Gray et al.

1	
2	Molecular biogeography and host relations of a parasitoid fly
3	
4	David A. Gray ^{1†} , Henry D. Kunerth ^{2,3†} , Marlene Zuk ³ , William H. Cade ⁴ , and Susan L.
5	$Balenger^{5\dagger}$
6	
7	¹ Department of Biology, California State University Northridge, Northridge, CA, 91330,
8	USA
9	² Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY,
10	14853, USA
11	³ Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN,
12	55108, USA
13	⁴ Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4,
14	Canada
15	⁵ Department of Biology, University of Mississippi, University, MS, 38677, USA
16	
17	[†] These authors contributed equally to this work.
18	
19	Correspondence: David Gray, Department of Biology, California State University
20	Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303; dave.gray@csun.edu
21	
22	

Gray et al.

2

23	Abstract. Successful geographic range expansion by parasites and parasitoids may also
24	require host range expansion. Thus the evolutionary advantages of host specialization
25	may trade off against the ability to exploit new host species encountered in new
26	geographic regions. Here we use molecular techniques and confirmed host records to
27	examine biogeography, population divergence, and host flexibility of the parasitoid fly,
28	Ormia ochracea (Bigot). Gravid females of this fly find their cricket hosts acoustically
29	by eavesdropping on male cricket calling songs; these songs vary greatly among the
30	known host species of crickets. Using both nuclear and mitochondrial genetic markers,
31	we (1) describe the geographical distribution and sub-division of genetic variation in O .
32	ochracea from across the continental United States, the Mexican states of Sonora and
33	Oaxaca, and populations introduced to Hawaii; (2) demonstrate that the distribution of
34	genetic variation among fly populations is consistent with a single widespread species
35	with regional host specialization, rather than locally differentiated cryptic species, (3)
36	identify the more-probable source populations for the flies introduced to the Hawaiian
37	islands; (4) examine genetic variation and sub-structure within Hawaii; and (5) discuss
38	specialization and lability in host-finding behavior in light of the diversity of cricket
39	songs serving as host cues in different geographically separate populations.
40	
41	

42 Key Words: parasitoid, host-specialization, range expansion, *Gryllus*, *Teleogryllus*,
43 *Ormia*44

Gray et al.

46 Introduction.

47

66

48	Evolutionary specialization is often viewed as a double-edged sword: specialization may
49	facilitate efficient exploitation of favored resources, but may also inhibit exploitation of
50	novel resources. Specialization has often been viewed as an evolutionary 'dead-end'
51	(Raia and Fortelius, 2013, Jaenike, 1990, Kelley and Farrell, 1998), although recent
52	research has revealed considerable flexibility among specialist lineages and occasional
53	'reversals' from specialized to more generalized niches (Vamosi et al., 2014, Gompert et
54	al., 2015). The retention of evolutionary lability may be especially relevant for
55	geographic range expansion; indeed 'generalist' species are often among the most
56	invasive (Romanuk et al., 2009) – a pattern found among plants, arthropods, mammals
57	and birds (Higgins and Richardson, 2014, González-Suárez et al., 2015, Blackburn and
58	Duncan, 2001, Snyder and Evans, 2006). For specialist species to expand their
59	geographic range, they must readily encounter suitable resources, exhibit phenotypic
60	plasticity enabling adoption of novel resources, and/or show rapid evolutionary
61	adaptation.
62	Parasitoid insects, especially Ichneumonid and Braconid wasps (Hymenoptera)
63	and Tachinid flies (Diptera), are especially illuminating for studies of host specialization,
64	ranging from extreme generalists to extreme specialists (Quicke, 2014, Stireman et al.,
65	2006). Some species are sufficiently host specific to be used for classical biological

control of pests (Parkman et al., 1996, Vargas et al., 2007), others routinely utilize a

broad range of hosts (Stireman, 2005, Tschorsnig, 2017, Arnaud, 1978), and in other

Gray et al.

68 cases, presumed generalists are later revealed to be complexes of cryptic specialists

69 (Smith et al., 2008).

70	Within the ca. 9000 species of Tachinids, the Ormiini tribe represents a small
71	group (ca. 68 described species) of highly specialized flies (Sabrosky, 1953a, Sabrosky,
72	1953b, Lehmann, 2003). Several specializations are noteworthy for the entire group (so
73	far as is known): all are parasitoids of crickets or katydids (Ensifera, Orthoptera); all
74	locate their (principally male) hosts using a specialized ear (Edgecomb et al., 1995,
75	Hedwig and Robert, 2014) to eavesdrop on their male host's mating song (Lehmann,
76	2003, Cade, 1975, Allen, 1995); all have sclerotized planidiform larvae which are
77	somewhat mobile and actively burrow into the host (Cantrell, 1988, Adamo et al.,
78	1995b). Within this group, all genera with known hosts parasitize katydids
79	(Tettigoniidae); in the genus Ormia most species parasitize katydids but three species
80	attack crickets and mole crickets (Gryllidae and Gryllotalpidae) (Lehmann, 2003). The
81	shift from katydids to crickets and mole crickets represents a significant shift in female
82	fly hearing towards lower frequency sounds (ca. 4-5 kHz in crickets and ca. 2-3 kHz in
83	mole crickets) than are typical of most katydids (often >>10kHz). Utilization of katydids
84	with relatively low frequency calls may have facilitated the evolutionary transition to
85	crickets and mole crickets. For example, certain katydid hosts of Ormiines have relatively
86	low frequency calls, e.g. ca. 5-6 kHz in Sciarasaga quadrata (host of Homotrixa alleni)
87	(Allen et al., 1999); ca. 7 kHz in Neoconocephalus robustus (host of O. brevicornis)
88	(Nutting, 1953); ca. 8 kHz in Orchelimum pulchellum (one of several hosts of O.
89	lineifrons) (Shapiro, 1995).

Gray et al.

90	Within Ormia, O. ochracea has been most extensively studied. Peak sensitivity of
91	female hearing closely matches or is at slightly higher frequencies than typical male
92	calling song (Robert et al., 1992). The current geographic range attributed to this species
93	extends from Florida (Walker and Wineriter, 1991), across the southern Gulf States
94	(Henne and Johnson, 2001), into Texas (Cade, 1975), Arizona (Sakaguchi and Gray,
95	2011), California (Wagner, 1996), and Mexico (Sabrosky, 1953b); throughout this range
96	it parasitizes various species of Gryllus field crickets (see below). In addition, O.
97	ochracea was introduced to Hawaii by at least 1989 (Evenhuis, 2003), where it
98	parasitizes Teleogryllus oceanicus, itself introduced to Hawaii by at least 1877 (Kevan,
99	1990) and possibly earlier, perhaps facilitated by Polynesian settlement (Tinghitella et al.,
100	2011). Localized populations of O. ochracea show varying degrees of host
101	specialization: flies in Florida almost exclusively parasitize Gryllus rubens (Walker,
102	1993, Walker and Wineriter, 1991); flies in Texas primarily parasitize G. texensis (Cade,
103	1975); flies in Arizona regularly parasitize multiple Gryllus species (Sakaguchi and Gray,
104	2011); flies in southern California primarily parasitize G. lineaticeps (Wagner, 1996,
105	Wagner and Basolo, 2007); as noted above, Hawaiian flies parasitize T. oceanicus.
106	Remarkably, playback experiments in Florida, Texas, California, and Hawaii, which
107	simultaneously presented the songs of G. rubens, G. texensis, G. lineaticeps, and T.
108	oceanicus, revealed that each fly population showed a significant (but not exclusive)
109	preference for the song of its primary local host species of cricket (Gray et al., 2007).
110	This suggests an even further degree of host specialization in these flies – possibly
111	indicative of cryptic host races or species as has been found in other Tachinids (Smith et

Gray et al.

6

112	al., 2008, Smith et al., 2006). Determining the extent to which geographic and host range
113	subdivision is coupled with genetic subdivision is thus one of the goals of this study.
114	Successful establishment of O. ochracea in Hawaii represents a significant
115	expansion of both the geographic and host range of the fly. How can such a specialist
116	invade, switch to a novel host with a strongly divergent song structure, and in the course
117	of a few decades come to prefer that novel host's song to the songs of ancestral hosts?
118	Two of our aims in this paper are to use mitochondrial and nuclear markers both to
119	examine genetic variation within Hawaii and to identify the more-likely continental
120	source population(s) of those Hawaiian flies, and thereby the most likely types of recent
121	ancestral host songs. This necessitates broad sampling of continental populations, and we
122	therefore expand upon the previous work in the USA and include flies from populations
123	in both northern and southern Mexico, as well as catalog the confirmed host species and
124	their songs in each of these areas. We apply standard phylogeographic analyses to
125	mitochondrial DNA sequence data, including outgroup species of Ormia, and we adopt a
126	population genetic approach to analysis of microsatellite nuclear markers.
127	
128	Methods.
129	Fly collection
130	We collected flies at mesh screen and/or bottle traps using playbacks of cricket songs
131	(Walker, 1989); we also collected a small number of flies at lights or as they emerged
132	from field-collected crickets. Table 1 provides details of locations and dates of sampling.
133	Collected flies were preserved in ethanol until DNA extraction and further analysis. We

134 extracted DNA using a Qiagen DNeasy tissue kit according to the manufacturer's

Gray et al.

135	instructions. We used entire flies as source tissue for all of the mainland and 13 of the
136	Hawaiian flies, and head and thorax tissue for the remainder of the Hawaiian flies. In
137	theory, the whole tissue extractions could include DNA from larvae, although the
138	amounts of such DNA would be trivial compared to maternal DNA. We quantified DNA
139	using a Nanodrop system and adjusted concentrations to between 20 and 75 ng/ul.
140	
141	Genetic Markers & Analysis
142	We analyzed population structure using both mitochondrial and nuclear markers. For
143	mtDNA, we analyzed a section of Cytochrome C Oxidase subunit I (hereafter COI) PCR
144	amplified in two overlapping fragments with 'universal' primer pairs Jerry-Pat and Ron-
145	Nancy (Simon et al., 1994), resulting in 1111 bp after alignment. In addition, we
146	developed nuclear microsatellite markers de novo for this project. Marker discovery was
147	performed by 454 sequencing at the Cornell University Life Sciences Core Laboratories
148	Center with further validation done by SLB and HDK. We identified and tested 17 msat
149	markers from this dataset consisting of 3, 4, and 6 bp repeats. PCR conditions followed a
150	'touchdown' protocol of 95° for 40 seconds, 66° for 45 seconds, and 72° for 45 seconds.
151	The annealing step was reduced by one degree every cycle for the first seven cycles.
152	Cycles 8-35 followed a pattern of 95° for 40s, 58° for 45s, and 72° for 45s. PCR
153	products were stored at -20°C until genotyped. Individuals were genotyped at
154	microsatellite loci by the University of Minnesota Genomics Center on an Applied
155	Biosystems 3730xl DNA Analyzer. We scored alleles for fragment size manually using
156	Peak Scanner 2.0 software. Multiple independent analysts scored the same products to

Gray et al.

