
Normalization and variance stabilization of single-cell RNA-seq data using
regularized negative binomial regression

Christoph Hafemeister1 & Rahul Satija1,2

1New York Genome Center, New York City, NY, USA
2Center for Genomics and Systems Bioligy, New York University, New York City, NY, USA

Correspondence to: chafemeister@nygenome.org, rsatija@nygenome.org

Abstract

Single-cell RNA-seq (scRNA-seq) data exhibits significant cell-to-cell variation due to technical factors, including the number of
molecules detected in each cell, which can confound biological heterogeneity with technical effects. To address this, we present a
modeling framework for the normalization and variance stabilization of molecular count data from scRNA-seq experiments. We propose
that the Pearson residuals from ’regularized negative binomial regression’, where cellular sequencing depth is utilized as a covariate in
a generalized linear model, successfully remove the influence of technical characteristics from downstream analyses while preserving
biological heterogeneity. Importantly, we show that an unconstrained negative binomial model may overfit scRNA-seq data, and overcome
this by pooling information across genes with similar abundances to obtain stable parameter estimates. Our procedure omits the need for
heuristic steps including pseudocount addition or log-transformation, and improves common downstream analytical tasks such as variable
gene selection, dimensional reduction, and differential expression. Our approach can be applied to any UMI-based scRNA-seq dataset
and is freely available as part of the R package sctransform, with a direct interface to our single-cell toolkit Seurat.

1 Introduction
In the analysis and interpretation of single-cell RNA-seq
(scRNA-seq) data, effective pre-processing and normalization
represent key challenges. While unsupervised analysis of single-
cell data has transformative potential to uncover heterogeneous
cell types and states, cell-to-cell variation in technical factors can
also confound these results [Vallejos et al., 2017, Stegle et al.,
2015]. In particular, the observed sequencing depth (number
of genes or molecules detected per cell) can vary significantly
between cells, with variation in molecular counts potentially
spanning an order of magnitude, even within the same cell type
[The Tabula Muris Consortium, 2018]. Importantly, while the
now widespread use of unique molecular identifiers (UMI) in
scRNA-seq removes technical variation associated with PCR,
differences in cell lysis, reverse transcription efficiency, and
stochasticmolecular sampling during sequencing also contribute
significantly, necessitating technical correction [Hicks et al.,
2017]. These same challenges apply to bulk RNA-seq work-
flows, but are exacerbated due to the extreme comparative spar-
sity of scRNA-seq data [Svensson et al., 2017].

The primary goal of single cell normalization is to remove
the influence of technical effects in the underlying molecular
counts, while preserving true biological variation. Specifically,
we propose that a dataset which has been processed with an ef-
fective normalization workflow should have the following char-
acteristics:

1. In general, the normalized expression level of a gene
should not be correlatedwith the total sequencing depth of
a cell. Downstream analytical tasks (dimensional reduc-
tion, differential expression) should also not be influenced
by variation in sequencing depth.

2. The variance of a normalized gene (across cells) should
primarily reflect biological heterogeneity, independent of
gene abundance or sequencing depth. For example, genes
with high variance after normalization should be differ-
entially expressed across cell types, while housekeeping
genes should exhibit low variance. Additionally, the vari-
ance of a gene should be similar when considering either
deeply sequenced cells, or shallowly sequenced cells.

Given its importance, there have been a large number of
diverse methods proposed for the normalization of scRNA-seq
data [Bacher et al., 2017, Vallejos et al., 2015, Lun et al., 2016a,
Risso et al., 2018, Lopez et al., 2018, Qiu et al., 2017]. In gen-
eral, these fall into two distinct sets of approaches. The first
set aims to identify ’size factors’ for individual cells, as is com-
monly performed for bulk RNA-seq [Love et al., 2014]. For
example, BASiCS by Vallejos et al. [2015] infers cell-specific
normalizing constants using spike-ins, in order to distinguish
technical noise from biological cell-to-cell variability. Scran
by Lun et al. [2016a] pools cells with similar library sizes and
uses the summed expression values to estimate pool-based size
factors, which are resolved to cell-based size factors. By per-
forming a uniform scaling per-cell, these methods assume that
the underlyingRNAcontent is constant for all cells in the dataset,
and that a single scaling factor can be applied for all genes.

Alternative normalization approaches model molecule
counts using probabilistic approaches. For example, initial
strategies focused on read-level (instead of UMI-level) data,
and modeled the measurement of each cell as a mixture of two
components: a negative binomial (NB) ‘signal’ component and
a Poisson ‘dropout’ component [Kharchenko et al., 2014]. For
newer measurements based on UMI, modeling strategies have
focused primarily on the use of the NB distribution [Grün et al.,
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Figure 1: 33,148 PBMC dataset from 10x genomics. A)Distribution of total UMI counts / cell (’sequencing depth’). B)We placed genes
into six groups, based on their average expression in the dataset. C) For each gene group, we examined the average relationship between
observed counts and cell sequencing depth. We fit a smooth line for each gene individually and combined results based on the groupings
in (B). Black line shows mean, colored region indicates interquartile range. D) Same as in (C), but showing scaled log-normalized values
instead of UMI counts. Values were scaled (z-scored) so that a single y-axis range could be used. E) Relationship between gene variance
and cell sequencing depth; Cells were placed into five equal-sized groups based on total UMI counts (group 1 has the greatest depth),
and we calculated the total variance of each gene group within each bin. For effectively normalized data, each cell bin should contribute
20% to the variance of each gene group.
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2014], potentially including an additional parameter to model
zero-inflation (ZINB). For example, ZINB-WaVE by Risso et al.
[2018] models counts as ZINB in a special variant of factor
analysis. scVI and DCA also use the ZINB noise model [Lopez
et al., 2018, Eraslan et al., 2019], either for normalization and
dimensionality reduction in Bayesian hierarchical models, or
for a denoising autoencoder. These pioneering approaches ex-
tend beyond pre-processing and normalization, but rely on the
accurate estimation of per-gene error models.

