the Vehicle group.
415	
416	
417	rhEPO level in spinal cord tissue
417 418	rhEPO level in spinal cord tissue The rhEPO level in the spinal cord 12 hours after subcutaneous injection of rhEPO
	•
418	The rhEPO level in the spinal cord 12 hours after subcutaneous injection of rhEPO
418 419	The rhEPO level in the spinal cord 12 hours after subcutaneous injection of rhEPO was less than 0.10 mIU/g in the Vehicle group, 1.07 ± 0.46 mIU/g in the Low-dose EPO
418 419 420	The rhEPO level in the spinal cord 12 hours after subcutaneous injection of rhEPO was less than 0.10 mIU/g in the Vehicle group, 1.07 ± 0.46 mIU/g in the Low-dose EPO group, and 8.67 ± 2.33 mIU/g in the High-dose EPO group. The rhEPO level was
418 419 420 421	The rhEPO level in the spinal cord 12 hours after subcutaneous injection of rhEPO was less than 0.10 mIU/g in the Vehicle group, 1.07 ± 0.46 mIU/g in the Low-dose EPO group, and 8.67 ± 2.33 mIU/g in the High-dose EPO group. The rhEPO level was remarkably higher in the High-dose EPO group than the other two groups (P < 0.0001).

425 The tissue % ID was $4.4 \pm 1.2 (10^{-4}\%)$ in the High-dose EPO group and 5.4 ± 2.3

426 $(10^{-4}\%)$ in the Low-dose EPO group. We found no significant difference between the

427 two groups (Fig 8B). This result shows that the rhEPO level in the spinal cord was dose

428 dependent.

429

431	Fig 8. Treatment experiment: ELISA of recombinant human EPO (rhEPO)
432	A: The amount of rhEPO per 1 g spinal cord tissue. The rhEPO level was significantly
433	higher in the High-dose EPO group compared to the other two groups (* $P < 0.0001$).
434	B: The tissue rhEPO level for injected dose (%ID) in the Low-dose and High-dose EPO
435	groups. No significant difference was found in the %ID between the two groups.
436	
437	
438	Discussion
	Discussion
439	The present study demonstrated that EPO improved motor functions and preserved
439	The present study demonstrated that EPO improved motor functions and preserved
439 440	The present study demonstrated that EPO improved motor functions and preserved motor neurons, even in developing myelopathy due to spinal cord compression.
439 440 441	The present study demonstrated that EPO improved motor functions and preserved motor neurons, even in developing myelopathy due to spinal cord compression. Furthermore, EPO was transferred into spinal cord tissue following subcutaneous EPO

445	both the central and peripheral nervous systems [32]. The roles of EPO in these areas
446	are in neuroprotection, angiogenesis, anti-apoptosis, and anti-inflammation [18, 24, 33].
447	Clinically, a preliminary randomized comparative trial was performed in patients with
448	acute SCI. In this trial, the effect of EPO treatment was compared with high-dose
449	methylprednisolone treatment. EPO had higher efficacy and fewer side effects than
450	methylprednisolone, indicating a therapeutic effect for acute SCI patients [25].
451	In contrast, the neuroprotective effect of EPO for compression myelopathy remains
452	unknown. We previously demonstrated that blood flow in the compressed segment is
453	markedly reduced, indicating the presence of local spinal cord ischemia in the chronic
454	compression myelopathy model [32]. Consistent with our previous studies [9, 10], this
455	study also demonstrated that chronic spinal cord compression induces apoptotic cell
456	death. In hypoxic stress conditions, endogenous EPO is produced in response to low
457	oxygen partial pressure and protects neurons [34]. Importantly, cell apoptosis induced
458	by spinal cord compression is inhibited by high-dose EPO administration, indicating
459	anti-apoptosis and anti-inflammatory effects of EPO [18, 24, 33]. Additionally, a rapid
460	increase in RBC, Hb, and Ht values following EPO administration may improve the
461	local oxygen supply and restore motor function (Fig 7). Liem et al. reported that blood
462	transfusion for anemia improves cerebral oxygenation in newborn infants [35].

463	Although we could not directly evaluate local oxygen pressure, we speculate that
464	improvement in cervical myelopathy is due to anti-apoptotic effects of EPO and
465	improvement in local ischemia in the spinal cord with an increased oxygen supply.
466	In the current study, both high-dose and low-dose EPO increased hematopoietic values
467	including RBC, Hb, and Ht. However, functional recovery was observed with high-dose
468	EPO treatment in particular. High-dose EPO may have passed through the blood-spinal
469	cord barrier. EPO is a high-molecular weight glycoprotein (30.4 kDa) [12]. In classic
470	papers, the blood-brain barrier (BBB) was considered to be impermeable to large
471	glycosylated molecules like EPO [36]. However, some recent studies have reported that
472	EPO can pass through the BBB due to a high concentration and after BBB disruption
473	such as that which follows brain and spinal cord contusion [37-39]. EPO can cross the
474	BBB at 450 IU/kg or more in rats [37] and crosses the BBB in a dose-dependent manner
475	in a rat brain contusion model [40]. In the current study, in fact, high-dose EPO was
476	predominantly transferred into the spinal cord tissue 12 hours after EPO subcutaneous
477	administration, probably resulting from passing through the blood-spinal cord barrier.
478	Transfer of EPO into spinal cord tissue was dose dependent (Fig 8A), and the transfer
479	activity was almost the same between the Low-dose and High-dose EPO groups (Fig
480	8B). This finding demonstrates that the higher the dose of EPO that was administered,