157 assure veracity of the calls. If no clear designation could be made or alleles did not

- amplify, we scored the data as missing.
- 159
- 160 Bioinformatic Analyses
- 161 Prior to analysis of microsatellite fragments, we filtered individuals and loci for missing
- 162 data. A strict cutoff of >25% missing data led to the exclusion of 6 loci. Following this
- 163 filter, we excluded any individuals with missing data at 3 or more loci. The final dataset
- 164 included 274 individuals genotyped at 11 loci with between 6 and 17 alleles per locus
- 165 (Table 2). To estimate the number of alleles and private alleles accurately given unequal
- 166 sample sizes per population, we performed a rarefaction analysis using HP-Rare
- 167 (Kalinowski, 2005). We visualized population genetic variation using a discriminant
- 168 function analysis of principal components (DAPC) with 80 principal components and 4
- 169 discriminant functions using the adegenet (Jombart, 2008, Jombart and Ahmed, 2011)
- 170 and pegas (Paradis, 2010) packages in R.

To visualize genetic structure, we implemented the Bayesian analysis program STRUCTURE v2.3.4 using an admixture model with correlated allele frequencies. We used a burn-in of 50,000 steps and 100,000 MCMC iterations. We conducted separate runs for the full dataset, a dataset with the Hawaiian samples excluded, and a dataset of only Hawaiian samples. For the full dataset, we performed 5 runs each for k = 2-9. To infer the likely number of genetic clusters, we used both the Ln estimated probability of the data from STRUCTURE and the Evanno method utilizing Δk (Evanno et al., 2005).

Gray et al.

178	We calculated pairwise estimates of Fst (Weir and Cockerham, 1984) and Nei's
179	genetic distance between populations using the R packages adegenet and ade4 (Chessel
180	et al., 2004), and we calculated expected and observed heterozygosity using adegenet.
181	We built a mitochondrial haplotype network using 55 haplotypes from 1111 bp of
182	COI sequences from 275 individuals using the R package pegas (Paradis, 2010) with
183	default parameters.
184	
185	
186	Host Ranges & Songs
187	To provide context for understanding the degree of host specialization, we present in this
188	paper the songs of confirmed hosts in each of the geographic regions studied. We present
189	only hosts confirmed to be naturally parasitized by development of O. ochracea from
190	field-collected crickets. We suspect that a few additional host species will be confirmed
191	in the USA, especially if the species is only occasionally parasitized, and we expect that
192	many more species are parasitized in southern and central Mexico; this reflects the status
193	of current knowledge of Gryllus systematics and the extent of field sampling. Many of
194	the confirmed host species are not yet officially described (DB Weissman and DA Gray,
195	in prep.); to provide continuity within the literature we use provisional manuscript names
196	here and note that the names are disclaimed as unavailable per Article 8.3 of the ICZN.
197	In an attempt to quantify relative song differences, we created a Euclidean song
198	distance matrix using <i>matrix <- dist(songdata)</i> function in R. Song variables were:
199	dominant frequency (kHz), pulse rate, pulses per chirp or trill (ln transformed), pulse duty
200	cycle, song type (chirp, trill, stutter-trill, complex stutter-trill), chirps per trill (for stutter-

Gray et al.

10

201	trillers), as well as introductory pulses per trill and introductory pulse rate (for complex
202	stutter-trillers). Prior to matrix calculation, the raw song data were normalized as z-
203	scores. The resulting song distance matrix has the advantage of objectively showing unit-
204	less quantitative differences among species, but has the disadvantage that the different
205	song features are not weighted by their perceptual importance to O. ochracea, which
206	would be preferable but is not currently possible.
207	
208	Results.
209	Nuclear and mitochondrial genetics
210	Following filtration at missing data cutoffs, 274 individuals and 11 loci were included in
211	the final msat dataset, with 1.86% data missing. Heterozygosity across all individuals was
212	50.9%. The Hawaiian populations showed a drastic decrease in heterozygosity (Table 3).
213	The rarefaction analysis also suggested a substantial decrease in both total and private
214	allelic diversity within the Hawaiian populations (Table 2).
215	Analysis of Nei's genetic distances documented a clear split between Hawaiian
216	and mainland populations (Table 4), with Hawaiian populations more similar to western
217	mainland populations. Longitude explained the primary axis of variation among the
218	mainland populations, with a clear east-west gradient evident in both the DAPC and
219	mtDNA haplotype network (Fig. 1), as well as in the pairwise Fst and Nei's distances
220	(Table 4).
221	For the full dataset, STRUCTURE analyses indicated the strongest support for
222	k=2 genetic clusters (Fig. 2) separating Hawaiian from mainland populations, however

support for k=3 clusters was also high, which further divided the mainland populations

Gray et al.

224	into eastern and western subsets (Fig. 2). STRUCTURE plots for within Hawaii (k=2
225	and k=3) and mainland (k=2, k=3, and k=6) are in Supplemental Materials Figs. S1 and
226	S2.
227	The mtDNA haplotype network (Fig. 1b) also showed (1) low genetic variation
228	within Hawaii, (2) affinity of the Hawaiian sequences for the western mainland (i.e.
229	California) sequences, and (3) a longitudinal geographic structure within the mainland
230	populations. Oaxaca had a high diversity of haplotypes shared with all other mainland
231	populations.
232	Given the apparent distinctness of the Hawaiian populations, it is important to
233	emphasize that these patterns reflect founder effects, and concomitant change in allele
234	frequency in Hawaii, not the development of novel genetic variation in Hawaii. This is
235	most easily seen in allele frequency histograms which show that the Hawaiian genetic
236	variation is effectively a simple subset of the genetic variation found in western mainland
237	populations, themselves a simple subset of the genetic variation found in Florida, Texas,
238	and Mexico populations (see Fig. 3 for a representative locus; figures for all other loci
239	show similar patterns and are presented as Supplemental Materials Figures S3-S12).
240	
241	Host range and song structures
242	Confirmed host species, geographic range information, as well as host calling song type,
243	frequency, pulse rate, and pulses/chirp are presented in Table 5. Songs of confirmed host
244	species vary dramatically, from simple chirps to complex trills; see waveform

245 oscillograms and frequency spectrograms in Figures 4 and 5, respectively.

Gray et al.

246	The song distance matrix shows nearly 30-fold variation among species in
247	pairwise inter-host song distance comparisons (Fig. 6). Notably, the average distance of
248	T. oceanicus song from each of the other songs was about double the average distances
249	for the continental <i>Gryllus</i> species (7.75 versus 3.85, $Z = 7.4$, $p < 0.0001$).
250	
251	Discussion.
252	Our results suggest the following: (1) O. ochracea is a single widespread species with
253	regional host specialization, not a complex of cryptic species, (2) O. ochracea has spread
254	geographically into northern Mexico (Sonora) and the western USA (Arizona and
255	California) from source populations in southern Mexico (Oaxaca) and/or the southern
256	USA Gulf region (Florida, Texas), (3) Hawaiian flies were introduced from a western
257	continental USA population, most likely California, potentially consisting of as few as
258	one gravid female fly, and (4) novel song types with highly divergent song structures do
259	not inhibit novel host exploitation. We elaborate on these results below, and discuss
260	mechanisms of regional host song specialization.
261	Studies of other Tachinid groups have sometimes revealed that what was
262	considered a single generalist species actually consists of a complex of cryptic specialist
263	species (Smith et al., 2007, Smith et al., 2006). The regional host specialization in O.
264	ochracea documented previously (Gray et al., 2007) could have been consistent with
265	either a widespread generalist with regional host preferences or with multiple cryptic host
266	specialists. Both the mtDNA and msat variation suggest a single species. The mtDNA
267	sequences, although showing clear east-west geographic structure, are relatively uniform
268	and strongly divergent from O. depleta and O. lineifrons sequences (Supplemental

Gray et al.

269	Materials Figure S13). The msat data clearly show that populations strongly
270	differentiated in host song preferences can nonetheless be genetically panmictic. Perhaps
271	the best example of this involves flies from Florida and Texas: Gray et al. (2007) showed
272	that Florida flies preferred G. rubens song over G. texensis song nearly 2:1 and that
273	Texas flies preferred G. texensis song over G. rubens song 6:1. Nonetheless the pairwise
274	Fst of 0.008 for these populations (Table 3) and the DAPC (Fig. 1a) show that these two
275	populations are genetically rather homogenous.
276	Both the mtDNA and msat data also inform the broader geographic history of the
277	fly within North America. There is a clear east-west differentiation among samples,
278	potentially consistent with isolation by distance. Moreover, the pattern of allelic variation
279	in the msat loci (e.g. Fig. 3) suggests serial founder effects as flies colonized the western
280	continental USA and then Hawaii. The mtDNA similarly suggests that the older fly
281	lineages are to be found within the southeastern USA populations (Fig. 1b; Fig. S13). In
282	this light, it is interesting to note that Florida is home to two Gryllus species, G. ovisopis
283	and G. cayensis, which lack a normal calling song (Gray et al., 2018, Walker, 1974,
284	Walker, 2001), possibly a consequence of a prolonged history of Ormia parasitism in that
285	region. In contrast, there are no non-calling Gryllus in western North America.
286	The introduction of O. ochracea to Hawaii appears virtually certain to have been
287	from a western North American population. The dominant mtDNA haplotype in Hawaii
288	is also found in California and Arizona (Fig. 1b); the msat allelic variation in Hawaii is
289	likewise a subset of the most common alleles in California and Arizona (Fig. 3). A single
290	introduction seems likely; the levels of genetic variation in Hawaii do not preclude the
291	possibility that the introduction could have consisted of as few as one gravid female,

Gray et al.