In this manuscript, we present a novel statistical approach
for the modeling, normalization, and variance stabilization of
UMI count data for scRNA-seq. We first show that different
groups of genes cannot be normalized by the same constant fac-
tor, representing an intrinsic challenge for scaling-factor based
normalization schemes, regardless of how the factors themselves
are calculated. We instead propose to construct a generalized
linear model (GLM) for each gene with UMI counts as the re-
sponse and sequencing depth as the explanatory variable. We
explore potential error models for the GLM, and find that the
use of unconstrained NB or ZINB models leads to overfitting of
scRNA-seq data, and a significant dampening of biological vari-
ance. To address this, we find that by pooling information across
geneswith similar abundances, we can regularize parameter esti-
mates and obtain reproducible errormodels. The residuals of our
’regularized negative binomial regression’ represent effectively
normalized data values that are no longer influenced by techni-
cal characteristics, but preserve heterogeneity driven by distinct
biological states. Lastly, we demonstrate that these normalized
values enable downstream analyses, such as dimensionality re-
duction and differential expression testing, where the results are
not confounded by cellular sequencing depth. Our procedure
is broadly applicable for any UMI-based scRNA-seq dataset,
and is freely available to users through the open-source R pack-
age sctransform (github.com/ChristophH/sctransform), with
a direct interface to our single cell toolkit Seurat.

2 Results

2.1 A single scaling factor does not effectively
normalize both lowly and highly expressed
genes

Sequencing depth variation across single cells represents a sub-
stantial technical confounder in the analysis and interpretation of
scRNA-seq data. To explore the extent of this effect and possible
solutions, we examined five UMI datasets from diverse tissues,
generated with both plate and droplet-based protocols. We show
results on all datasets in SupplementaryNote 1, but focus here on
a dataset of 33,148 human peripheral blood mononuclear cells
(PBMC) freely available from 10x Genomics. This dataset is
characteristic of current scRNA-seq experiments; we observed
a median total count of 1,891 UMI/cell, and observed 16,809
genes that were detected in at least 5 cells (Fig. 1 A,B). As
expected, we observed a strong linear relationship between un-
normalized expression (gene UMI count) and cellular sequenc-
ing depth. We observed nearly identical trends (and regression
slopes) for genes across a wide range of abundance levels, after
grouping genes into six equal-width bins based on their mean
abundance (Figure 1C), demonstrating that counts from both

low and high abundance genes are confounded by sequencing
depth and require normalization.

We next tested how log-normalized values, the standard nor-
malization approach in popular scRNA-seq packages such as
Seurat [Satija et al., 2015, Butler et al., 2018, Stuart et al.,
2018] and SCANPY [Wolf et al., 2018], compensates for this
effect. As UMI counts are first scaled by the total sequenc-
ing depth (’size factors’) followed by pseudocount addition and
log-transformation, we observed a weaker relationship as ex-
pected. However, we found that genes with different overall
abundances exhibited distinct patterns after log-normalization,
and only low/medium abundance genes in the bottom three tiers
were effectively normalized (Figure 1D).

Moreover, we also found that gene variance was also con-
foundedwith sequencing depth. We quantified this phenonemon
by binning cells by their overall sequencing depth, and quanti-
fying the total variance of each gene group within each bin.
For effectively normalized data, we expect uniform variance
across cell groups, but we observed substantial imbalances in
the analysis of log-normalized data. In particular, cells with low
total UMI counts exhibited disproportionately higher variance
for high-abundance genes, dampening the variance contribution
from other gene groups (Figure 1E).We also tested an alternative
to log-normalization (’relative counts’ normalization), where we
simply divided counts by total sequencing depth. Removing
the log-transformation mitigated the relationships between gene
expression, gene variance, and sequencing depth, but residual
effects remained in both cases (Supp. Figure 1).

These results demonstrate inherent challenges for ’size
factor’-based normalization strategies. Notably, while recent
normalization strategies leverage more advanced strategies to
learn cell ’size factors’ [Lun et al., 2016b, Vallejos et al., 2015],
the use of a single factor will introduce distinct effects on differ-
ent gene sets, given their average abundance. This suggests that
genes may require normalization strategies that depend on their
abundance level. Indeed Bacher et al. [2017] reached similar
conclusions in the normalization of non-UMI based single cell
RNA-seq data. Their method, SCnorm, utilizes quantile regres-
sion to treat distinct gene groups separately, but ignores zero
values which predominantly characterize droplet-based scRNA-
seq. We therefore explored alternative solutions based on statis-
tical modeling of the underlying count data.