481	the more EPO can transfer into spinal cord tissue. This result indicates that EPO directly
482	affected the spinal cord to provide neuronal protection as well as indirectly affected the
483	cord by increasing RBC, Hb, and Ht values.
484	The dosage of EPO (500 IU/kg or 5000 IU/kg) in this study was decided based on
485	previous reports in acute or subacute SCI with no side effects including hematological
486	complications [21, 41-43].
487	EPO has been used in clinical practice for a long time, and knowledge of the
488	hematopoietic effect, clinical safety, and side effects of EPO has accumulated. The
489	possible side effects of EPO in humans include hypertension, coagulation disorders, and
490	polycythemia. [44] However, no adverse effects occurred in brain injury patients treated
491	with 10000 IU/kg for 7 consecutive days [45]. In a recent preliminary randomized
492	comparative trial (EPO versus methylprednisolone) for human acute SCI, EPO (500
493	IU/kg) had a predominant effect and no adverse effects compared with high-dose
494	methylprednisolone. Based on these data, EPO may be a clinically acceptable agent for
495	progressive compression myelopathy as well as a hematopoietic cytokine.
496	Polycythemia vera (erythemia) is defined as a Hb value more than 18.5 in males and
497	16.5 in females by WHO guidelines [46]. In practical clinical use, EPO should be used
498	while monitoring of RBC, Hb, and Ht values, especially in hematologically healthy

499	people. Administration of EPO is indicated for patients with anemia and those waiting
500	for surgery and expecting preoperative hematopoietic effects.
501	The effect of EPO treatment gradually declined at 4 weeks after EPO administration in
502	this rat model of compression myelopathy, although the group given high-dose EPO
503	was finally superior to the group given NS in terms of motor functions. Therefore, the
504	best treatment period may be limited to several weeks after EPO administration, and
505	surgical decompression may be considered during that period.
506	Certainly, continuous administration of EPO to patients with simple cervical
507	spondylosis over a long period seems unrealistic considering the side effects and high
508	costs. Practical clinical use of EPO may occur for a limited period, especially in patients
509	with worsening symptoms of compression myelopathy who have higher systemic risks
510	such as severe anemia, older age, and diabetes mellitus, and those who live far from a
511	hospital that performs spinal surgery. Furthermore, EPO may be effective against
512	surgical complications such as compression myelopathy due to postoperative epidural
513	hematoma and spinal alignment failure.
514	The detailed mechanisms of the neuroprotective effect of EPO for compression
515	myelopathy remain to be elucidated. In addition, in this study, the changes in local
516	blood flow and oxygen partial pressure in the spinal cord were not elucidated. However,

517	this study strongly suggests that EPO has potential for treating patients with developing
518	compression myelopathy, and may be worth reconsidering for clinical use to provide
519	both neuroprotective and hematopoietic effects. Further investigations including larger
520	randomized controlled trials with long-term follow-up surveys are required to establish
521	the clinical efficacy of EPO treatment and elucidate therapy-related adverse events.
522	

523 Conclusions

524 EPO improved motor function in rats with developing myelopathy due to chronic

525 spinal cord compression. EPO protected anterior horn motor neurons and decreased

526 neuronal cell apoptosis. The neuroprotective effects were produced following transfer of

527 EPO into the spinal cord tissue. These findings suggest that EPO has high potential as a

528 treatment for developing compression myelopathy.

529

530 **References**

531

532 1. Benoist M. Natural history of the aging spine. Eur Spine J. 2003;12 Suppl 2:S86-9.

533 Epub 2003/09/10. doi: 10.1007/s00586-003-0593-0. PubMed PMID: 12961079; PubMed

534 Central PMCID: PMCPMC3591827.

535	2. Papadakis M, Sapkas G, Papadopoulos EC, Katonis P. Pathophysiology and
536	biomechanics of the aging spine. The open orthopaedics journal. 2011;5:335-42. Epub
537	2011/10/04. doi: 10.2174/1874325001105010335. PubMed PMID: 21966338; PubMed
538	Central PMCID: PMCPMC3178886.
539	3. Kurokawa R, Murata H, Ogino M, Ueki K, Kim P. Altered blood flow distribution in
540	the rat spinal cord under chronic compression. Spine. 2011;36(13):1006-9. Epub
541	2010/12/31. doi: 10.1097/BRS.0b013e3181eaf33d. PubMed PMID: 21192287.
542	4. Holly LT, Matz PG, Anderson PA, Groff MW, Heary RF, Kaiser MG, et al. Clinical
543	prognostic indicators of surgical outcome in cervical spondylotic myelopathy. J
544	Neurosurg Spine. 2009;11(2):112-8. Epub 2009/09/23. doi: 10.3171/2009.1.spine08718.
545	PubMed PMID: 19769490.
546	5. Fehlings MG, Wilson JR, Kopjar B, Yoon ST, Arnold PM, Massicotte EM, et al.