14

292	although it seems more plausible that multiple individuals were introduced, perhaps as
293	pupae in soil. In other systems, experimental introductions have indicated that in some
294	circumstances introductions of a single gravid female can nonetheless establish a
295	persistent population (Grevstad, 1999, Fauvergue et al., 2007). Within Hawaii, our data
296	are consistent with the spread of an introduced population among islands, rather than
297	separate introductions on each island (Supplemental Fig. S1).
298	Once in Hawaii, the adoption of T. oceanicus as a host represents a major shift
299	within O. ochracea's repertoire of host song recognition. Quantitatively and
300	qualitatively, T. oceanicus song is strikingly divergent from the songs of continental
301	North American hosts (Figs. 4-6). Across the diversity of host songs, one could argue
302	that the single essential song recognition feature is a dominant frequency in the 3-6 kHz
303	range. This may be true in a strict sense, but frequency is clearly not the only song
304	recognition feature. Multiple studies have shown that the temporal pattern of sound
305	pulses is also important (Gray and Cade, 1999, Sakaguchi and Gray, 2011, Wagner,
306	1996, Wagner and Basolo, 2007, Walker, 1993). Moreover, fly populations prefer the
307	temporal structure of their most common host species, even when dominant frequencies
308	are similar (Gray et al., 2007). Perhaps most remarkably, Hawaiian O. ochracea preferred
309	T. oceanicus song over the songs of ancestral host species by a large margin (12 of 13
310	Hawaiian flies chose T. oceanicus song over the songs of G. rubens, G. texensis, and G.
311	lineaticeps).
312	Adoption of <i>T. oceanicus</i> as a host in Hawaii also required compatible host

Adoption of *T. oceanicus* as a host in Hawaii also required compatible host physiology for larval development. Although mostly confined to parasitism of adult males, *O. ochracea* can develop within a wide variety of crickets, including juveniles

Gray et al.

315	(Vincent and Bertram, 2009) and species not normally used as hosts (Thomson et al.,
316	2012, Adamo et al., 1995a) including Acheta domesticus (Paur and Gray, 2011b, Paur
317	and Gray, 2011a, Wineriter and Walker, 1990) which is more distantly related to Gryllus
318	than is Teleogryllus (Gray, D.A, Weissman, D.B., Lemmon, E.M., Lemmon, A.R,
319	unpublished data). This latitude probably results from the generalized nature of the
320	cricket immune encapsulation response (Vinson, 1990), which is exploited by Ormiines
321	to develop a respiratory spiracle. Given this latitude, we expect that physiological
322	compatibility with T. oceanicus was unlikely to be a significant factor in terms of host
323	suitability.
324	Our results suggest that host specialization in O. ochracea is not at odds with
325	rapid exploitation of novel hosts, as might be expected from evolutionary theory (Raia
326	and Fortelius, 2013, Jaenike, 1990, Kelley and Farrell, 1998). But how can highly
327	regional host song specificity (Gray et al., 2007), even to the point of flies having song
328	preferences for certain intra-specific song variants (Gray and Cade, 1999, Sakaguchi and
329	Gray, 2011, Wagner, 1996, Wagner and Basolo, 2007), be compatible with flexible and
330	rapid adoption of novel hosts? If population differentiation does not explain regional
331	host specialization, as suggested by the results presented here, then behavioral plasticity
332	coupled with local host learning (Paur and Gray, 2011a) may be the mechanism that
333	enables flies to escape the 'dead-end' of specialization.
334	
335	
336	

16

Gray et al.

- 338
- 339
- 340
- 341 Acknowledgements.
- 342 We are grateful for the advice and/or assistance of Steve Bogdanowicz; Thomas Chaffee;
- 343 Thomas J. Walker; David B. Weissman.

344

- Author Contributions: DAG, SLB, MZ, and WHC conceived of the study and collected
- 346 flies; DAG performed the mtDNA sequencing; SLB and HDK performed the msat
- 347 amplification and analysis; all authors contributed to the writing and editing of the

348 manuscript.

- 349
- 350 Data Accessibility
- 351 The COI sequence data have been deposited in GenBank with accession numbers
- 352 MK522523-MK522797. Upon acceptance the msat data will be archived in Dryad.
- 353
- 354
- 355 356

REFERENCES

- Adamo, S. A., Robert, D. & Hoy, R. R. 1995a. Effects of a tachinid parasitoid, *Ormia ochracea*, on the behaviour and reproduction of its male and female field cricket
 hosts (*Gryllus* spp). *Journal of Insect Physiology*, 41, 269-277.
 Adamo, S. A., Robert, D., Perez, J. & Hoy, R. R. 1995b. The response of an insect
 parasitoid, *Ormia ochracea* (Tachinidae), to the uncertainty of larval success
- during infestation. *Behavioral Ecology and Sociobiology*, 36, 111-118.
 Allen, G. R. 1995. The biology of the phonotactic parasitoid, *Homotrixa* sp. (Diptera: Tachinidae), and its impact on the survival of male *Sciarasaga quadrata*
- 365 (Orthoptera: Tettigoniidae) in the field. *Ecological Entomology*, 20, 103-110.

Gray et al.

366	Allen, G. R., Kamien, D., Berry, O., Byrne, P. & Hunt, J. 1999. Larviposition, host cues,
367	and planidial behavior in the sound-locating parasitoid fly Homotrixa alleni
368	(Diptera: Tachinidae). Journal of Insect Behavior, 12, 67-79.
369	Arnaud, P. H. 1978. Host Parasite Catalog of North American Tachinidae (Diptera).
370	United States Department of Agriculture, Miscellaneous Publication, 1319, 1-
371	860.
372	Blackburn, T. M. & Duncan, R. P. 2001. Determinants of establishment success in
373	introduced birds. Nature, 414, 195.
374	Blankers, T., Hennig, M. R. & Gray, D. A. 2015. Conservation of multivariate female
375	preference functions and preference mechanisms in three species of trilling field
376	crickets. J. Evol. Biol., 28, 630-641.
377	Cade, W. H. 1975. Acoustically orienting parasitoids: fly phonotaxis to cricket song.
378	Science, 190, 1312-1313.
379	Cade, W. H. 1981. Field cricket spacing and the phonotaxis of crickets and parasitoid
380	flies to clumped and isolated cricket songs. Zeitshrift für Tierpsychologie, 55,
381	365-375.
382	Cade, W. H., Ciceran, M. & Murray, AM. 1996. Temporal patterns of parasitoid fly
383	(Ormia ochracea) attraction to field cricket song (Gryllus integer). Canadian
384	Journal of Zoology, 74, 393-395.
385	Cantrell, B. 1988. The comparative morphology of the male and female postabdomen of
386	the Australian Tachinidae (Diptera), with descriptions of some first-instar larvae
387	and pupae. Invertebrate Systematics, 2, 81-221.
388	Chessel, D., Dufour, A. B. & Thioulouse, J. 2004. The ade4 package-I-One-table
389	methods. <i>R news</i> , 4, 5-10.
390	Doherty, J. A. & Storz, M. M. 1992. Calling song and selective phonotaxis in the field
391	crickets, Gryllus firmus and G. pennsylvanicus (Orthoptera: Gryllidae). Journal of
392	Insect Behavior, 5, 555-569.
393	Edgecomb, R. S., Robert, D., Read, M. P. & Hoy, R. R. 1995. The tympanal hearing
394	organ of a fly: phylogenetic analysis of its morphological origins. Cell and tissue
395	research, 282, 251-268.
396	Evanno, G., Regnaut, S. & Goudet, J. 2005. Detecting the number of clusters of
397	individuals using the software STRUCTURE: a simulation study. Molecular
398	<i>Ecology</i> , 14, 2611-2620.
399	Evenhuis, N. L. 2003. The status of the cricket parasites Ormia ochracea and
400	Phasioormia pallida in the Hawaiian Islands (Diptera: Tachinidae). Bishop
401	Museum Occasional Papers, 74, 34-35.
402	Fauvergue, X., Malausa, JC., Giuge, L. & Courchamp, F. 2007. Invading parasitoids
403	suffer no Allee effect: a manipulative field experiment. <i>Ecology</i> , 88, 2392-2403.
404	Gompert, Z., Jahner, J. P., Scholl, C. F., Wilson, J. S., Lucas, L. K., Soria Carrasco, V.,
405	Fordyce, J. A., Nice, C. C., Buerkle, C. A. & Forister, M. L. 2015. The evolution
406	of novel host use is unlikely to be constrained by trade \Box offs or a lack of genetic
407	variation. <i>Molecular ecology</i> , 24, 2777-2793.
408	González-Suárez, M., Bacher, S. & Jeschke, J. M. 2015. Intraspecific trait variation is
409	correlated with establishment success of alien mammals. The American
410	Naturalist, 185, 737-746.

Gray et al.

411	Gray, D. A., Banuelos, C. M., Walker, S. E., Cade, W. H. & Zuk, M. 2007. Behavioural
412	specialisation among populations of the acoustically-orienting parasitoid fly
413	Ormia ochracea utilising different cricket species as hosts. Animal Behaviour, 73,
414	99-104.
415	Gray, D. A. & Cade, W. H. 1999. Sex, death and genetic variation: natural and sexual
416	selection on cricket song. Proceedings of the Royal Society of London, Series B:
417	Biological Sciences, 266, 707-709.
418	Gray, D. A., Gabel, E., Blankers, T. & Hennig, R. M. 2016a. Multivariate female
419	preference tests reveal latent perceptual biases. Proc. R. Soc. B, 283, DOI:
420	10.1098/rspb.2016.1972.
421	Gray, D. A., Gutierrez, N. J., Chen, T. L., Gonzalez, C., Weissman, D. B. & Cole, J. A.
422	2016b. Species divergence in field crickets: genetics, song, ecomorphology, and
423	pre- and postzygotic isolation. Biological Journal of the Linnaean Society, 117,
424	192-205.
425	Gray, D. A., Hormozi, S., Libby, F. R. & Cohen, R. W. 2018. Induced expression of a
426	vestigial sexual signal. Biology Letters, 14, 20180095.
427	Grevstad, F. S. 1999. Experimental invasions using biological control introductions: the
428	influence of release size on the chance of population establishment. <i>Biological</i>
429	Invasions, 1, 313-323.
430	Hedrick, A. V. & Kortet, R. 2006. Hiding behaviour in two cricket populations that differ
431	in predation pressure. Animal Behaviour, 72, 1111-1118.
432	Hedrick, A. V. & Weber, T. 1998. Variance in female responses to the fine structure of
433	male song in the field cricket, Gryllus integer. Behavioral Ecology, 9, 582-591.
434	Hedwig, B. & Robert, D. 2014. Auditory parasitoid flies exploiting acoustic
435	communication of insects. Insect hearing and acoustic communication. Springer.
436	Henne, D. C. & Johnson, S. J. 2001. Seasonal distribution and parasitism of <i>Scapteriscus</i>
437	spp. (Orthoptera: Gryllotalpidae) in southeastern Louisiana. Florida
438	Entomologist, 84, 209-214.
439	Higgins, S. I. & Richardson, D. M. 2014. Invasive plants have broader physiological
440	niches. Proceedings of the National Academy of Sciences, 111, 10610-10614.
441	Izzo, A. S. & Gray, D. A. 2004. Cricket song in sympatry: species specificity of song
442	without reproductive character displacement in Gryllus rubens. Annals of the
443	Entomological Society of America, 97, 831-837.
444	Jaenike, J. 1990. Host specialization in phytophagous insects. Annual Review of Ecology
445	and Systematics, 21, 243-273.
446	Jombart, T. 2008. adegenet: a R package for the multivariate analysis of genetic markers.
447	<i>Bioinformatics</i> , 24, 1403-1405.
448	Jombart, T. & Ahmed, I. 2011. adegenet 1.3-1: new tools for the analysis of genome-
449	wide SNP data. <i>Bioinformatics</i> , 27, 3070-3071.
450	Kalinowski, S. T. 2005. hp are 1.0: a computer program for performing rarefaction on
451	measures of allelic richness. <i>Molecular Ecology Notes</i> , 5, 187-189.
452	Kelley, S. T. & Farrell, B. D. 1998. Is specialization a dead end? The phylogeny of host
453	use in <i>Dendroctonus</i> bark beetles (Scolytidae). <i>Evolution</i> , 52, 1731-1743.
454	Kevan, D. K. M. 1990. Introduced grasshoppers and crickets in Micronesia. <i>Boletin de</i>
455	Sanidad Vegetal, 20, 105-123.
-	\mathbf{O} , , \mathbf{C}