2.2 Modeling single cell data with a negative bi-
nomial distribution leads to overfitting

We considered the use of generalized linear models as a sta-
tistical framework to normalize single cell data. Motivated by
previous work that has demonstrated the utility of GLMs for
differential expression [Finak et al., 2015], we reasoned that in-
cluding sequencing depth as a GLM covariate could effectively
model this technical source of variance, with the GLM residuals
corresponding to normalized expression values. The choice of
a GLM error model is an important consideration, and we first
tested the use of a negative binomial distribution, as has been
proposed for overdispersed single-cell count data [Grün et al.,
2014, Risso et al., 2018], performing ’negative binomial regres-
sion’ (Methods) independently for each gene. This procedure
learns three parameters for each gene, an intercept term β0 and
the regression slope β1 (influence of sequencing depth), which
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Figure 2: We fit NB regression models for each gene individually, and bootstrapped the process to measure uncertainty in the resulting
parameter estimates. A) Model parameters for 16,809 genes for the NB regression model, plotted as a function of average gene abun-
dance. The color of each point indicates a parameter uncertainty score as determined by bootstrapping (Methods). Pink line shows the
regularized parameters obtained via kernel regression. B) Standard deviation (σ) of NB regression model parameters across multiple
bootstraps. Red points: σ for unconstrained NB model. Blue points: σ for regularized NB model, which is substantially reduced in
comparison. Black trendline shows an increase in σ for low-abundance genes, highlighting the potential for overfitting in the absence of
regularization.
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together define the expected value, and the dispersion parameter
θ characterizing the variance of the negative binomial errors.

We expected that we would obtain consistent parameter esti-
mates across genes, as sequencing depth should have similar (but
not identical as shown above) effects on UMI counts across dif-
ferent loci. To our surprise, we observed significant heterogene-
ity in the estimates of all three parameters, even for genes with
similar average abundance (Figure 2). These differences could
reflect true biological variation in the distribution of single-cell
gene expression, but could also represent irreproducible varia-
tion driven by overfitting in the regression procedure. To test
this, we bootstrapped the analysis by repeatedly fitting a GLM
to randomized subsets of cells, and assessed the variance of
parameter estimates. We found that parameter estimates were
not reproducible across bootstraps (Figure 2), particularly for
genes with low to moderate expression levels, suggesting that
the gene-specific differences we observed were exaggerated due
to overfitting.

Our observation that single cell count data can be overfit by
a standard (two-parameter) NB distribution demonstrates that
additional constraints may be needed to obtain robust parameter
estimates. We therefore considered the possibility of constrain-
ing the model parameters through regularization, by combining
information across similar genes to increase robustness and re-
duce sampling variation. This approach is commonly applied in
learning error models for bulk RNA-seq in the context of differ-
ential expression analysis [Anders and Huber, 2010, Pimentel
et al., 2017, Law et al., 2014], but to our knowledge has not been
previously applied in this context for single-cell normalization.

We therefore applied kernel regression (Methods) to model
the global dependence between each parameter value and aver-
age gene expression. The smoothed line (pink line in Figure 2)
represents a regularized parameter estimate, that can be applied
to constrain NB error models. We repeated the bootstrap pro-
cedure and found that in contrast to independent gene-level es-
timates, regularized parameters were consistent across repeated
subsamples of the data (Supp. Figure 2), suggesting that we are
robustly learning the global trends that relate intercept, slope,
and dispersion to average gene expression. We note that in con-
trast to our approach, the use of a zero-inflated negative binomial
model requires an additional (third) parameter, exacerbating the
potential for over-fitting. We therefore suggest caution and care-
ful consideration when applying unconstrained NB or ZINB
models to scRNA-seq UMI count data.

2.3 Applying regularized negative binomial re-
gression for single-cell normalization

Our observations above suggest a statistically-motivated, robust,
and efficient process to normalize single-cell data. First, we uti-
lize generalized linear models to fit model parameters for each
gene in the transcriptome, (or a representative subset; Supp. Fig-
ure 2; Methods) using sequencing depth as a covariate. Second,
we apply kernel regression to the resulting parameter estimates
in order to learn regularized parameters that depend on a gene’s
average expression, and are robust to sampling noise. Finally,
we perform a second round of NB regression, constraining the
parameters of the model to be those learned in the previous
step (since the parameters are fixed, this step reduces to a simple
affine transformation; Methods). We treat the residuals from this

model as normalized expression levels. Positive residuals for a
given gene in a given cell indicate that we observed more UMIs
than expected given the gene’s average expression in the pop-
ulation and cellular sequencing depth, while negative residuals
indicate the converse. We utilize the Pearson residuals (response
residuals divided by the expected standard deviation), effectively
representing a variance-stabilizing transformation (VST), where
both lowly and highly expressed genes are transformed onto a
common scale.

This workflow also has attractive properties for processing
single cell UMI data, including:

1. We do not assume a fixed ’size’, or expected total molec-
ular count, for any cell.

2. Our regularization procedure explicitly learns and ac-
counts for the well-established relationship [Eling et al.,
2018] between a gene’s mean abundance and variance in
single cell data

3. Our VST is data driven and does not involve heuristic
steps, such as a log-transformation, pseudocount addition,
or z-scoring.

4. As demonstrated below, Pearson residuals are indepen-
dent of sequencing depth, and can be used for variable
gene selection, dimensional reduction, clustering, visual-
ization, and differential expression.

2.4 Pearson residuals effectively normalize tech-
nical differences, while retaining biological
variation

To evaluate our regularized NB regression model, we explored
the relationship between the Pearson residuals and cellular se-
quencing depth. Encouragingly, we observed minimal correla-
tion (Figure 3A,C), for genes across the full range of expres-
sion levels. In addition, gene variance was strikingly consistent
across cells with different sequencing depths (Figure 3B, con-
trast to Figure 1E), with no evidence of expression ’dampening’
as we observed when using a cell-level size factor approaches.
Taken together, these results suggest that our Pearson residuals
represent effectively standardized expression values, that are not
influenced by technical metrics.