- 547 Efficacy and safety of surgical decompression in patients with cervical spondylotic
- 548 myelopathy: results of the AOSpine North America prospective multi-center study. The
- 549 Journal of bone and joint surgery American volume. 2013;95(18):1651-8. Epub
- 550 2013/09/21. doi: 10.2106/jbjs.l.00589. PubMed PMID: 24048552.
- 551 6. Karadimas SK, Erwin WM, Ely CG, Dettori JR, Fehlings MG. Pathophysiology and
- natural history of cervical spondylotic myelopathy. Spine. 2013;38(22 Suppl 1):S21-36.

553 Epub 2013/08/22. doi: 10.1097/BRS.0b013e3182a7f2c3. PubMed PMID: 23963004.

- 554 7. Kim P, Haisa T, Kawamoto T, Kirino T, Wakai S. Delayed myelopathy induced by
- 555 chronic compression in the rat spinal cord. Ann Neurol. 2004;55(4):503-11. Epub
- 556 2004/03/30. doi: 10.1002/ana.20018. PubMed PMID: 15048889.
- 557 8. Kurokawa R, Nagayama E, Murata H, Kim P. Limaprost alfadex, a prostaglandin E1
- 558 derivative, prevents deterioration of forced exercise capability in rats with chronic
- 559 compression of the spinal cord. Spine. 2011;36(11):865-9. Epub 2010/12/31. doi:
- 560 10.1097/BRS.0b013e3181e878a1. PubMed PMID: 21192291.
- 9. Yamamoto S, Kurokawa R, Kim P. Cilostazol, a selective Type III phosphodiesterase
- 562 inhibitor: prevention of cervical myelopathy in a rat chronic compression model. J
- 563
 Neurosurg
 Spine.
 2014;20(1):93-101.
 Epub
 2013/11/12.
 doi:
- 564 10.3171/2013.9.spine121136. PubMed PMID: 24206033.
- 565 10. Yoshizumi T, Murata H, Yamamoto S, Kurokawa R, Kim P, Kawahara N.
- 566 Granulocyte Colony-Stimulating Factor Improves Motor Function in Rats Developing
- 567 Compression Myelopathy. Spine. 2016;41(23):E1380-e7. Epub 2016/04/28. doi:
- 568 10.1097/brs.00000000001659. PubMed PMID: 27120060.
- 569 11. Platzbecker U, Prange-Krex G, Bornhauser M, Koch R, Soucek S, Aikele P, et al.
- 570 Spleen enlargement in healthy donors during G-CSF mobilization of PBPCs. Transfusion.

571 2001;41(2):184-9. Epub 2001/03/10. PubMed PMID: 11239220.

572 12. Choi D, Kim M, Park J. Erythropoietin: physico- and biochemical analysis. Journal

- of chromatography B, Biomedical applications. 1996;687(1):189-99. Epub 1996/12/06.
- 574 PubMed PMID: 9001965.
- 575 13. Winearls CG, Oliver DO, Pippard MJ, Reid C, Downing MR, Cotes PM. Effect of
- 576 human erythropoietin derived from recombinant DNA on the anaemia of patients
- 577 maintained by chronic haemodialysis. Lancet (London, England). 1986;2(8517):1175-8.
- 578 PubMed PMID: 2877323.
- 579 14. Bokemeyer C, Honecker F, Wedding U, Spath-Schwalbe E, Lipp HP, Kolb G, et al.
- 580 Use of hematopoietic growth factors in elderly patients receiving cytotoxic chemotherapy.
- 581 Onkologie. 2002;25(1):32-9. doi: 10.1159/000055200. PubMed PMID: 11893881.
- 582 15. Qureshi R, Puvanesarajah V, Jain A, Hassanzadeh H. Perioperative Management of
- 583 Blood Loss in Spine Surgery. Clinical spine surgery. 2017;30(9):383-8. Epub 2017/03/25.
- doi: 10.1097/bsd.00000000000532. PubMed PMID: 28338491.
- 585 16. Cotena S, Piazza O, Tufano R. The use of erythtropoietin in cerebral diseases.
- 586 Panminerva medica. 2008;50(2):185-92. Epub 2008/07/09. PubMed PMID: 18607342.
- 587 17. Velly L, Pellegrini L, Guillet B, Bruder N, Pisano P. Erythropoietin 2nd cerebral
- 588 protection after acute injuries: a double-edged sword? Pharmacology & therapeutics.