Gray et al.

456	Lehmann, G. U. C. 2003. Review of biogeography, host range and evolution of acoustic
457	hunting in Ormiini (Insecta, Diptera, Tachinidae), parasitoids of night-calling
458	bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zoologischer Anzeiger,
459	242, 107-120.
460	Nutting, W. L. 1953. The biology of <i>Euphasiopteryx brevicornis</i> (Townsend) (Diptera,
461	Tachinidae), a parasite in the cone-headed grasshoppers (Orthoptera:
462	Copiphorinae). <i>Psyche</i> , 60, 69-81.
463	Paradis, E. 2010. pegas: an R package for population genetics with an integrated-
464	modular approach. Bioinformatics, 26, 419-420.
465	Parkman, J. P., Frank, J. H., Walker, T. J. & Schuster, D. J. 1996. Classical biological
466	control of Scapteriscus spp. (Orthoptera: Gryllotalpidae) in Florida.
467	Environmental Entomology, 25, 1415-1420.
468	Paur, J. & Gray, D. A. 2011a. Individual consistency, learning and memory in a
469	parasitoid fly, Ormia ochracea. Animal Behaviour, 82, 825-830.
470	Paur, J. & Gray, D. A. 2011b. Seasonal dynamics and overwintering strategy of the
471	tachinid fly, Ormia ochracea, in southern California. Terrestrial Arthropod
472	<i>Reviews</i> , 4, 145-156.
473	Quicke, D. L. 2014. The braconid and ichneumonid parasitoid wasps: biology,
474	systematics, evolution and ecology, John Wiley & Sons.
475	Raia, P. & Fortelius, M. 2013. Cope's Law of the Unspecialized, Cope's Rule, and weak
476	directionality in evolution. Evolutionary Ecology Research, 15, 747-756.
477	Robert, D., Amoroso, J. & Hoy, R. R. 1992. The evolutionary convergency of hearing in
478	a parasitoid fly and its cricket host. Science, Wash., 258, 1135-1137.
479	Romanuk, T. N., Zhou, Y., Brose, U., Berlow, E. L., Williams, R. J. & Martinez, N. D.
480	2009. Predicting invasion success in complex ecological networks. Philosophical
481	Transactions of the Royal Society B: Biological Sciences, 364, 1743-1754.
482	Sabrosky, C. W. 1953a. Taxonomy and host relations of the tribe Ormiini in the western
483	hemisphere (Diptera, Larvaevoridae). Proceedings of the Entomological Society
484	of Washington, 55, 167-183.
485	Sabrosky, C. W. 1953b. Taxonomy and host relations of the tribe Ormiini in the western
486	hemisphere, II (Diptera, Larvaevoridae). Proceedings of the Entomological
487	Society of Washington, 55, 289-305.
488	Sakaguchi, K. M. & Gray, D. A. 2011. Host song selection by an acoustically-orienting
489	parasitoid fly exploiting a multi-species assemblage of cricket hosts. Animal
490	<i>Behaviour,</i> 81, 851-858.
491	Shapiro, L. 1995. Parasitism of Orchelimum katydids (Orthoptera: Tittigoniidae) by
492	Ormia lineifrons (Diptera: Tachinidae). Florida Entomologist, 78, 615-616.
493	Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. 1994. Evolution,
494	weighting, and phylogenetic utility of mitochondrial gene sequences and a
495	compilation of conserved polymerase chain reaction primers. Annals of the
496	Entomological Society of America, 87, 651-701.
497	Smith, M. A., Rodriguez, J. J., Whitfield, J. B., Deans, A. R., Janzen, D. H., Hallwachs,
498	W. & Hebert, P. D. 2008. Extreme diversity of tropical parasitoid wasps exposed
499	by iterative integration of natural history, DNA barcoding, morphology, and
500	collections. Proceedings of the National Academy of Sciences, 105, 12359-12364.

Gray et al.

 503 (Diptera, Tachinidae) are not all generalists. <i>Proceedings of the National</i> 504 <i>Academy of Sciences, U S A</i>, 104, 4967-72. 505 Smith, M. A., Woodley, N. E., Janzen, D. H., Hallwachs, W. & Hebert, P. D. 2 506 barcodes reveal cryptic host-specificity within the presumed polyphago 507 members of a genus of parasitoid flies (Diptera: Tachinidae). <i>Proceedin</i> 	2006. DNA bus ngs of the
 Smith, M. A., Woodley, N. E., Janzen, D. H., Hallwachs, W. & Hebert, P. D. 2 barcodes reveal cryptic host-specificity within the presumed polyphago 	ous ngs of the
506 barcodes reveal cryptic host-specificity within the presumed polyphago	ous ngs of the
	ngs of the
507 members of a genus of parasitoid flies (Dintera, Tachinidae) Proceedir	
	generalist
508 National Academy of Sciences, USA, 103, 3657-62.	generalist
509 Snyder, W. E. & Evans, E. W. 2006. Ecological effects of invasive arthropod g	
510 predators. Annu. Rev. Ecol. Evol. Syst., 37, 95-122. 511 Stiromon, L 2005. The evolution of generalization? Parasiteid flies and the pari	ile of
511 Stireman, J. 2005. The evolution of generalization? Parasitoid flies and the peri 512 inferring host range evolution from phylogenies. <i>Journal of evolutionar</i>	
inferring host range evolution from phylogenies. <i>Journal of evolutionar</i>18, 325-336.	ry biology,
514 Stireman, J. O., O'Hara, J. E. & Wood, D. M. 2006. Tachinidae: Evolution, beh	navior and
515 ecology. Annual Review of Entomology, 51, 525-555.	lavioi, and
516 Thomson, I. R., Vincent, C. M. & Bertram, S. 2012. Success of the parasitoid f	fly <i>Ormia</i>
517 <i>ochracea</i> (Diptera: Tachinidae) on natural and unnatural cricket hosts.	
518 Entomologist, 95, 43-48.	1 101100
519 Tinghitella, R., Zuk, M., Beveridge, M. & Simmons, L. 2011. Island hopping in	ntroduces
520 Polynesian field crickets to novel environments, genetic bottlenecks and	
521 evolution. Journal of evolutionary biology, 24, 1199-1211.	1
522 Tschorsnig, HP. 2017. Preliminary host catalog of Palearctic Tachinidae (Di	iptera)
523 [Online]. Available:	
524 <u>http://www.nadsdiptera.org/Tach/WorldTachs/CatPalHosts/Cat_Pal_tac</u>	<u>ch_hosts_</u>
525 <u>Ver1.pdf</u> [Accessed June 28, 2018].	
526 Vamosi, J. C., Armbruster, W. S. & Renner, S. S. 2014. Evolutionary ecology	of
527 specialization: insights from phylogenetic analysis. 281, 2014.2004.	
528 Vargas, R. I., Leblanc, L., Putoa, R. & Eitam, A. 2007. Impact of introduction	of
529 Bactrocera dorsalis (Diptera: Tephritidae) and classical biological cont	trol
530 releases of <i>Fopius arisanus</i> (Hymenoptera: Braconidae) on economical	•
531 important fruit flies in French Polynesia. Journal of Economic Entomol	logy, 100 ,
532 670-679.	
533 Vélez, M. J. & Brockmann, H. J. 2006. Seasonal variation in selection on male	-
song in the field cricket, <i>Gryllus rubens</i> . <i>Animal Behaviour</i> , 72, 439-44	
535 Vincent, C. M. & Bertram, S. M. 2009. The parasitoid fly Ormia ochracea (Di	-
536 Tachinidae) can use juvenile crickets as hosts. <i>Florida Entomologist</i> , 92	,
537 Vinson, S. B. 1990. How parasitoids deal with the immune system of their host	t: an
538 overview. Archs Insect Biochem Physiol, 13, 3-27.	
539 Wagner, W. E. & Basolo, A. L. 2007. Host preferences in a phonotactic parasit	
540 field crickets: the relative importance of host song characters. <i>Ecologica</i>	al
541 <i>Entomology</i> , 32, 478-484.	1
542 Wagner, W. E., Jr. 1996. Convergent song preferences between female field cr	
 acoustically orienting parasitoid flies. <i>Behavioral Ecology</i>, 7, 279-285. Walker, T. J. 1974. <i>Gryllus ovisopis</i> N. SP.: a tacitum cricket with a life cycles 	
 Walker, T. J. 1974. <i>Gryllus ovisopis</i> N. SP.: a tacitum cricket with a life cycles allochronic speciation. <i>Florida Entomologist</i>, 57, 13-22. 	suggesting

Gray et al.