Our model predicts that for genes with minimal biological
heterogeneity in the data (i.e. genes whose variance is driven
primarily by differences in sequencing depth), residuals should
be distributed with a mean of zero and unit variance. We ob-
serve these values for the majority of genes in the dataset (Fig-
ures 4 A,B), demonstrating effective and consistent variance sta-
bilization across a range of expression values (Figure 4C). How-
ever, we observed a set of outlier genes with substantially higher
residual variance than predicted by our background model, sug-
gesting additional biological sources of variation in addition to
sampling noise. Further exploration of these genes revealed
that they exclusively represent markers of known immune cell
subsets (e.g. PPBP in Megakaryocytes, GNLY in NK cells,
IGJ in plasma cells), demonstrating that the variance of Pear-
son residuals correlates with biological heterogeneity, and can
be used to identify ’highly variable’ genes in single cell data.
In summary, our regularized NB regression model successfully
captures and removes variance driven by technical differences,

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/576827doi: bioRxiv preprint 

https://doi.org/10.1101/576827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gene group 1

Gene group 3

Gene group 5

Gene group 2

Gene group 4

Gene group 6

1K 2K 3K 1K 2K 3K

−0.2

−0.1

0.0

0.1

0.2

−0.2

−0.1

0.0

0.1

0.2

−0.2

−0.1

0.0

0.1

0.2

−0.2

−0.1

0.0

0.1

0.2

−0.2

−0.1

0.0

0.1

0.2

−0.2

−0.1

0.0

0.1

0.2

Total cell UMI count

S
ca

le
d 

P
ea

rs
on

 r
es

id
ua

l

A

0

25

50

75

100

1 2 3 4 5 6

Gene group

%
 v

ar
ia

nc
e 

co
nt

rib
ut

io
n

Cell group

1

2

3

4

5

B

Log−norm expression Pearson residuals

−0.2

0.0

0.2

0.4

C
or

re
la

tio
n 

w
ith

 c
el

l U
M

I

C

Figure 3: Pearson residuals from regularized NB regression represent effectively normalized scRNA-seq data. Panels A,B are analogous
to Fig. 1D,E, but calculated using Pearson residuals. C) Boxplot of Pearson correlations between Pearson residuals and total cell UMI
counts for each of the six gene bins. All three panels demonstrate that in contrast to log-normalized data, the level and variance of Pearson
residuals is independent of sequencing depth.

while retaining biologically relevant signal.
Our previous analyses suggest that the use of a regularized

NB error model is crucial to the performance of our workflow.
To test this, we substituted both a Poisson and an unconstrained
NB error model into our GLM, and repeated the procedure (Fig-
ure 4D). When applying standard negative binomial regression,
we found that the procedure strikingly removed both techni-
cal and biological sources of variation from the data, driven by
overfitting of the unconstrained distribution. A single-parameter
Poisson model performed similarly to our regularized NB, but
we observed that residual variances exceeded one for all mod-
erately and highly expressed genes. This is consistent with
previous observations in both bulk and single cell RNA-seq that
count data is overdispersed [Risso et al., 2018, Grün et al., 2014,
Love et al., 2014, Robinson et al., 2010].

In addition to global analyses, it is also instructive to explore
how each model performs on characteristic genes in the dataset.
In Figure 5 we show observed molecular counts for four repre-
sentative loci, as a function of total cell UMI count. Background
colors indicate GLM Pearson residuals values using three dif-
ferent error models (Poisson, NB, regularized NB), enabling us
to explore how well each model fits the data. For MALAT1, a
highly expressed gene that should not vary across immune cell
subsets, we observe that both the unconstrained and regular-
ized NB distributions appropriately modeled technically-driven
heterogeneity in this gene, resulting in minimal residual biolog-
ical variance. However, the Poisson model does not model the
overdispersed counts, incorrectly suggesting significant biolog-
ical heterogeneity. For S100A9 (a marker of myeloid cell types)
and CD74 (expressed in antigen-presenting cells) the regular-
ized NB and Poisson models both return bimodally distributed

Pearson residuals, consistent with a mixture of myeloid and lym-
phoid cell types present in blood, while the unconstrained NB
collapses this biological heterogeneity via overfitting. We ob-
serve similar results for the Megakaryocyte (Mk) marker PPBP,
but note that both non-regularized models actually fit a negative
slope relating total sequencing depth to gene molecule counts.
This is becauseMk cells have very little RNA content, and there-
fore exhibit lower UMI counts compared to other cell types, even
independent of stochastic sampling. However, it is nonsensical
to suggest that deeply sequenced Mk cells should contain less
PPBPmolecules than shallowly sequencedMk cells, and indeed,
regularization of the slope parameter overcomes this problem.

Taken together, our results demonstrate that the regularized
negative binomial represents an attractive middle ground be-
tween two extremes. By allowing for overdispersion, the model
can correctly account for the variance in count data observed
in single cell assays. However, by placing data-driven con-
straints on the slope, intercept, and dispersion of NB regression,
we substantially alleviate the problem of overfitting, and ensure
that biological variation is retained after normalization. We ob-
served identical results when considering any of the five UMI
datasets we tested, including both plate and droplet-based proto-
cols (Supplementary Note 1), demonstrating that our procedure
can apply widely to any UMI-based scRNA-seq experiment.