- 589 2010;128(3):445-59. Epub 2010/08/25. doi: 10.1016/j.pharmthera.2010.08.002. PubMed
 590 PMID: 20732352.
- 591 18. Nekoui A, Blaise G. Erythropoietin and Nonhematopoietic Effects. The American
- 592 journal of the medical sciences. 2017;353(1):76-81. Epub 2017/01/21. doi:
- 593 10.1016/j.amjms.2016.10.009. PubMed PMID: 28104107.
- 19. Hua W, Wu H, Zhou M, Liu W, Zhu J, Gu Y, et al. [Protective effects of recombinant
- 595 human erythropoietin on oligodendrocyte after cerebral infarction]. Zhonghua bing li xue
- za zhi Chinese journal of pathology. 2015;44(5):323-8. Epub 2015/07/17. PubMed
- **597** PMID: 26178214.
- 598 20. Peng W, Xing Z, Yang J, Wang Y, Wang W, Huang W. The efficacy of erythropoietin
- in treating experimental traumatic brain injury: a systematic review of controlled trials in
- 600 animal models. Journal of neurosurgery. 2014;121(3):653-64. Epub 2014/07/19. doi:
- 601 10.3171/2014.6.jns132577. PubMed PMID: 25036201.
- 602 21. Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, et al.
- 603 Recombinant human erythropoietin counteracts secondary injury and markedly enhances
- neurological recovery from experimental spinal cord trauma. Proceedings of the National
- 605 Academy of Sciences of the United States of America. 2002;99(14):9450-5. Epub
- 606 2002/06/26. doi: 10.1073/pnas.142287899. PubMed PMID: 12082184; PubMed Central

607 PMCID: PMCPmc123161.

608	22. Kaptanoglu E, Solaroglu I, Okutan O, Surucu HS, Akbiyik F, Beskonakli E.
609	Erythropoietin exerts neuroprotection after acute spinal cord injury in rats: effect on lipid
610	peroxidation and early ultrastructural findings. Neurosurgical review. 2004;27(2):113-20.
611	Epub 2003/08/16. doi: 10.1007/s10143-003-0300-y. PubMed PMID: 12920606.
612	23. Freitag MT, Marton G, Pajer K, Hartmann J, Walder N, Rossmann M, et al.
613	Monitoring of Short-Term Erythropoietin Therapy in Rats with Acute Spinal Cord Injury
614	Using Manganese-Enhanced Magnetic Resonance Imaging. J Neuroimaging.
615	2015;25(4):582-9. Epub 2014/12/17. doi: 10.1111/jon.12202. PubMed PMID: 25510176.
616	24. Marti HH, Bernaudin M, Petit E, Bauer C. Neuroprotection and Angiogenesis: Dual
617	Role of Erythropoietin in Brain Ischemia. News in physiological sciences : an
618	international journal of physiology produced jointly by the International Union of
619	Physiological Sciences and the American Physiological Society. 2000;15:225-9. Epub
620	2001/06/08. PubMed PMID: 11390915.
621	25. Costa DD, Beghi E, Carignano P, Pagliacci C, Faccioli F, Pupillo E, et al. Tolerability
622	and efficacy of erythropoietin (EPO) treatment in traumatic spinal cord injury: a

- 623 preliminary randomized comparative trial vs. methylprednisolone (MP). Neurol Sci.
- 624 2015;36:1567-74. Epub 2015/03/31. doi: 10.1007/s10072-015-2182-5. PubMed PMID:

625 25820146.

- 626 26. Meyer OA, Tilson HA, Byrd WC, Riley MT. A method for the routine assessment of
- 627 fore- and hindlimb grip strength of rats and mice. Neurobehavioral toxicology.

628 1979;1(3):233-6. Epub 1979/01/01. PubMed PMID: 551317.

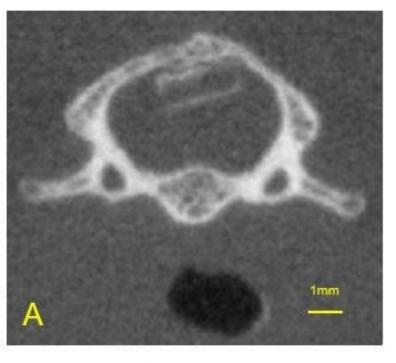
629 27. Rexed B. SOME ASPECTS OF THE CYTOARCHITECTONICS AND

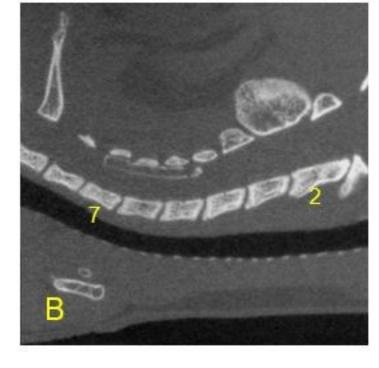
630 SYNAPTOLOGY OF THE SPINAL CORD. Progress in brain research. 1964;11:58-92.