21

546	Walker, T. J. 1989. A live trap for monitoring Euphasiopteryx and tests with E. ochracea
547	[Diptera: Tachinidae]. Florida Entomologist, 72, 314-319.
548	Walker, T. J. 1993. Phonotaxis in female Ormia ochracea (Diptera: Tachinidae), a
549	parasitoid of field crickets. Journal of Insect Behavior, 6, 389-410.
550	Walker, T. J. 2001. Gryllus cayensis n.sp. (Orthoptera: Gryllidae), a taciturn wood cricket
551	extirpated from the Florida Keys: songs, ecology and hybrids. Florida
552	Entomologist, 84, 700-705.
553	Walker, T. J. & Wineriter, S. A. 1991. Hosts of a phonotactic parasitoid and levels of
554	parasitism (Diptera: Tachinidae: Ormia ochracea). Florida Entomologist, 74,
555	554-559.
556	Weir, B. S. & Cockerham, C. C. 1984. Estimating F statistics for the analysis of
557	population structure. Evolution, 38, 1358-1370.
558	Weissman, D. B., Rentz, D. C. F., Alexander, R. D. & Loher, W. 1980. Field crickets
559	(Gryllus and Acheta) of California and Baja California, Mexico (Orthoptera:
560	Gryllidae: Gryllinae). Trans. Am. Entomol. Soc., 106, 327-356.
561	Weissman, D. B., Walker, T. J. & Gray, D. A. 2009. The Jamaican field cricket Gryllus
562	assimilis and two new sister species (Orthoptera: Gryllidae). Annals of the
563	Entomological Society of America, 102, 367-380.
564	Wineriter, S. A. & Walker, T. J. 1990. Rearing phonotactic parasitoid flies (Diptera:
565	Tachinidae, Ormiiini, Ormia spp.). Entomophaga, 35, 621-632.
566	Zuk, M., Simmons, L. W. & Cupp, L. 1993. Calling characteristics of parasitized and
567	unparasitized populations of the field cricket Teleogryllus oceanicus. Behavioral
568	Ecology and Sociobiology, 33, 339-343.
569	Zuk, M., Simmons, L. W. & Rotenberry, J. T. 1995. Acoustically-orienting parasitoids in
570	calling and silent males of the field cricket Teleogryllus oceanicus. Ecological
571	Entomology, 20, 380-383.
572	

Gray et al.

Region	Locality	Dates	Ν	Collector(s)
Florida	Gainesville, FL	Aug. 2002	41	DAG
Texas	San Antonio, TX	Sept. 2002	5	WHC
	Austin, TX	Sept. 2002,	29	WHC & S. Walker 2002
		2004		DAG 2004
	Huntsville, TX	Sept. 2002	1	S. Walker
Arizona	Sedona, AZ	Aug. 2004	12	DAG
	Oak Creek, AZ	Aug. 2004	6	DAG
	Holbrook, AZ	Aug. 2002	1	DAG
	Verde River, AZ	Aug. 2004	3	DAG
	Madera Canyon, AZ	Aug. 2004	10	DAG
	KOFA, AZ	Sept. 2005	2	DAG
	Yuma, AZ	Nov. 2003	2	A. Izzo
	Parker Canyon, AZ	Aug. 2004	2	DAG
	Petroglyph, AZ	Sept. 2006	16	DAG
	Pinery Canyon, AZ	Sept. 2004	5	DAG
	Portal, AZ	Aug. 2003	1	DAG
Sonora	Alamos, Sonora, MX	July 2006	17	DAG
0	0 D 11 D 1	N. 2014	10	DAC
Oaxaca	San Pablo Etla, Oaxaca, MX	Nov. 2014	13	DAG
California	Malibu Creek, CA	Sept. & Oct. 2003, 2004	22	DAG
	Stunt Ranch, CA	Sept. 2002	10	DAG
	Santa Margarita Reserve, CA	Sept. 2003	5	DAG
Hawaii	Kauai, HI	Feb. & Aug. 2014	24	MZ & SLB
	Hilo, HI	Mar. 2003; Feb. & Aug. 2014	33	WHC 2003; MZ & SLB 2014
2	Oahu, HI	Feb. 2014	4	MZ & SLB
Outgroups		D		
Ormia depleta	Gainesville, FL	Dec. 2003	2	H. Frank, via T. J. Walker
Ormia lineifrons	Gainesville, FL	Dec. 2003	2	H. Frank, via T. J. Walker

Table 1. Sample collection data; not all specimens were used in all analyses.

Gray et al.

576 Table 2. Locus primer and allelic richness statistics

	Repeat locus				Mean number of alleles				Mean number of private alleles															
Locus	Primersequence 5'-3'	motif	no.	size (bp) Poc	ol Dye	<u>HI(K)</u>	HI(O)	HI(H)	CA	AZ	SON	OAX	ΤХ	FL	<u>HI(K)</u>	HI(O)	H⊧(H)	CA	AZ	SON	OAX	ΤХ	FL
<i>0o002</i>	F: G TG TG TG AG CG TC TG A TC TTCC	CAGC	11	191	А	VIC	2.65	3.57	3.17	3.64	4.76	4.22	4.02	4.49	5.58	0.00	0.01	0.02	0.14	0.68	0.43	1.16	0.25	0.6
	R: ATCAG CCACA TTTACAC TTTCCC																							
00007	F: TTCCTTTACTATCGTATTGGCGC	TTG	8	286	А	6-FAM	1.99	2.41	2.20	5.27	5.46	5.11	6.73	4.69	4.68	0.00	0.13	0.20	1.30	0.61	0.93	1.68	0.50	0.5
	R: AGGAAGGAAGACAAACAAACAGC																							
00011	F: CTGCCCTTTCACTCTTACTTGAC	AACGAC	14	395	А	PET	3.89	3.33	3.39	4.77	5.33	5.68	4.05	7.29	7.02	0.00	0.00	0.00	0.07	0.68	0.82	0.00	1.20	1.
	R: GAG CTC CCT TGG CAA G TT AAA TG																							
00017	F: TCAAA TA TGGGC TGG TTTG GA TG	TGG A	10	164	А	6-FAM	2.00	2.00	1.99	3.36	4.97	5.49	6.44	5.05	6.01	0.00	0.00	0.00	0.00	0.02	0.51	1.18	0.37	1.
	R: TG TCA TGA TGCAGCA TAAACAAC																							
00022	F: AAAGG TG TTAGAAGA TG T TG G CG	GGAT	9	348	В	6-FAM	3.61	2.56	2.58	6.29	7.97	6.51	8.40	7.73	7.34	0.00	0.00	0.00	0.82	1.18	0.84	1.42	1.46	1.
	R : GA TAA TAGCG CTCG TAG TTGCAG																							
00024	F: TA TG ACG TG CAGCAA TA TGAG TG	TTG	15	164	в	PET	2.54	2.24	2.22	2.89	3.77	3.93	3.52	3.48	3.69	0.55	0.21	0.22	0.00	0.17	0.01	0.00	0.30	0
	R : GTG ACG TACG TTTGA AA TGCTC																							
00028	F: TC TTG TGG G TA A TG G CA A TTG TG	TAG	12	333	В	NE D	2.00	2.41	2.18	4.69	5.97	7.04	6.68	5.30	5.76	0.00	0.41	0.20	0.64	0.58	0.16	0.39	0.18	0.
	R: ATTTAA TACGCAGCAA TCCCAGG																							
00031	F: A CA TA TGG TGAG TAG TGGA TCCC	AAC	11	387	В	VIC	2.70	2.43	2.31	4.14	5.16	5.25	6.54	5.77	6.91	0.00	0.00	0.00	0.00	0.48	0.41	0.28	0.22	1
	R: ACCAG AAGCTG TCA TA TA GGGAG																							
00032	F: TG AAG TG TGACAG TT TCT TG ACG	TTG	12	416	А	VIC	2.94	3.21	3.36	5.79	5.86	4.47	6.28	7.09	6.34	0.00	0.24	0.38	1.23	0.92	0.14	1.23	1.26	0
	R: ACTG TCAAGGATG TTAAACTG GC																							
00034	F: TTCG ACCAAACCCA TTA TG TGAC	ACA	12	182	А	NE D	1.92	1.83	1.90	1.90	2.78	3.02	3.59	3.34	3.25	0.00	0.41	0.03	0.03	0.84	0.68	1.63	0.70	0.
	R: TCCG GACTATCGAGATTG TAC TG																							
<i>0</i> 0035	F: A TTTGCG G TG TTACTTCA TTTGC	GTT	10	190	А	PET	1.33	2.06	1.43	2.64	4.72	6.14	6.08	6.28	6.98	0.00	0.41	0.00	0.07	0.63	0.79	0.34	1.15	1.
	R: TTGCT TACCACTGT TCGCTAA TC																							
						Mean	2.51	2.55	2.43	4.12	5.16	5.17	5.67	5.50	5.78	0.05	0.17	0.10	0.39	0.62	0.52	0.85	0.69	0.
						s.d.	0.73	0.55	0.60	1.32	1 25	1.13	153	1.42	1 3 2	0.16	0.17	0.13	0.49	0.31	0.30	0.62	0.46	

Population	Sample size	N. alleles	Heterozygosity (expected)	Heterozygosit (observed)
Kauai	20	29	0.437	0.367
Oahu	28	31	0.438	0.367
Hilo	32	34	0.401	0.321
California	32	62	0.588	0.478
Arizona	57	95	0.667	0.612
Sonora	17	70	0.677	0.588
Oaxaca	13	70	0.724	0.607
Texas	35	91	0.714	0.604
Florida	40	95	0.741	0.638

Table 3. Population sample sizes and heterozygosity for nuclear msat loci.

Gray et al.