2.5 Downstream analytical tasks are not biased
by sequencing depth

Our procedure is motivated by the desire to standardize expres-
sion counts so that differences in cellular sequencing depth do
not influence downstream analytical tasks. To test our perfor-
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Figure 4: Regularized NB regression removes variation due to sequencing depth, but retains biological heterogeneity. A) Distribution of
residual mean, across all genes, is centered at 0. B) Density of residual gene variance peaks at 1, as would be expected when the majority
of genes do not vary across cell types. C) Variance of Pearson residuals is independent of gene abundance, demonstrating that the GLM
has successfully captured the mean-variance relationship inherent in the data. Genes with high residual variance are exclusively cell-type
markers. D) In contrast to a regularized NB, a Poisson error model does not fully capture the variance in highly expressed genes. An
unconstrained (non-regularized) NB model overfits scRNA-seq data, attributing almost all variation to technical effects. As a result, even
cell-type markers exhibit low residual variance. Mean-variance trendline shown in blue for each panel
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Figure 5: The regularized NB model is an attractive middle ground between two extremes. A) For four genes, we show the relationship
between cell sequencing depth and molecular counts. White points show the observed data. Background color represents the Pearson
residual magnitude under three error models. For MALAT1 (does not vary across cell types) the Poisson error model does not account for
overdispersion, and incorrectly infers significant residual variation (biological heterogeneity). For S100A9 (a CD14+ Monocyte marker)
and CD74 (expressed in antigen-presenting cells) the non-regularized NB model overfits the data, and collapses biological heterogeneity.
For PPBP (a Megakaryocyte marker) both non-regularized models wrongly fit a negative slope. B) Boxplot of Pearson residuals for
models shown in A. X-axis range shown is limited to [-8, 25] for visual clarity.
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Figure 6: Downstream analyses of Pearson residuals are unaffected by differences in sequencing depth. A) UMAP embedding of the
33,148 cell PBMC dataset using either log-normalization or Pearson residuals. Both normalization schemes lead to similar results with
respect to the major and minor cell populations in the dataset. However, in analyses of log-normalized data, cells within a cluster are
ordered along a gradient that is correlated with sequencing depth. B)Within the four major cell types, the percent of variance explained by
sequencing depth under both normalization schemes. C) UMAP embedding of two groups of biologically identical CD14+ monocytes,
where one group was randomly downsampled to 50% depth. D) Results of differential expression (DE) test between the two groups
shown in C. Gray areas indicate expected group mean difference by chance and a false discovery rate cutoff of 1%. E) Results of DE test
between CD14+ and CD16+ monocytes, before and after randomly downsampling the CD16+ cells to 20% depth.
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mance towards this goal, we performed dimensionality reduction
and differential expression tests on Pearson residuals after regu-
larizedNB regression. For comparison, we used log-normalized
data. We first applied PCA followed by UMAP embedding
(Methods) to the full PBMC dataset, using normalized values
(Pearson residuals, or log-normalized data) for all genes in the
transcriptome as input to PCA, and then visualized the total num-
ber of molecules per-cell on the UMAP embedding. Both nor-
malization schemes reveal significant biological heterogeneity in
PBMC (Figure 6A), consistent with the expected major and mi-
nor human immune cell subsets. However, the low-dimensional
representation of log-normalized data was confounded by cellu-
lar sequencing depth, as both the PCA and UMAP embeddings
exhibited strong correlations with this technical metric. These
correlations are strikingly reduced for Pearson residuals (Fig-
ure 6A). We note that we do not expect complete independence
of biological and technical effects, as distinct cell subsets will
likely vary in size and RNA content. However, even when limit-
ing our analyses within individual cell types, we found that cell
sequencing depth explained substantially reduced variation in
Pearson residuals compared to log-normalized data (Figure 6B),
consistent with our earlier observations (Figure 3).

Imperfect normalization can also confound differential ex-
pression (DE) tests for scRNA-seq, particularly if global differ-
ences in normalization create DE false positives for many genes.
To demonstrate the scope of this problem, and test its potential
resolution with Pearson residuals, we took CD14+ monocytes
(5,551 cell subset of the 33K PBMC data) and randomly di-
vided them into two groups. In one of the groups (50% of
the cells), we randomly subsampled UMIs so that each cell ex-
pressed only 50% of its total UMI counts. Therefore, the two
groups of monocytes are biologically equivalent, and differ only
in their technical sequencing depth, and we should ideally de-
tect no differentially expressed genes between them. However,
when performing DE on log-normalized data (t-test with signif-
icance thresholds determined by random sampling, see Meth-
ods), we detected more than 2,000 DE genes (FDR threshold
0.01), due to global shifts arising from improper normalization
(Figure 6C,D). When performing DE on Pearson residuals, we
identified only 11 genes. While these 11 represent false posi-
tives, they are each highly expressed genes for which it is difficult
to obtain a good fit during the regularization process as there are
few genes with similar mean values (Figure 3A top left).