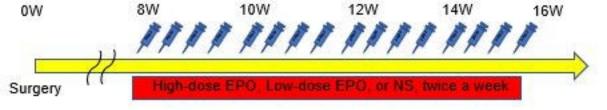
- 631 Epub 1964/01/01. PubMed PMID: 14300483.
- 632 28. Molander C, Xu Q, Rivero-Melian C, Grant G. Cytoarchitectonic organization of the
- 633 spinal cord in the rat: II. The cervical and upper thoracic cord. The Journal of comparative
- 634 neurology. 1989;289(3):375-85. Epub 1989/11/15. doi: 10.1002/cne.902890303.
- 635 PubMed PMID: 2808773.
- 636 29. Oros J, Matsushita S, Rodriguez JL, Rodriguez F, Fernandez A. Demonstration of rat
- 637 CAR bacillus using a labelled streptavidin biotin (LSAB) method. The Journal of
- 638 veterinary medical science. 1996;58(12):1219-21. Epub 1996/12/01. PubMed PMID:
 639 8996705.
- 640 30. Okutan O, Solaroglu I, Beskonakli E, Taskin Y. Recombinant human erythropoietin
- 641 decreases myeloperoxidase and caspase-3 activity and improves early functional results
- 642 after spinal cord injury in rats. Journal of clinical neuroscience : official journal of the

- 643 Neurosurgical Society of Australasia. 2007;14(4):364-8. Epub 2007/01/24. doi:
 644 10.1016/j.jocn.2006.01.022. PubMed PMID: 17236773.
- 645 31. Zhang DX, Zhang LM, Zhao XC, Sun W. Neuroprotective effects of erythropoietin
- 646 against sevoflurane-induced neuronal apoptosis in primary rat cortical neurons involving
- 647 the EPOR-Erk1/2-Nrf2/Bach1 signal pathway. Biomedicine & pharmacotherapy =
- 648 Biomedecine & pharmacotherapie. 2017;87:332-41. Epub 2017/01/09. doi:
- 649 10.1016/j.biopha.2016.12.115. PubMed PMID: 28064106.
- 650 32. Lykissas MG, Korompilias AV, Vekris MD, Mitsionis GI, Sakellariou E, Beris AE.
- 651 The role of erythropoietin in central and peripheral nerve injury. Clin Neurol Neurosurg.
- 652 2007;109(8):639-44. doi: 10.1016/j.clineuro.2007.05.013. PubMed PMID: 17624659.
- 653 33. Jaquet K, Krause K, Tawakol-Khodai M, Geidel S, Kuck KH. Erythropoietin and
- 654 VEGF exhibit equal angiogenic potential. Microvascular research. 2002;64(2):326-33.
- 655 Epub 2002/09/03. PubMed PMID: 12204656.
- 656 34. Masuda S, Okano M, Yamagishi K, Nagao M, Ueda M, Sasaki R. A novel site of
- 657 erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. The
- 658 Journal of biological chemistry. 1994;269(30):19488-93. Epub 1994/07/29. PubMed
- 659 PMID: 8034718.
- 660 35. Liem KD, Hopman JC, Oeseburg B, de Haan AF, Kollee LA. The effect of blood

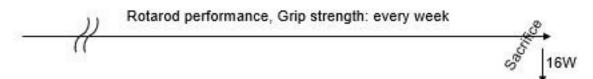
661	transfusion and haemodilution on cerebral oxygenation and haemodynamics in newborn
662	infants investigated by near infrared spectrophotometry. European journal of pediatrics.
663	1997;156(4):305-10. Epub 1997/04/01. PubMed PMID: 9128817.
664	36. Juul SE, Stallings SA, Christensen RD. Erythropoietin in the cerebrospinal fluid of
665	neonates who sustained CNS injury. Pediatric research. 1999;46(5):543-7. Epub
666	1999/12/14. doi: 10.1203/00006450-199911000-00009. PubMed PMID: 10541316.
667	37. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, et al.
668	Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury.
669	Proceedings of the National Academy of Sciences of the United States of America.
670	2000;97(19):10526-31. Epub 2000/09/14. PubMed PMID: 10984541; PubMed Central
671	PMCID: PMCPMC27058.