	Kauai	Oahu	Hilo	Californi	a Arizona	a Sonora	Oaxaca	Texas	Florida
Kauai	-	0.027	0.057	0.092	0.071	0.105	0.109	0.091	0.087
Oahu	0.044	-	0.047	0.088	0.079	0.099	0.095	0.100	0.098
Hilo	0.096	0.073	-	0.114	0.097	0.124	0.118	0.127	0.122
California	0.263	0.229	0.279	-	0.024	0.034	0.049	0.055	0.060
Arizona	0.282	0.267	0.291	0.088	-	0.011	0.019	0.031	0.035
Sonora	0.290	0.286	0.344	0.127	0.067	-	0.032	0.026	0.026
Oaxaca	0.327	0.305	0.365	0.235	0.151	0.169	-	0.022	0.021
Texas	0.331	0.332	0.394	0.231	0.165	0.149	0.158	-	0.008
Florida	0.337	0.336	0.388	0.273	0.187	0.167	0.171	0.045	-

624 Table 4. Pairwise F_{ST} (above diagonal) and Nei's genetic distance (below diagonal) by population.

650 Table 5. Confirmed hosts of Ormia ochracea.

651

Host Species	Confirmed as Host in	Song type	Dominant Frequency (kHz)	Pulse rate (p/s) †	Pulses per chirp or trill *	References for host status and song data
G. rubens	Florida	trill	4.7	50-55	100-200	(Walker and Wineriter, 1991, Vélez and Brockmann, 2006, Izzo and Gray, 2004, Blankers et al., 2015)
G. firmus	Florida, Texas	chirp	4.2	16	3-5	(Walker and Wineriter, 1991, Doherty and Storz, 1992); D. Weissman pers. com.
G. texensis	Texas, Oklahoma, Coahuila	trill	5.2	75-80	25-65	(Cade, 1975, Cade, 1981, Cade et al., 1996, Gray and Cade, 1999, Izzo and Gray, 2004, Blankers et al., 2015); DAG; D. Weissman pers. com.
G. assimilis	Texas, Oaxaca, Nuevo Leon	chirp	3.7	85	6-9	DAG; D. Weissman pers. com. (Weissman et al., 2009)
G. personatus	Arizona, Coahuila	chirp	4.0	57	6-8	DAG; D. Weissman pers. com. (Gray et al., 2016b)
<i>G. vocalis</i> a.k.a. Regular stutter- triller	Arizona	Fast chirp	4.8	33	3-4	D. Weissman pers. com. (Weissman et al., 1980, Sakaguchi and Gray, 2011)

G. "staccato" a.k.a. G#15	Arizona, Sonora	chirp	5.2	73	6-8	(Sakaguchi and Gray, 2011, Gray et al., 2016b); DAG
G. armatus	Arizona	stutter-trill	3.6	58	2, 15-20	(Hedrick and Kortet, 2006); DAG
G. "montis"	Arizona	chirp	3.8	22	4-5	DAG
<i>G. "longicercus"</i> a.k.a. G#13	Arizona	chirp	4.5	10	4-6	DAG; D. Weissman pers. com. (Gray et al., 2016a)
G. "lightfooti"	Arizona	chirp	4.5	20	4-6	DAG; D. Weissman pers. com.
G. multipulsator	Arizona, Sonora, Jalisco, Zacatecas, Sinaloa, Baja California Sur	chirp	4.1	70	12-16	A. Izzo; DAG; D. Weissman pers. com. (Weissman et al., 2009)
<i>G. "regularis"</i> a.k.a. G#14, Arizona triller	Arizona	trill	4.5	38	20-80	(Sakaguchi and Gray, 2011, Blankers et al., 2015); DAG
<i>G. cohni</i> a.k.a. G#20, Arizona stutter-triller	Arizona, Sonora	stutter-trill	4.8	25	2-8, 1-6	(Sakaguchi and Gray, 2011); DAG
<i>G. "saxatilis"</i> a.k.a. G#2	California, Baja California Norte	chirp	4.1	20	3-4	DAG; D. Weissman pers. com.
G. lineaticeps	California	chirp	5.1	55	6-8	(Wagner, 1996, Wagner and Basolo, 2007, Gray et al., 2016b); DAG
G. integer	California	stutter-trill	4.5	60	2-3, 15- 80	(Hedrick and Kortet, 2006, Paur and Gray, 2011a, Hedrick and Weber, 1998, Weissman

						et al., 1980)
Teleogryllus oceanicus	Hawaii	complex 2-part	4.6	14 // 24	6-8 // 2,	(Zuk et al., 1995, Zuk et
		trill // stutter-			8-10	al., 1993)
		trill **				

- 655 \dagger Pulse rates approximate the average at 25 °C.
- 656 * For stutter-trillers, numbers are given as pulses per chirp, chirps per trill.
- 657 ** For the *T. oceanicus* 2-part song, numbers are given as trill part 1 // stutter-trill part 2.

Gray et al.

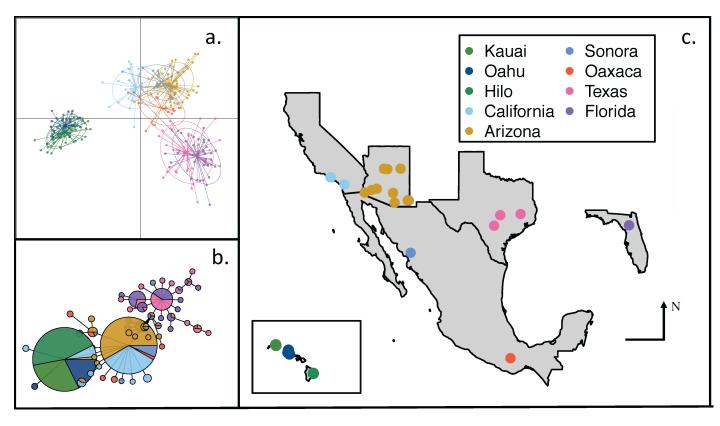


Figure 1. a) DAPC clustering analysis. Individuals are marked as points with ellipses representing 75% of the observed data. b) Haplotype network of 55 haplotypes of 1111bp of mitochondrial COI gene sequences. c) Map of collection sites.

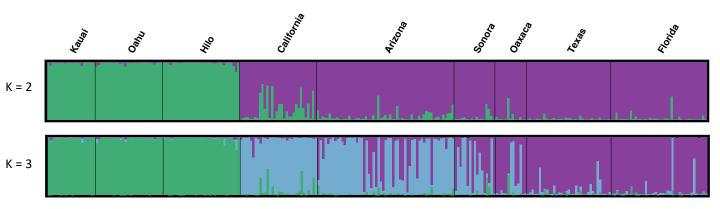


Figure 2. Bayesian clustering analysis implemented by STRUCTURE software (Pritchard et al. 2000). Top panel shows clustering into two genetic groups (K = 2) and the bottom panel shows clustering into three genetic groups (K = 3).

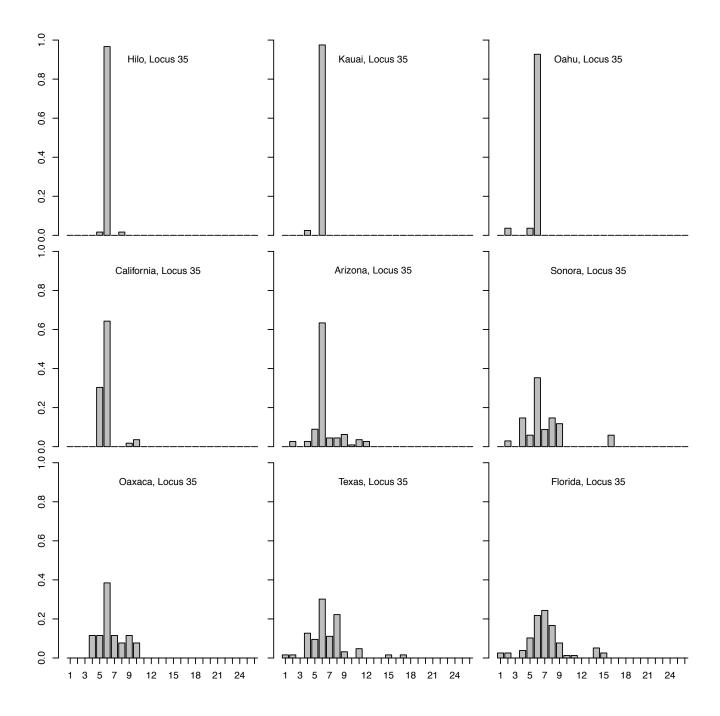


Figure 3. Allele frequency histograms for msat locus 35 for each population.

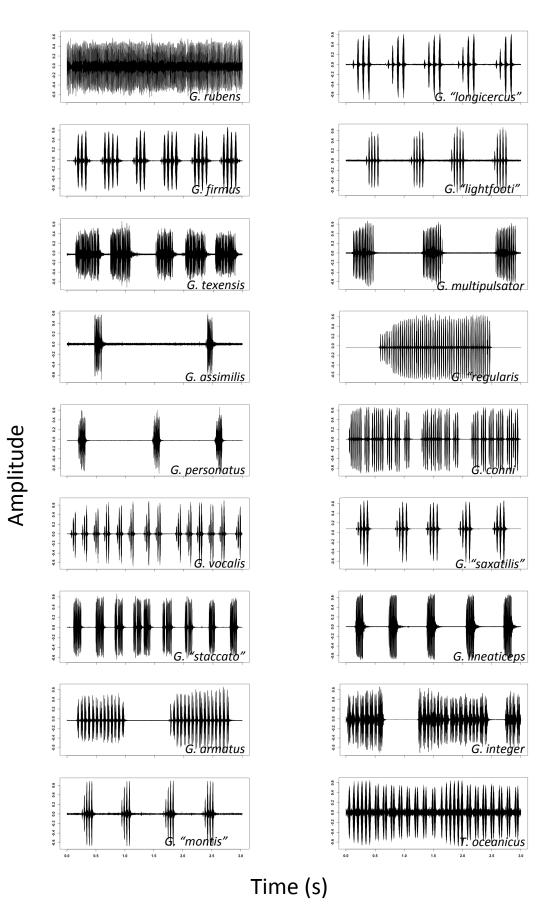
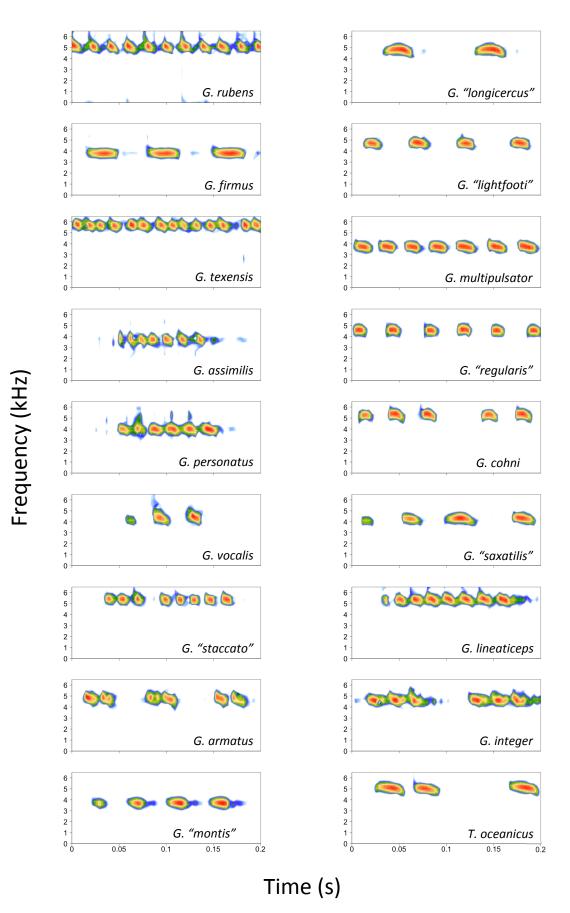
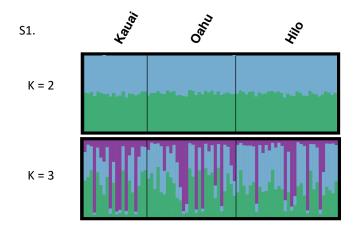
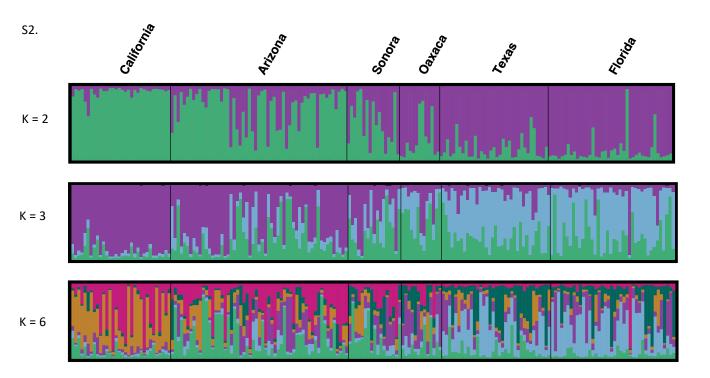
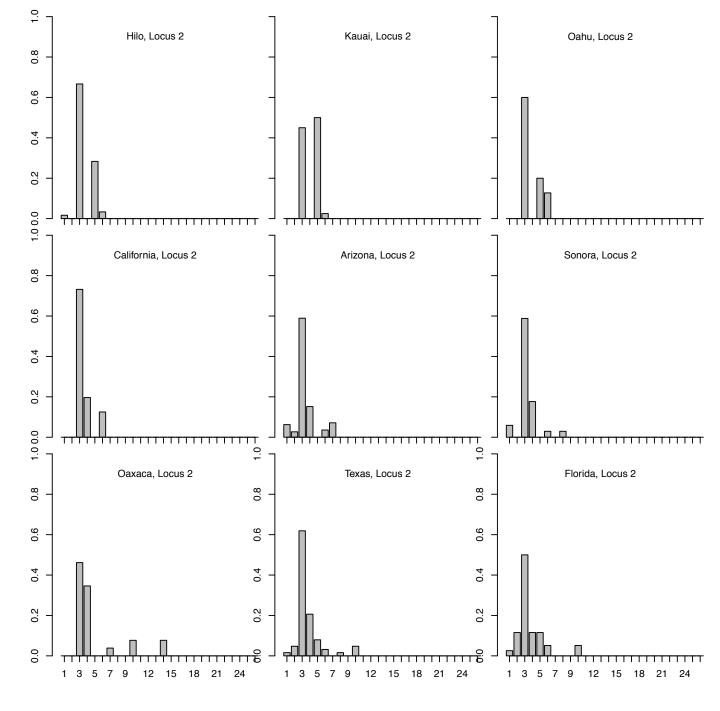