We also tested a second scenario where true DE genes could
be masked by sequencing depth differences. We compared
two distinct populations, CD14+ and CD16+ monocytes (5,551
and 1,475 cells), before and after randomly downsampling the
CD16+ group to 20% sequencing depth. We would expect the
set of DE genes to be nearly identical in the two analyses, though
we expect a decrease in sensitivity after downsampling. How-
ever, when using log-normalized data, we observed dramatic
changes in the set of DE genes - with some CD14+-enriched
markers even incorrectly appearing as CD16+-enriched markers
after downsampling. When performing DE on Pearson resid-
uals, the results of the two analyses were highly concordant,
albeit with reduced statistical power after downsampling (Fig-
ure 6E). Therefore, Pearson residuals resulting from regularized
NB regression effectively mitigate depth-dependent differences
in dimensionality reduction and differential expression, which
are key downstream steps in single cell analytical workflows.

3 Discussion

Here, we present a statistical approach for the normalization and
variance stabilization of single cell UMI datasets. In contrast
to commonly applied normalization strategies, our workflow
omits the use of linear size/scaling factors, and focuses instead
on the construction of a GLM relating cellular sequencing depth
to gene molecule counts. We calculate the Pearson residuals
of this model, representing a variance-stabilization transforma-
tion that removes the inherent dependence between a gene’s
average expression and cell-to-cell variation. We demonstrate
that our Pearson residuals represent normalized scRNA-seq val-
ues, that can be utilized for diverse downstream tasks including
variable gene selection, dimensional reduction, and differential
expression. In each case, our procedure effectively removes the
influence of technical variation, without dampening biological
heterogeneity.

When exploring error models for the GLM, our analyses
revealed that an unconstrained negative binomial model tends
to overfit single cell RNA-seq data, particularly for genes with
low/medium abundance. We demonstrate that a regularization
step, a commmon step in bulk RNA-seq analysis [Robinson
et al., 2010, McCarthy et al., 2012] where parameter estimates
are pooled across genes with similar mean abundance, can effec-
tively overcome this challenge and yield reproducible models.
Importantly, statistical and deep-learning methods designed for
single cell RNA-seq data often utilize a negative binomial (or
zero-inflated negative binomial) error model [Lopez et al., 2018,
Eraslan et al., 2019]. Our results suggest that these and future
methods could benefit by substituting a regularized model, and
that including an additional parameter for zero-inflation could
exacerbate the risk of overfitting. More generally, our work in-
dicates that a regularized negative binomial is an appropriate
distribution to model UMI count data from a ’homogeneous’
cell population.

To facilitate users applying these methods to their own
datasets, our approach is freely available as an open-source R
package sctransform (github.com/ChristophH/sctransform),
with an accompanying interface to our single cell R toolkit
Seurat [Satija et al., 2015, Butler et al., 2018, Stuart et al.,
2018]. In a single command, and without any requirement to
set user-defined parameters, sctransform performs normal-
ization, variance stabilization, and feature selection based on a
UMI-based gene expression matrix. We demonstrate the ease-
of-use for sctransform in a short vignette analyzing a 2,700
PBMC dataset produced by 10x Genomics in Supplementary
Note 2. In this example, sctransform reveals significant addi-
tional biological substructure inNK, T, B, andmonocyte popula-
tions that cannot be observed in the standard Seurat workflow,
which is based on log-normalization (Supplementary Note 2).

As our workflow leverages all genes (or a random subset) for
the initial regularization, we make an implicit assumption that
the majority of genes in the dataset do not exhibit significant
biological variation. This is analogous to similar assumptions
made for bulk RNA-seq normalization and DE (i.e., that the
majority of genes are not differentially expressed across con-
ditions) [Robinson et al., 2010]. While this assumption may
be overly simplistic when performing scRNA-seq on a highly
heterogeneous sample, we did not observe adverse affects when
applying our model to human PBMC data, or any of the other
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four datasets we examined. In principle, an initial pre-clustering
step (as proposed in [Lun et al., 2016a]) could alleviate this
concern, as the biological heterogeneity would be significantly
reduced in each group.

Finally, while we focus here on modeling technical variation
due to differences in cellular sequencing depth, we note that our
approach can be easily extended to model alternative ’nuisance’
parameters, including cell cycle [Buettner et al., 2015], mito-
chondrial percentage, or experimental batch, simply by adding
additional covariates to the model. Indeed, we observed that a
modified GLM including a batch indicator variable was suffi-
cient to correct for technical differences arising from two profiled
batches of murine bipolar cells [Shekhar et al., 2016], though
successful application requires all cell types to share a simi-
lar batch effect (Supp. Figure 3). In the future, we anticipate
that similar efforts can be used to model diverse single-cell data
types, including single-cell protein [Stoeckius et al., 2017], chro-
matin [Buenrostro et al., 2015], and spatial [Wang et al., 2018]
data.

4 Methods
4.1 Regularized negative binomial regression
We explicitly model the UMI counts for a given gene using a
generalized linear model. Specifically we use the sum of all
molecules assigned to a cell as a proxy for sequencing depth,
and use this cell attribute in a regression model with negative
binomial (NB) error distribution and log link function. Thus,
for a given gene i, we have

log(E(xi)) = β0 + β1 log10 m,

where xi is the vector of UMI counts assigned to gene i, and m
is the vector of molecules assigned to the cells, i.e. mj =

∑
i xi j .

The solution to this regression is a set of parameters: the in-
tercept β0, the slope β1. The dispersion parameter θ of the
underlying NB distribution is also unknown and needs to be
estimated from the data. Here we use the NB parameterization
with mean µ and variance given as µ + µ2

θ .
We use a regression model for the UMI counts to correct

for sequencing depth differences between cells, and to standard-
ize the data. However, modeling each gene separately results in
overfitting, particularly for low-abundane genes that are detected
in only a minor subset of cells, and are modeled with a high vari-
ance. We consider this an overestimation of the true variance,
as this is drive by cell type heterogeneity in the sample, and
not due to cell-to-cell variability with respect to the independent
variable, log10 m. To avoid this overfitting, we regularize all
model parameters, including the NB dispersion parameter θ, by
sharing information across genes.