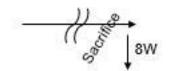

- 672 38. Liu K, Sun T, Wang P, Liu YH, Zhang LW, Xue YX. Effects of erythropoietin on
- 673 blood-brain barrier tight junctions in ischemia-reperfusion rats. Journal of molecular
- 674 neuroscience : MN. 2013;49(2):369-79. Epub 2012/09/25. doi: 10.1007/s12031-012-
- 675 9883-5. PubMed PMID: 23001813.
- 676 39. Wang R, Wu X, Liang J, Qi Z, Liu X, Min L, et al. Intra-artery infusion of recombinant
- 677 human erythropoietin reduces blood-brain barrier disruption in rats following cerebral
- 678 ischemia and reperfusion. The International journal of neuroscience. 2015;125(9):693-


679 702. Ep	ub 2014/09/17. doi:	10.3109/00207454	.2014.966354	. PubMed PMID:	. 25226558.
-------------	---------------------	------------------	--------------	----------------	-------------


- 680 40. Statler PA, McPherson RJ, Bauer LA, Kellert BA, Juul SE. Pharmacokinetics of high-
- dose recombinant erythropoietin in plasma and brain of neonatal rats. Pediatric research.
- 682 2007;61(6):671-5. Epub 2007/04/12. doi: 10.1203/pdr.0b013e31805341dc. PubMed
 683 PMID: 17426655.
- 41. Ning B, Zhang A, Song H, Gong W, Ding Y, Guo S, et al. Recombinant human
- 685 erythropoietin prevents motor neuron apoptosis in a rat model of cervical sub-acute spinal
- 686 cord compression. Neuroscience letters. 2011;490(1):57-62. Epub 2010/12/21. doi:
- 687 10.1016/j.neulet.2010.12.025. PubMed PMID: 21167907.
- 688 42. Gorio A, Madaschi L, Di Stefano B, Carelli S, Di Giulio AM, De Biasi S, et al.
- 689 Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental
- 690 spinal cord injury. Proceedings of the National Academy of Sciences of the United States
- 691 of America. 2005;102(45):16379-84. Epub 2005/11/02. doi: 10.1073/pnas.0508479102.
- 692 PubMed PMID: 16260722; PubMed Central PMCID: PMCPmc1283477.
- 693 43. Jin W, Ming X, Hou X, Zhu T, Yuan B, Wang J, et al. Protective effects of
- 694 erythropoietin in traumatic spinal cord injury by inducing the Nrf2 signaling pathway
- activation. The journal of trauma and acute care surgery. 2014;76(5):1228-34. Epub
- 696 2014/04/22. doi: 10.1097/ta.0000000000000211. PubMed PMID: 24747453.

697	44. Lippi G, Franchini M, Favaloro EJ. Thrombotic complications of erythropoiesis-
698	stimulating agents. Seminars in thrombosis and hemostasis. 2010;36(5):537-49. Epub
699	2010/07/16. doi: 10.1055/s-0030-1255448. PubMed PMID: 20632251.
700	45. Aloizos S, Evodia E, Gourgiotis S, Isaia EC, Seretis C, Baltopoulos GJ.
701	Neuroprotective Effects of Erythropoietin in Patients with Severe Closed Brain Injury.
702	Turk Neurosurg. 2015;25(4):552-8. Epub 2015/08/06. doi: 10.5137/1019-5149.jtn.9685-
703	14.4. PubMed PMID: 26242331.
704	46. Barbui T, Thiele J, Gisslinger H, Finazzi G, Vannucchi AM, Tefferi A. The 2016
705	revision of WHO classification of myeloproliferative neoplasms: Clinical and molecular
706	advances. Blood reviews. 2016;30(6):453-9. Epub 2016/06/28. doi:
707	10.1016/j.blre.2016.06.001. PubMed PMID: 27341755.
708	