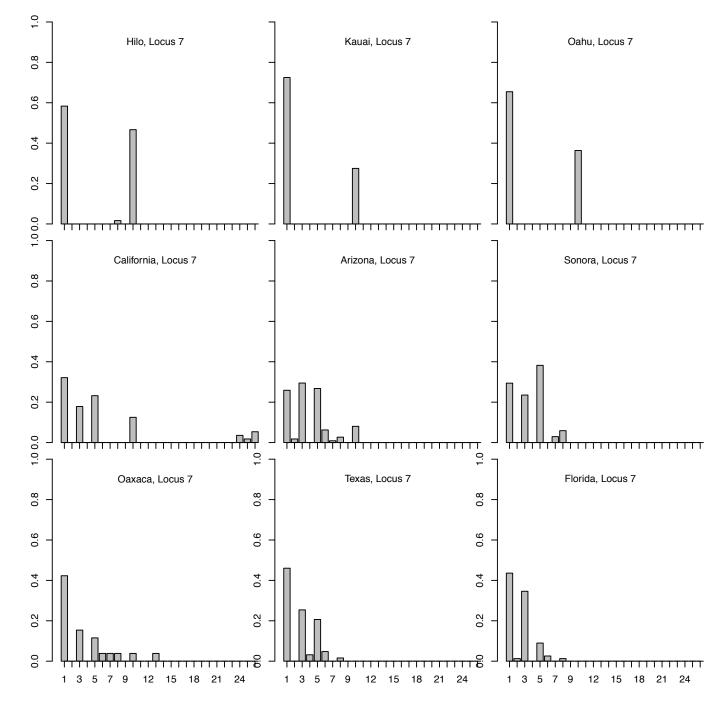
Figure 4. Waveform oscillograms of 3 seconds of song from confirmed host species showing overall song structure (chirps/trills).

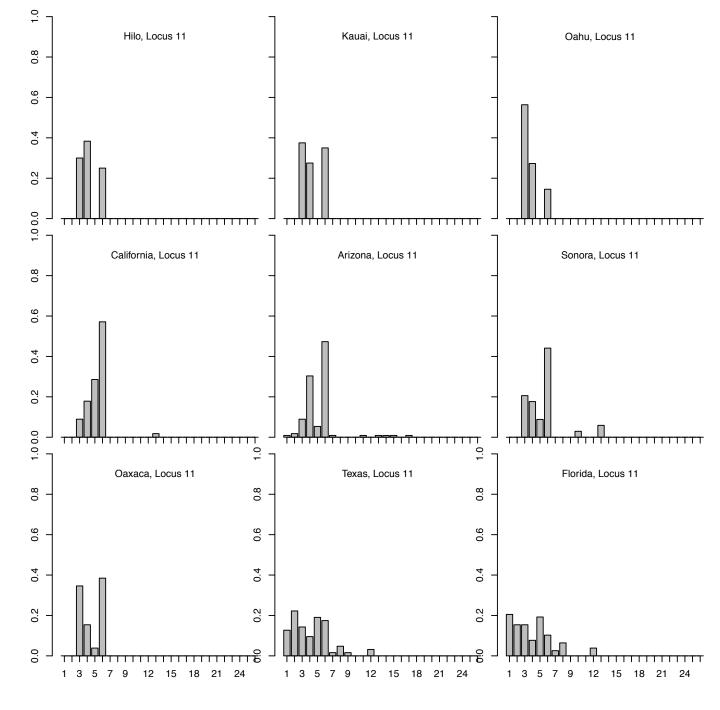



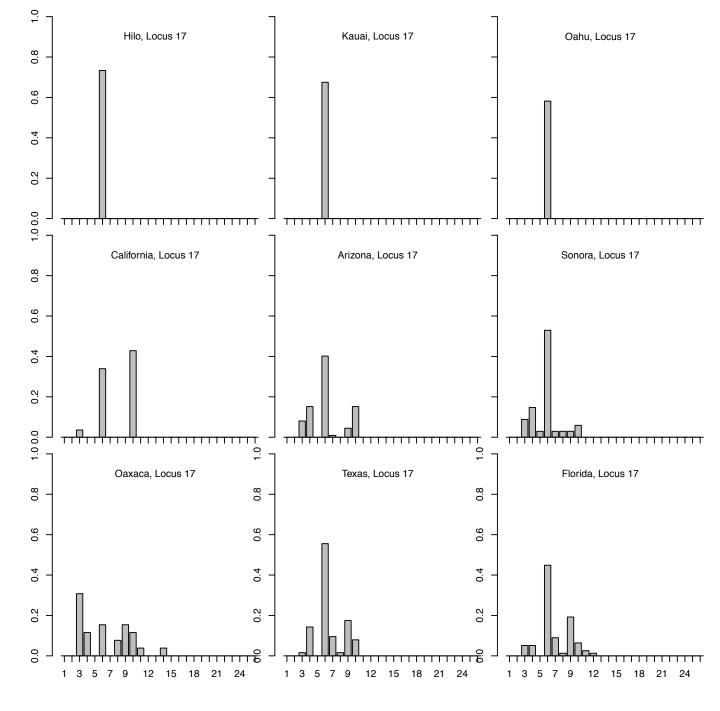

Figure 5. Spectrogram representations of 0.2 seconds of song from confirmed host species showing fine-scale song structure (pulses).

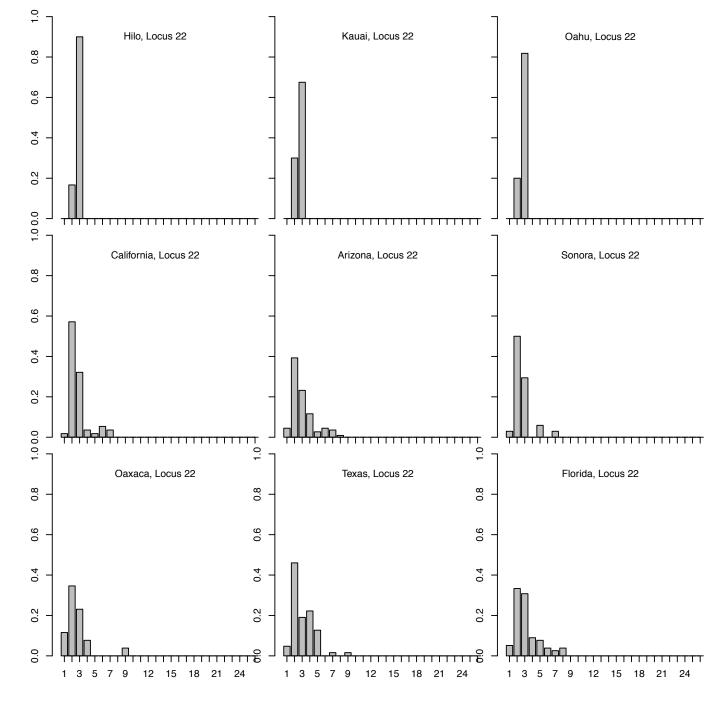
	·	·															,
	G. rubens	G. firmus	G. texensis	G. assimilis	G. personatus	G. vocalis	G. "staccato"	G. armatus	G. "montis"	G. "longicercus"	G. "lightfooti"	G. multipulsator	G. "regularis"	G. cohni	G. "saxatilis"	G. lineaticeps	G. integer
G. firmus	4.01																
G. texensis	2.21	4.46															
G. assimilis	3.90	3.36	3.79														
G. personatus	3.79	2.62	3.49	1.76													
G. vocalis	3.91	1.68	3.96	3.70	3.30												
G. "staccato"	3.27	3.35	2.33	3.36	3.22	2.22											
G. armatus	5.44	4.21	5.17	3.63	3.33	4.82	5.08										
G. "montis"	4.29	1.15	5.01	3.19	3.00	2.23	3.87	4.28									
G. "longicercus"	4.04	1.41	4.74	4.22	3.80	1.38	3.40	5.18	1.69								
G. "lightfooti"	3.84	1.40	4.47	3.88	3.58	1.10	3.05	5.02	1.61	0.44							
G. multipulsator	2.91	2.74	2.89	1.20	1.38	2.99	2.56	3.84	2.86	3.51	3.19						
G. "regularis"	1.50	2.88	3.02	3.64	3.52	2.86	3.09	4.97	3.04	2.71	2.54	2.70					
G. cohni	3.74	2.61	3.75	4.30	3.65	2.38	3.23	3.89	3.18	2.70	2.63	3.60	2.80				
G. "saxatilis"	4.01	0.28	4.47	3.14	2.47	1.78	3.37	4.07	0.97	1.56	1.50	2.58	2.88	2.70			
G. lineaticeps	3.58	3.18	2.39	3.47	2.38	2.85	1.96	4.56	4.05	3.82	3.61	2.57	3.58	3.25	3.23		
G. integer	5.61	5.15	5.24	5.17	4.97	5.06	5.05	3.05	5.38	5.52	5.36	4.97	5.26	4.14	5.12	5.02	
T. oceanicus	8.24	7.61	7.93	8.17	7.57	7.79	8.02	7.07	7.97	8.02	8.00	7.91	7.95	6.86	7.63	7.52	7.52