The procedure we developed has three steps. In the first step,
we fit independent regression models per gene. In the second
step, we exploit the relationship of model parameter values and
gene mean to learn global trends in the data. We capture these
trends using a kernel regression estimate (ksmooth function in
R) with normal kernel and large bandwidth (3 times the size
suggested by R function bw.SJ). We perform independent regu-
larizations for all parameters (Fig 2). In the third step, we use
the regularized regression parameters to define an affine function

that transforms UMI counts into Pearson residuals:

zi j =
xi j − µi j
σi j

,

µi j = exp (β0i + β1i log10 mj),

σi j =

√
µi j +

µ2
i j

θi
,

where zi j is the Pearson residual of gene i in cell j, xi j is the
observed UMI count of gene i in cell j, µi j is the expected UMI
count of gene i in cell j in the regularized NB regression model,
and σi j is the expected standard deviation of gene i in cell j in
the regularized NB regression model. Here β0i , β1i , and θi are
the linear model parameters after regularization. To reduce the
impact of extreme outliers, we clip the residuals to a maximum
value of

√
N , where N is the total number of cells.

4.2 Geometric mean for genes
Our regularization approach aims to pool information across
genes with similar average expression. To avoid the influence of
outlier cells and respect the exponential nature of the count dis-
tributions, we consistently use the geometric mean. References
to average abundance or gene mean in this work are based on
the following definition of mean:

exp (amean(log(x + ε))) − ε,

with x being the vector of UMI counts of the gene, amean being
the arithmetic mean, and ε being a small fixed value to avoid
log(0). After trying several values for ε in the range 0.0001 to 1,
and not observing significant differences in our results, we set
ε = 1.

4.3 Speed Considerations
sctransform has been optimized to run efficiently on large
scRNA-seq datasets on standard computational infrastructure.
For example, processing of a 3,000 cell dataset takes 30 sec-
onds on a standard laptop (the 33,148 cell dataset utilized in this
manuscript takes 6 minutes).

The most time consuming step of our procedure is the ini-
tial GLM-fitting, prior to regularization. Here, we fit K linear
regression models with NB error models, where K is the total
number of genes in the dataset. However, since the results of the
first step are only used to learn regularized parameter estimates
(ie. the overall relationship of model parameter values and gene
mean), we tested the possibility of performing this step on a
random subset of genes in lieu of the full transcriptome. When
selecting a subset of genes to speed up the first step, we do not
select genes at random, i.e. with a uniform sampling probability,
as that would not evenly cover the range of gene means. Instead,
we set the probability of selecting a gene i to 1/d(log10 x̄i),
where d is the density estimate of all log10-transformed gene
means and x̄i is the mean of UMI counts of gene i.

For different numbers of genes (ranging from 4,000 to 50),
we drew 13 random samples to be used in the initial step of pa-
rameter estimation. We then proceeded to generate regularized
models (for all genes based on parameters learned from a gene
subset), and compared the results to the case where all genes
were used in the initial estimation step as well. We employed a
few metrics to compare the partial analysis to the full analysis:
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the correlation of gene-residuals, the ranking of genes based on
residual variation (most highly-variable genes), and the CV of
sum of squared residuals across random samples (model stabil-
ity). For all metrics, we observed that using as few as 200 genes
in the initial estimation closely recapitulated the full results,
while using 2,000 genes gave rise to virtually identical estimates
(Supp. Figure 2). We therefore use 2,000 genes in the initial
GLM-fitting step.

Additionally, we explored three methods to estimate the
model parameters in the initial step. We list them here in in-
creasing order of computational complexity.

1. Assume a Poisson error distribution to estimate β coeffi-
cients. Then, given the estimated mean vector, estimate
the NB θ parameter using maximum likelihood.

2. Same as above, followed by a re-estimation of β coeffi-
cients using a NB error model with the previously esti-
mated θ.

3. Fit a NB GLM estimating both the β and θ coefficients
using an alternating iteration process.

While the estimated model parameters can vary slightly between
these methods, the resulting Pearson residuals are extremely
similar. For example, when applying the three procedures to
the 10x PBMC dataset, all pairwise gene correlations between
the three methods are greater than 0.99, though the alternating
iteration process is four-fold more computationally demanding.
We therefore proceeded with the first method.

4.4 Trends in the data before and after normal-
ization

Wegrouped genes into six bins based on log10-transformedmean
UMI count, using bins of equal width. To show the overall trends
in the data, for every gene we fit the expression (UMI counts,
scaled log-normalized expression, scaled Pearson residuals) as
a function of log10-transformed mean UMI count using ker-
nel regression (ksmooth function) with normal kernel and large
bandwidth (20 times the size suggested by R function bw.SJ).
For visualization we only used the central 90% of cells based on
total UMI. For every gene group we show the expression range
after smoothing from first to third quartile at 200 equidistant cell
UMI values.

4.5 Model parameter stability
To assess model parameter stability we bootstrapped the param-
eter estimation and sampled from all cells with replacement 13
times. For a given gene and parameter combination we derived
an uncertainty score as follows. We used the standard devia-
tion of parameter estimates across 13 bootstraps divided by the
standard deviation of the bootstrap-mean value across all genes.
Values greater or equal to one indicate high uncertainty, while
values less or equal to 0.01 indicate low uncertainty.