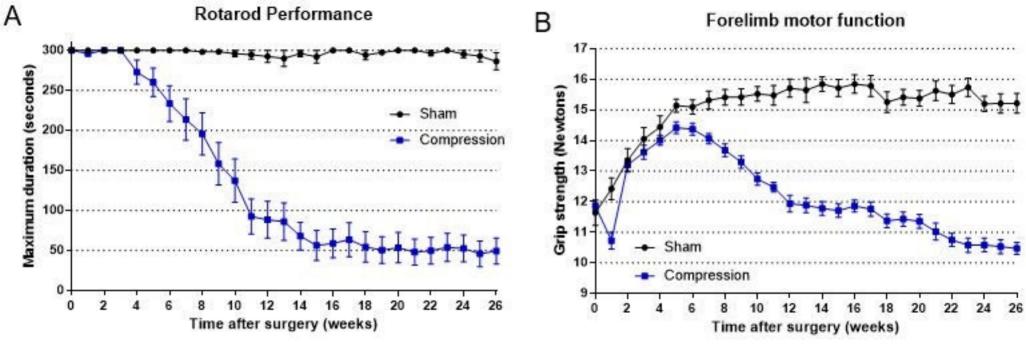
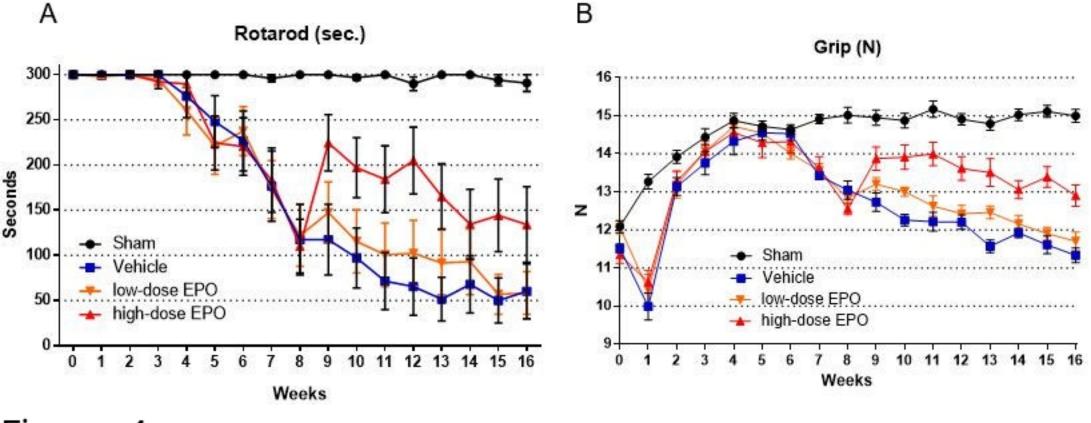
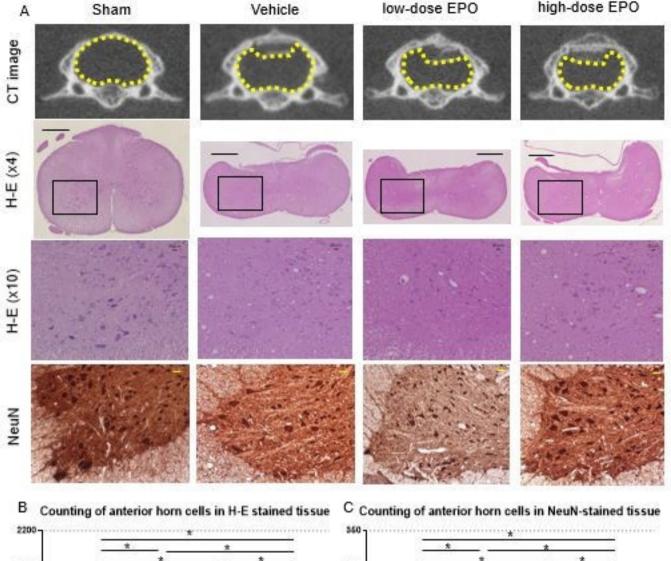
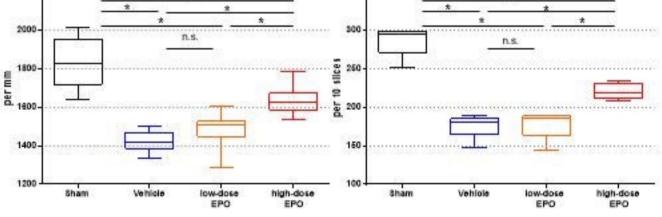