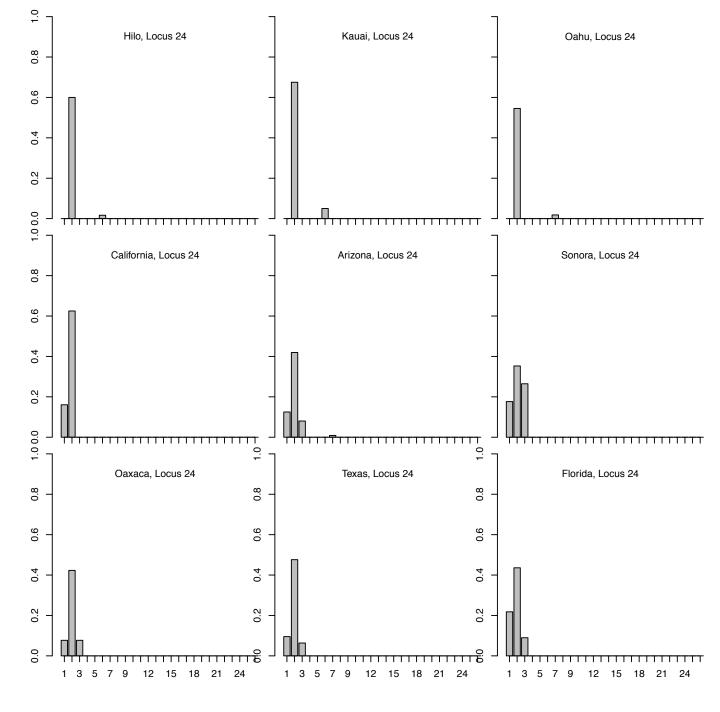

Figure 6. Euclidean pairwise inter-host song distances with heatmap colors indicating similar songs (green) or strongly divergent songs (red).

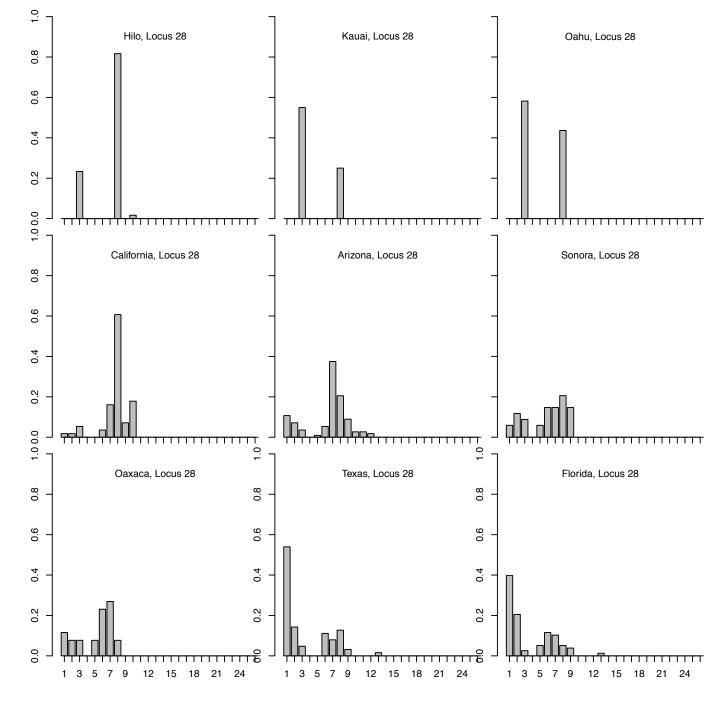

Supplemental Figure S1. STRUCTURE plots for Hawaii flies (K=2 and K=3)

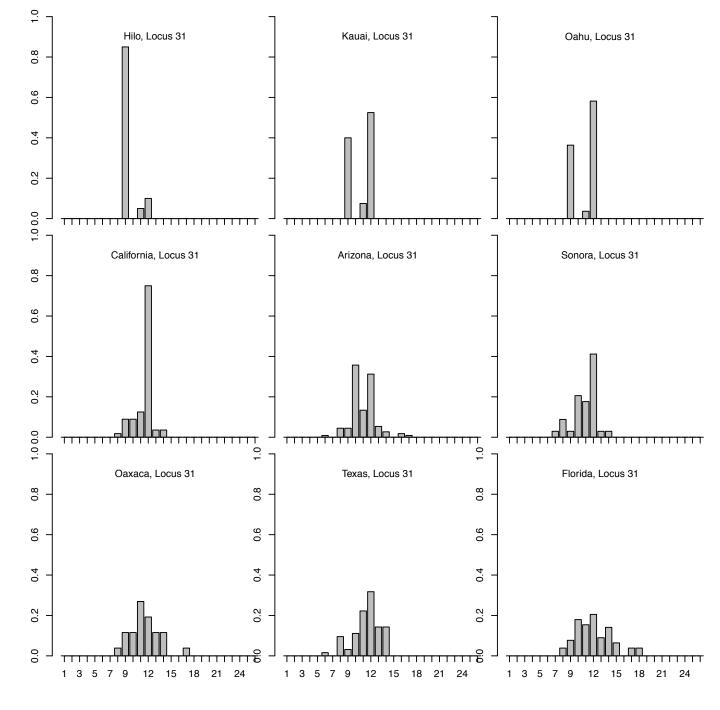

Supplemental Figure S2. STRUCTURE plots for mainland flies (K=2, K=3, and K=6)

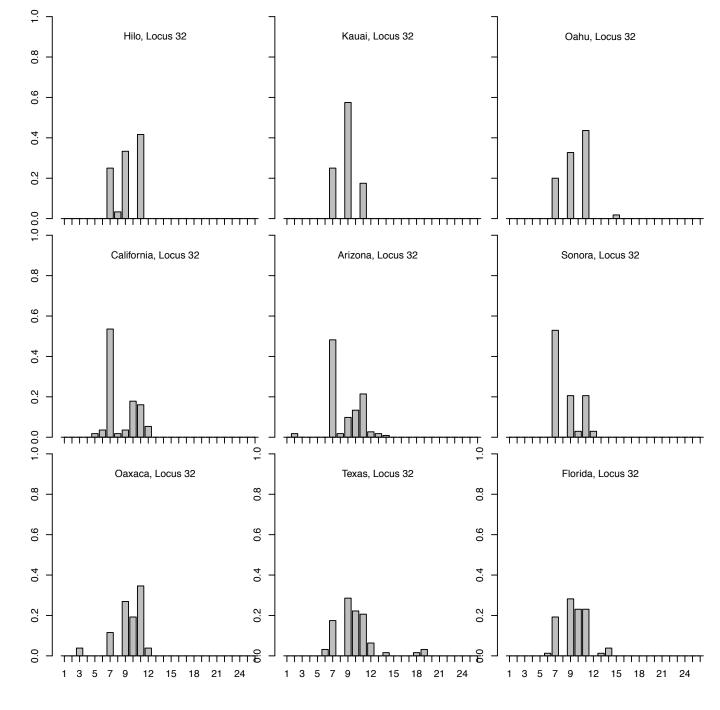

Supplemental Figure S3. Allele frequency histograms for msat locus 2 for each population.


Supplemental Figure S4. Allele frequency histograms for msat locus 7 for each population.

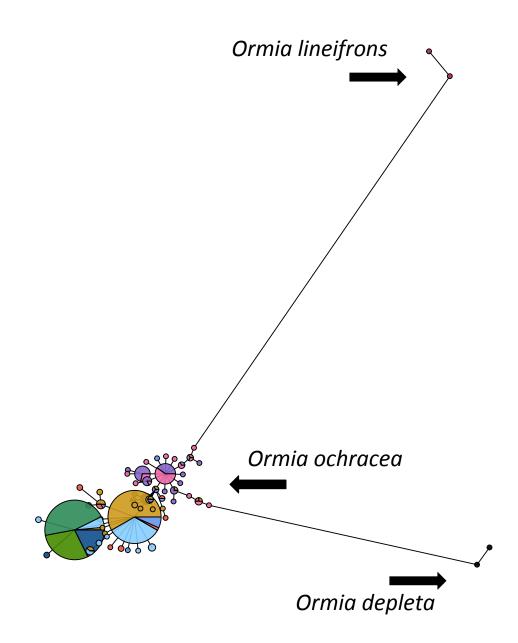

Supplemental Figure S5. Allele frequency histograms for msat locus 11 for each population.


Supplemental Figure S6. Allele frequency histograms for msat locus 17 for each population.


Supplemental Figure S7. Allele frequency histograms for msat locus 22 for each population.


Supplemental Figure S8. Allele frequency histograms for msat locus 24 for each population.


Supplemental Figure S9. Allele frequency histograms for msat locus 28 for each population.


Supplemental Figure S10. Allele frequency histograms for msat locus 31 for each population.

Supplemental Figure S11. Allele frequency histograms for msat locus 32 for each population.

Supplemental Figure S12. Allele frequency histograms for msat locus 34 for each population.

Supplemental Figure S13. Ormia ochracea haplotype network with outgroups O. lineifrons and O. depleta appended.