4.6 Variance contribution analysis
To evaluate whether gene variance is dependent on sequencing
depth, we determined the contribution of different cell groups to
the overall variance of our six previously determined gene sets.

For this we placed all cells into five equal-sized groups based on
total UMI counts (group 1 has the greatest depth, group 5 the
lowest). We center each gene and square the values to obtain the
squared deviation from the mean. The variance contribution of
a cell group is then the sum of the values in those cells divided
by the sum across all cells.

4.7 Density maps for Pearson residuals
To illustrate different models (regularized NB, Poisson, non-
regularized NB) for four example genes, we show Pearson resid-
uals on 256x256 grids in form of heatmaps. X and Y axis ranges
were chosen to represent the central 98% of cells and central
99.8% of UMI counts. Heatmap colors show the magnitude
(absolute value) of Pearson residuals, clipped to a maximum
value of 4.

4.8 Dimensionality reduction
For both log-normalized data and Pearson residuals we per-
formed dimensionality reduction as follows. We centered and
scaled all 16K genes, clipped all values to the interval [-10,
10] and performed a truncated principal components analysis as
provided by the irlba R package. In both cases we kept the first
25 PCs based on eigenvalue drop-off. For 2D visualization the
PC embeddings were passed into UMAP [McInnes and Healy,
2018, McInnes et al., 2018] with default parameters.

4.9 Differential expression testing
Differential expression testing was done using independent t-
tests per gene for all genes detected in at least 5 cells in at least
one of the two groups being compared. P-values were adjusted
for multiple comparisons using the Benjamini & Hochberg
method (FDR). Input to the test was either log-normalized
(log(10, 000UMIgene/UMIcell + 1)) expression or Pearson resid-
uals after regularized NB regression. A random background
distribution of mean differences was generated by randomly
choosing 1,000 genes and permuting the group labels. Signifi-
cance thresholds for the difference of means were derived from
the background distribution by taking the 0.5th and 99.5th per-
centile. Finally, we called genes differentially expressed if the
FDR was below 0.01 and the difference of means exceeded the
threshold for significance.

4.10 Model extensions - additional nuisance pa-
rameters

For the results shown in this manuscript, we have used the log-
transformed total number of UMI assigned to each cell as the
dependent variable to model gene-level UMI counts. However,
other variables may also be suitable as long as they capture the
sampling depth associated with each cell.

Additionally, the model can be flexibly extended to include
additional covariates representing nuisance sources of variation,
including cell-cycle state, mitochondrial percentage, or experi-
mental batch. In these cases (unlike with sequencing depth), no
regularization can be performed for parameters involving these
variables, as genes with similar abundances cannot be assumed
to (for example) be expressed in a similar pattern across the cell
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cycle. In these cases, we first learn regularized models using
only the sequencing depth covariate, as described above. We
next perform a second round of NB regression, including both
the depth covariate and additional nuisance parameters as model
predictors. In this round, the depth-dependent parameters are
fixed to their previously regularized values, while the additional
parameters are unconstrained and fit during the regression. The
Pearson residuals of this second round of regression represent
normalized data.

As a proof-of-concept, we illustrate a potential model exten-
sion by including a batch indicator variable when analyzing a
dataset of 26,439 murine bipolar cells produced by two exper-
imental batches [Shekhar et al., 2016], considering all bipolar
cells and Müller glia. After running sctransform, either with
the inclusion or exclusion of the batch covariate, we performed
PCA on all genes, and used the first 20 dimensions to compute a
UMAP embedding (Supp. Figure 3). We include this example
as a demonstration for how additional nuisance parameters can
be included in the GLM framework, but note that when cell-type
specific batch effects are present, or there is a shift in the per-
centage of cell types across experiments, non-linear batch effect
correction strategies are needed [Stuart et al., 2018]

Data and Software Availability
The dataset used in the main text is ‘33k PBMCs from a Healthy
Donor, v1 Chemistry’ from 10x Genomics. Additional datasets
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able as an open-source R package sctransform
(github.com/ChristophH/sctransform).
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Supp. Figure 1: ’Relative counts’ normalization of 33K PBMC data set. A,B) Visualizations are analogous to Fig. 1D,E, but calculated
using ’relative counts’ normalization. C) Boxplot of Pearson correlations between ’relative counts’ and total cell UMI counts for each of
the six gene bins.
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Supp. Figure 2: A representative set of 2,000 genes is sufficient for learning regularized models. A,B) Comparing models learned using
only a subset of genes and models learned using all 16,809 genes. A) Pearson correlation of gene residuals B) Mean rank change of top
100 variable genes as determined by residual variance. C) Coefficient of variation of sum of squared residuals across multiple samples;
All panels show results of 13 random samples per gene subset size
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Supp. Figure 3: Batch-correction during normalization. A) UMAP embedding of the bipolar cell dataset before and after including a
batch term during normalization. When applying sctransform without the batch indicator variable (i.e. batch-naive normalization),
we see clear separation per batch, but when including a batch term in the regression model used for normalization, the batches align. B)
Same as above, but colors indicate clusters of the original study. We include this example as a demonstration for how additional nuisance
parameters can be included in the GLM framework, but note that when cell-type specific batch effects or present, or there is a shift in the
percentage of cell types across experiments, non-linear batch effect correction strategies are needed. Stuart et al. [2018]
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