709

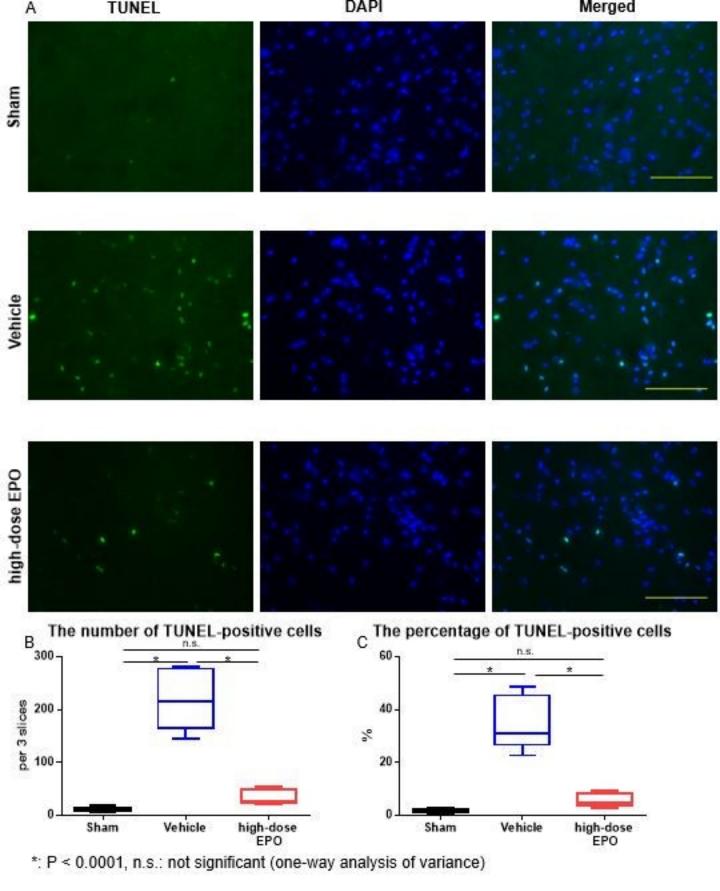


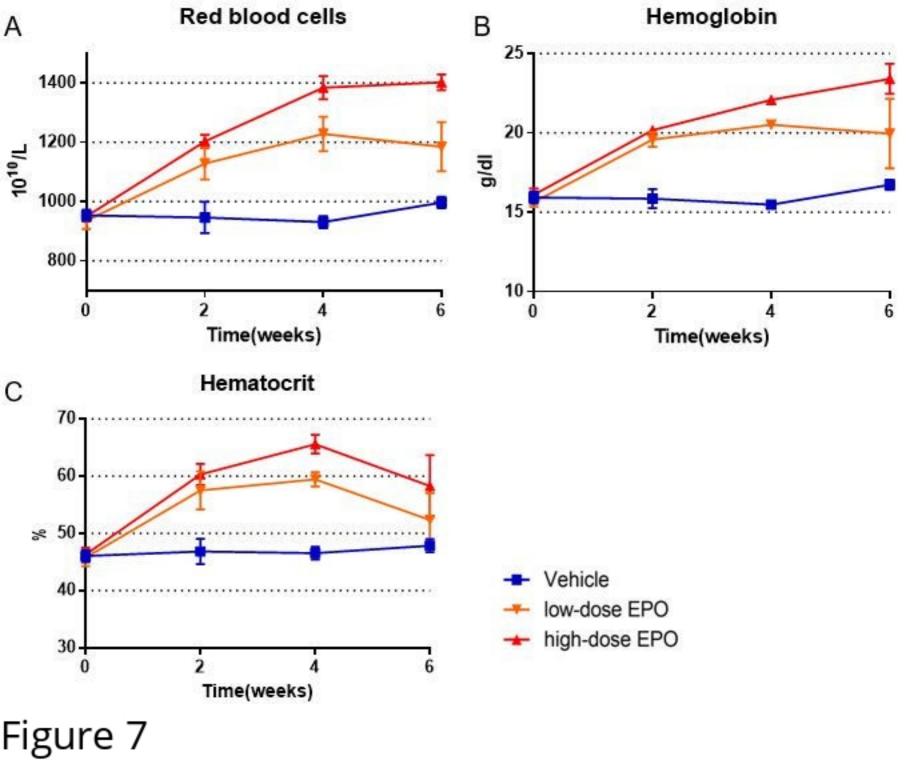
A Motor function, Motor neuron counting (n=12)

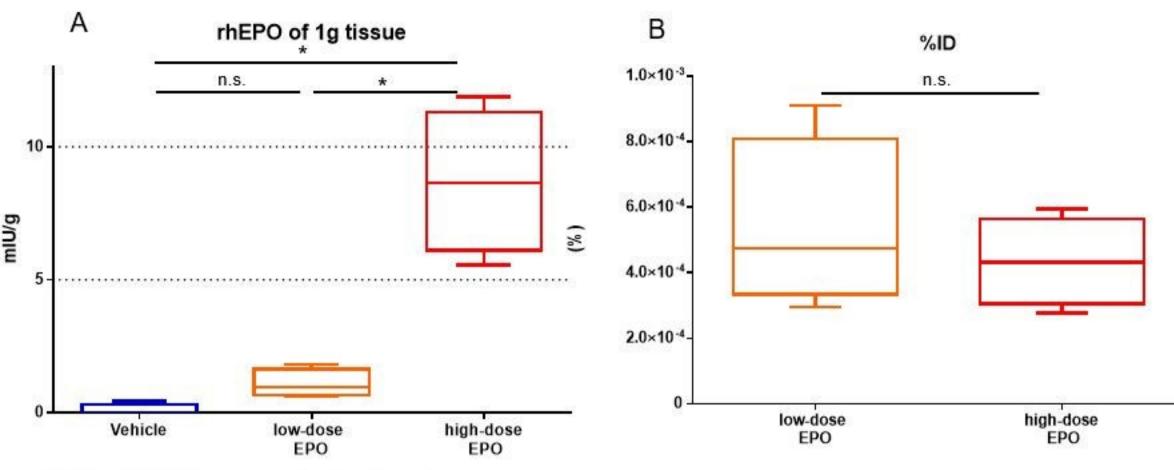
- B Apoptotic cell counting (n=6)
- C EPO level in spinal cord (n=4)

rhEPO ELISA


Figure 3





*: P < 0.0001, n.s.: not significant (two-way analysis of variance)

*: P < 0.0001, n.s.: not significant (A: one-way analysis of variance, B: Mann-Whitney U-Test)